You too can experience rapid
rotation—if your stomach can
take the high angular velocity
and centripetal acceleration. If i
not, try the slower ferris wheel. L
Rotating carnival rides have
rotational ke as well as angular |
momentum.
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e have, until now, been concerned mainly with translational mo-
tion. In this chapter, we will deal with rotational motion. We will
mainly be concerned with rigid bodies. By a rigid body we mean
ody with a definite shape that doesn’t change, so that the particles com-
g it stay in fixed positions relative to one another. Of course, any real
is capable of vibrating or deforming when a force is exerted on it.
hese effects are often very small, so the concept of an ideal rigid body
ry useful as a good approximation.

'The motion of a rigid body (as mentioned in Chapter 7) can be ana-
lIyzed as the translational motion of its center of mass, plus rotational mo-
vacectaf jon about its center of mass. We have already discussed translational
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FIGURE 8-1 Looking down
on a wheel that is rotating counter-

.initl otion in detail, so now we focus our attention on purely rotational mo- clockwise about an axis through the
ional 2 By purely rotational motion, we mean that all points in the body  peel’s center at O (perpendicular
uses thy e in circles, such as the point P in the rotating wheel of Fig. 8-1,and 4 the page). The dashed circular
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at the centers of these circles all lie on a line called the axis of rotation, ijne is the path of point P.

describe rotational motion, we make use of angular quantities, such as
gular velocity and angular acceleration. These are defined in analogy to
e corresponding quantities in linear motion.

Every point in a body rotating about a fixed axis moves in a circle
(shown dashed in Fig. 8-1 for point P) whose center is on the axis and

'




Each particle moves in a ciicle,

and each sweeps out the saime angle

FIGURE 8-1 (Repeated.)

¢ in radians

whose radius is r, the distance of that point from the axis of rotation. A
straight line drawn from the axis to any point sweeps out the same angle 0
in the same time.

To indicate the angular position of the body, or how far it has rotated,
we specify the angle 8 of some particular line in the body with respect to
some reference line, such as the x axis (see Fig. 8-1). A point in the body
(such as P in Fig. 8-1) moves through an angle 6 when it travels the dis-
tance I measured along the circumference of its circular path. Angles are
commonly measured in degrees, but the mathematics of circular motion is
much simpler if we use the radian for angular measure. One radian (rad)
is defined as the angle subtended by an arc whose length is equal to the
radius. For example, in Fig. 8-1, point P is a distance r from the axis of ro-
tation, and it has moved a distance I along the arc of a circle. The arc
length [ is said to “subtend” the angle 6. If [ = r, then 6 is exactly equal to
1rad. In general, any angle 6 is given by

!
6=" @-1)

where r is the radius of the circle, and [ is the arc length subtended by the
angle 6 which is specified in radians. Radians can be related to degrees in
the following way. In a complete circle there are 360°, which of course
must correspond to an arc length equal to the circumference of the circle,
] = 2mr.Thus 6 = I/r = 2nr/r =27radina complete circle, so

360° = 2 rad.

7+ad ~ 57.3°  One radian is therefore 360°/2m = 360°/6.28 =~ 57.3°.

FIGURE 8-2 (a) Example 8-1.

SIXYTITAEEN Birds of prey—in radians. A particular bird’s eye can
just distinguish objects that subtend an angle no smaller than about

(b) For small angles, arc length and
the clhord lzlngth (straight line) are 3 x 10~*rad. (¢) How many degrees is this? (b) How small an object can
e A L the bird just distinguish when flying at a height of 100 m (Fig. 8-2a)?
®) SOLUTION (a) One radian is 360°/2, 50 3 X 107%rad is
360°
x 1074 = 0.017°.
(3x10 rad)(zw o d) 0.01
(b) From Eq. 8-1,1 = rf. For small angles, the arc length and the chort
length are approximatelyf the same (Fig. 8-2b). Since r = 100m an¢
9 = 3 X 10~*rad, we find
I = (100m)(3 X 107*rad) = 3 X 107 2m = 3 cm.
Had the angle been given in degrees, we would first have had to chang
it to radians to make this calculation.
T Chord
Arc length Note in this Example that we used the fact that the radian is dimer
sionless (has no units) since it is the ratio of two lengths.
tEven for an angle as large as 15°, the error in making this estimate is only 1 percent, but f
larger angles the error increases rapidly.
210 CHAPTERS8 Rotational Motion



en an object, such as the bicycle wheel in Fig. 8-3, rotates from
initial position, specified by 6, to some final position, 8, its angular
8 jacement is A8 = 6 — 6, The angular velocity is defined in analogy
BISp ordinary linear velocity. Instead of linear displacement, we use the
"I'TI ar displacement. Thus the average angular velocity (denoted by o,

