Learning Guide 9

Power, Energy, and Complex Circuits Notes

We have learned about Voltage, Current, and Resistance so far. However, electricity is a type of energy, and we have yet to see a way to measure energy or how fast we use it. Therefore, we will look at two more equations, each with a new math triangle.

These three triangles can help use determine how much energy is being used. For example:

1) If a circuit has 5Ω of **resistance** and 3 A of **current**, how much energy is used when the circuit is live for 5 **seconds**?

Let's use the first triangle to find the voltage:

Now that we have voltage, let's use the second triangle to find power:

Name:		Date:	TA:
Now th	at we have power, let's use the third tria	angle to find energy:	
Please note: a Joule is really small, as it is Watts times Seconds . Electric companies charge in Kilowatts times Hours , as that unit is much bigger can be used to describe large usage of energy, such as the amount of energy used in a home over 2 months.			
2)	A circuit runs using 110 V and 500 mA camount of energy used?	of current. When used for 2 minute, what is the tota	al
We nee	ed to start by converting mA to A:		
Then, f	ind the power:		
Then, f	ind the energy used in 2 minutes. 1 minu	ute has 60 seconds.	
3)	If a circuit has 2000 mA of current and resistance in the circuit?	uses 800 J of energy in 10 seconds, what is the tota	al

Extending: Complex circuits are circuits that have both parallel and series components to them. If 1 resistor leads to another on the same path, the resistors are in parallel. If 1 resistor is on a separate path compared to another resistor, they are in parallel.

Your parallel circuit rules apply to resistors/batteries in parallel, and your series circuit rules apply to resistors/batteries in series.

Sometimes it helps to redraw a circuit diagram in a way that pretends two resistors are acting like a single resistor. That way, you can more easily visualize that resistors are acting in series or parallel.

Example 1:

Example 2:

Name: Date: TA:

Example 3:

Example 4:

