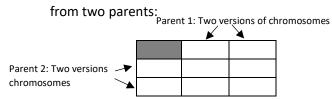


Thomas Haney Secondary School


23000 116 Ave, Maple Ridge, B.C. V2X 0T8

Telephone: (604)463-2001

LG #14: How Does a DNA Sequence Become a Physical Feature? Introduction to Punnett Squares Worksheet

An Introduction to Punnett Squares

Punnett squares are diagrams used to help us predict the characteristics of the offspring that may result

Each Punnett square examines only **one** trait, for example, Gregor Mendel examined the colour of pea pods.

He crossed a homozygous dominant green pod (GG) with a homozygous recessive yellow pod (gg).

Mendel had to wait until offspring were produced from this cross to see the results, however, using a Punnett square, we can determine the likely combination of offspring.

Step 1: Place the genotype of parent 1 across the top of the Punnett square:

Capital letters (G, L, K, etc mean the DOMINANT version of the trait. Lower case means the recessive form.

Step 2: Place the genotype of parent 2 down the left hand side of the Punnett square:

Genotype of		G	G
parent 2	8		
	g		

Question 1: What does each letter represent?

LG #14: How Does a DNA Sequence Become a Physical Feature? Introduction to Punnett Squares Worksheet

Each box left in the Punnett square will represent a possible offspring, each inheriting one allele (trait) from each parent.

Step 3: Complete the punnet's square below, this shows the genotypes of the offspring:

Question 2: Can you guess how to fill the Punnett square in? It has been started for you.

	G	G
g	Gg	
g		

Fraction:

Percentage:

Question 3: Describe the genotype and phenotype of the offspring created from the crossing of alleles
above
<u> </u>
Question 4: These offspring (called the F ₁ generation) were then crossed to each other. Fill in the following Punnett square to show the expected genotypes of the two offspring were crossed together. (called the F ₂ generation):
Step 4: State the proportions of offspring with each genotype/phenotype:
When describing the resulting offspring, you may be asked to express your answer in 3 different ways: as a percentage (e.g. 65%), ratio (e.g. 6:1), or fraction (e.g. 1/3).
Ratio:

LG #14: How Does a DNA Sequence Become a Physical Feature? Introduction to Punnett Squares Worksheet

Question 5: Express the genotypes and phenotypes of the offspring from the second cross in each of these three forms:

	Percentages	Ratios	Fractions
Genotypes			
	GG		
	Gg		
	gg		
Phenotypes	Green		
	Yellow		

What is this information really telling us?

- For every 4 offspring produced by the F_1 pea plants, 3 will be green and 1 will be yellow
- For every 4 offspring produced by the F_1 pea plants,1 will be homozygous dominant, 2 will be heterozygous and 1 will be homozygous recessive
- And many other things....

Question 6: Make one other statement similar to the ones above about the offspring from a Gg x Gg				
cross of pea plants:				

One important point from this cross is the **expected ratio** of 3 green: 1 yellow pea plant. This ratio of 3 offspring showing the dominant phenotype: 1 offspring showing the recessive phenotype can be expected is any cross where both parents are heterozygous.

LG #14: How Does a DNA Sequence Become a Physical Feature? Introduction to Punnett Squares Worksheet

Question 7: How many offspring would be expected to show each of the following genotypes and phenotypes for the cross above if 200 offspring were produced? What if 60 offspring were produced?

	200 offspring	60 offspring	
Green	150		How do I work this out?
Yellow			3/4 of the offspring are expected to
Homozygous dominant			be green.
Homozygous recessive			Therefore, I need to find 3/4 of 200:
Heterozygous			[
			$\frac{1}{3} \times \frac{1}{500} = \frac{1}{600}$
			, T
			i = 150
Remember that this is only a prediction of the offspring that will result.			

Punnett squares can also be useful in determining the chances of a particular trait being passed on to offspring (e.g. a genetic disease).