. Greek lowercase letter omega) is defined as

w= E, (8—23)

f"here A@is the angle through which the body has rotated in the time At.
We define the instantaneous angular velocity as the very small angle, Ao,
.,ﬂu'ough which the body turns in the very short time interval Az

0= lm y -20)

Angular velocity is generally specified in radians per second (rad/s). Note
L (hat all points in a rigid body rotate with the same angular velocity, since
| every position in the body moves through the same angle in the same time
. interval. -
k  Angular acceleration, in analogy to ordinary linear acceleration, is de-
fined as the change in angular velocity divided by the time required to
make this change. The average angular acceleration (denoted by «, the
Greek lowercase letter alpha) is defined as

where w, is the angular velocity initially, and  is the angular velocity after
a time At. Instantaneous angular acceleration is defined in the usual way:

. Aw
a= Al}go AL (8-3b)

Since w is the same for all points of a rotating body, Eq. 8-3 tells us that a
also will be the same for all points. Thus, @ and « are properties of the ro-
tating body as a whole. With w measured in radians per second and ¢ in
seconds, o will be expressed as radians per second squared (rad/ s2).

Each particle or point of a rotating rigid body has, at any moment, a
linear velocity v and a linear acceleration a. We can relate these linear
quantities, v and a, of each particle, to the angular quantities, w and a, of
the rotating body as a whole. Consider a particle located a distance r from
the axis of rotation, as in Fig. 8—4. If the body rotates with angular veloci-
ty v, any particle will have a linear velocity whose direction is tangent to
its circular path. The magnitude of its linear velocity, v,is v = Al/At. From

Eq. 8-1, a change in rotation angle A@ is related to the linear distance
traveled by Al = r Af. Hence

oo AL_ A8
At At
or
v =ro. (8-4)

Thus, although w is the same for every point in the rotating body at any

SECTION 8-1

FIGURE 8-3 A wheel rotates
from (a) initial position 6, to

(b) final position §. The angular
displacement is A8 = 6 — 6,

Angular acceleration

FIGURE 8-4 A particle P
on a rotating wheel has a linear
velocity v at any moment.

Linear and angular
velocity related

Angular Quantities 1




instant, the linear velocity v is greater for points farther from the axis
(Fig. 8-5). Note that Eq. 8—4 is valid both instantaneously and on the average.

CONCEPTUAL EXAMPLE 8-2| Is the lion faster than the horse? A ro-
tating carousel has one child sitting on a horse near the outer edge and
another child seated on a lion halfway out from the center. (a) Which
child has the greater linear speed? (b) Which child has the greater angu-
lar speed?

RESPONSE (a) The linear speed is the distance traveled divided by the
time interval. In one rotation the child on the outer edge travels a longer
distance than the child near the center, but the time interval is the same for
both. Thus the child at the outer edge has the greater linear speed.

(b) The angular speed is the angle of rotation divided by the time interval.
In one rotation both children rotate through the same angle (360° = 27

FIGURE 8-5 A wheel rotating
uniformly counterclockwise. Two
points on the wheel, at distances r,

and r, from the center, have different - .
linear velocities because they travel radians). Thus the two children have the same angular speed.

different distances in the same time
interval. Since r, > r,, then v, > v,
(v = rw). But the two points have We can use Eq. 84 to show that the angular acceleration a is related

the same angular velocity  because o the tangential linear acceleration a,, of a particle in the rotating body by
they travel through the same angle 6

' ‘ | in the same time interval. a ___ﬂ)_=r_A_w
A At
or
Tangential acceleration Qpn = ra. (8-5)

In this equation, r is the radius of the circle in which the particle is moving,
and the subscript tan in a,,, stands for “tangential” since the acceleration
considered here is along the circle (that is, tangent to it). =

The total linear acceleration of a particle is the vector sum of two §

components:
a =y, + ag,
i where the radial’ component, ag, is the radial or “centripetal” acceleration
! ' and points toward the center of the particle’s circular path (Fig. 8-6). We

o using Eq. 8-4:

t ; : Centripetal : )2
i . (or radial) v _ ) 2 g
' acceleration RT y @r. 8-6)

