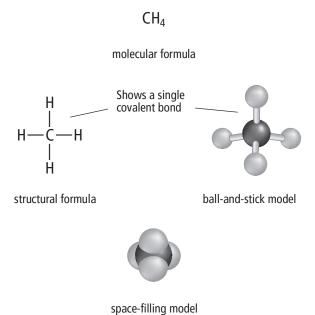
Organic Compounds

Textbook pages 244-251

Before You Read

What do you think of when you hear the term "organic"? Outline your thoughts in the lines below.


Make Flash Cards

Create flash cards to help you remember common organic compounds. Write the name of the compound on the front of the card and the information you want to recall on the back.

What are organic compounds?

Organic compounds are any compounds that contain carbon (with a few exceptions). All other compounds are referred to as **inorganic compounds**. In almost all organic compounds, carbon atoms are bonded to hydrogen atoms or other elements that are near carbon in the periodic table, especially nitrogen, oxygen, sulphur, phosphorus, and the halogens. Other elements, including metals and non-metals, may also be present.

The carbon in organic compounds forms four bonds, which enables it to form complex, branched-chain structures, ring structures, and even cage-like structures. Several different methods can be used to model these structures. These include the structural formula, the ball-and-stick model, and the space-filling model shown below.

continued

To recognize a compound as organic, look for an indication of the presence of carbon in its name, chemical formula, or diagram. However, there are a few exceptions to this rule. Certain compounds that contain carbon are classified as inorganic carbon compounds. These include any compounds that contain carbonates, (i.e., CaCO₃); carbides, (i.e., SiC); and oxides (i.e., CO₂, CO).

Date

What are some common organic compounds?

Two common organic compounds are hydrocarbons and alcohols.

1. Hydrocarbons: A **hydrocarbon** is an organic compound that contains only the elements carbon and hydrogen. The simplest of all organic compounds is the hydrocarbon molecule called methane (CH₄) which consists of a carbon atom bonded to four hydrogen atoms. Other hydrocarbons are formed by linking two or more carbons together to make a chain. The first five hydrocarbons are given in the table below.

V	Reading Check
	How does an organic compound differ from an inorganic compound?

Name	Molecular Formula	Structural Formula	Shortened Structural Formula	Space-Filling Model	Common Uses
methane	CH ₄	H H— C — H I H	CH ₄		Natural gas heaters
ethane	С ₂ Н ₆	H H I I H— C — C — H I I H H	CH ₃ CH ₃	40	Manufacturing plastic
propane	C ₃ H ₈	H H H H C C C C C H I I I H H H	СН ₃ СН ₂ СН ₃		• Camp fuel
butane	C ₄ H ₁₀	H H H H I I I I H— C — C — C — H I I I I H H H H	CH ₃ CH ₂ CH ₂ CH ₃		• Hand-held lighters
pentane	C ₅ H ₁₂	H H H H H H C C C C C C C C H I I I I I H H H H H	CH ₃ CH ₂ CH ₂ CH ₂ CH ₃		Component of gasoline

continued

Reading Check

Provide the molecular formula for ethanol.

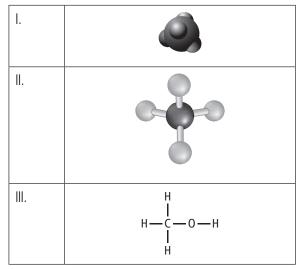
2. Alcohols: An **alcohol** is one kind of organic compound that contains C, H, and O in a specific structure. The table below shows some common alcohols. **⊘**

Name	Molecular Formula	Structural Formula	Shortened Structural Formula	Space-Filling Model	Common Use
methanol	СН ₄ О	H— C— O— H I H	сн ₃ он		• Solvent
ethanol	C ₂ H ₆ O	H H I I H— C— C — 0 — H I I H H	СН ₃ СН ₂ ОН	039	• Fuel
isopropyl alcohol	C ₃ H ₈ O	H O H H C - C - C - H H H H H	(СН ₃)СН ₂ ОН	S.	Sterilizer Cleaner

Use with textbook pages 244-248.

Organic compounds

Using the compound ethane, match the Descriptor on the left with the best Formula / Model that represents ethane on the right. Each Formula / Model may be used only once.


Descriptor	Formula / Model		
1 structural formula 2 molecular formula 3 space-filling model 4 ball-and-stick model	A. C ₂ H ₆ B. H H H H H C C C C H H H H H		
	D.		

- **5.** What element must always be present in an organic compound?
 - A. carbon
 - B. oxygen
 - C. chlorine
 - **D.** hydrogen
- **6.** Which formula represents a hydrocarbon?
 - A. HClO₃
 - B. CH₃COOH
 - $\textbf{C.} \ \text{CH}_{3}\text{CH}_{2}\text{CH}_{2}\text{COOH}$
 - D. CH₃CH₂CH₂CH₂CH₃

7. Which of the following represents an alcohol?

- **D.** H H H H H H H H C C C C C C C OH

8. Which of the following represents methane, CH_4 ?

- A. I and II only
- **B.** I and III only
- **C.** II and III only
- **D.** I, II, and III