FIGURE 8-6 On arotating wheel
whose rotation speed is increasing, a
point P has both tangential and radial
(centripetal) components of acceleration.

axis of rotation: the children farthest out on a merry-go-round feel the

each particle of the body.

where by frequency we mean the number of complete revolutions (rev)

*“Radial” means along the radius—that is, toward or away from the center or axis.
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Thus the centripetal acceleration is greater the farther you are from the §

greatest acceleration. Equations 8-4, 8-5, and 8-6 relate the angular |
(See also Chapter 5.) quantities describing the rotation of a body to the linear quantities for |

We can relate the angular velocity o to the frequency of rotation, /; §

saw in Chapter 5 (Eq. 5-1) that ag = v?/r, and we rewrite this in terms of }




F !

P cond. One revolution (of a wheel, say) corresponds to an angle of 27

;isais and thus 1rev/s = 2arrad/s. Hence, in general, the frequency f is ’
::lated to the angular velocity w by
w
= - - Frequenc
27 Y
o w = 2uf. -7
The unit for frequency, revolutions per second (rev/s), is given the special il
pame, the hertz (Hz). That is i
1Hz = 1rev/s.
il
Note that «revolution” is not really a unit, so we can also write 1Hz = 157", ;;
The time required for one complete revolution is called the period, T, "i
and it is related to the frequency by !
r=1 (8-8)  Period il
f | N
For example, if a particle rotates at a frequency of three revolutions per Ii
second, then each revolution takes ls. . | "

TN [U3GEE] Speed and acceleration on a mesry-go-round. (a) What l ‘
is the linear speed of a child seated 1.2 m from the center of a steadily ro- i;
tating merry-go-round (Fig. 8-7) that makes one complete revolution in |
4.0s? (b) What is her acceleration? E

SOLUTION (a) First, we find the angular velocity in radians per sec-
ond: the period is given as 4.0, so

1 1rev
f= 7= 205" 0.25rev/s = 025 Hz.

Then

©=2nf= (271 g)(o.zs i:l) = 1.6rad/s.
FIGURE 8-7 Merry-go-round. .
The radius r is 1.2 m, so the speed v is |

= ro = (12m)(1.6 rad/s) = 1.9 m/s. {

(b) Since w = 1.6rad/s = constant, then a = 0 and the tangential com-
ponent of the linear acceleration (Eq. 8-5) is

a,, =ra=0.
From Eq. 8-6, the radial component is
ag = r = (1.6 rad/s)} (1.2 m) = 3.1 m/s%.

Or we can solve instead: ap = v%/r = (1.9m/s)?/(1.2m) = 3.0m/s’. (The :
difference is due to rounding off.) What force causes this acceleration? Is i
it a force of friction exerted by the merry-go-round? t

—_— . I3 it
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Hard drive
and bit speed

ST Hard drive. The platter of the hard disk of a computer
rotates at 5400 rpm (revolutions per minute). () What is the angular ve-
locity of the disk? (b) If the reading head of the drive is located 3.0cm
from the rotation axis, what is the speed of the disk below it? (c) What is
the linear acceleration of this point? (d) If a single bit requires Sum of
length along the motion direction, how many bits per second can the
writing head write when it is 3.0cm from the axis?

SOLUTION (a) The angular velocity
(5400 rev/min) _

w=2nf=(Qn rad/rev)W = 570 rad/s.

(b) The speed of a point 3.0 cm out from the axis is
v = re = (3.0 X 1072 m)(570 rad/s) = 17 m/s.

(c) The linear acceleration has two components, tangential and radial. Since
© = constant, then a = 0,50 a,, = ra = 0.The radial acceleration is

ag = @’r = (570 rad/s)*(0.030 m) = 9700 m/s?

toward the axis. ;
(d) Each bit requires 5.0 X 107 m, so at a speed of 17 m/s, the number §

of bits passing the head per second is

17 m/s

50X10°m 3.4 X 10° bits per second.

e

XTI Contrifuge acceleration. A centrifuge rotor is accelerated

from rest to 20,000 rpm in 5.0 min. What is its average angular acceleration? |
SOLUTION To calculate a@ = Aw/At we need the initial and final !
angular velocities. The initial angular velocity is @ = 0. The final angular ;

velocity is
(20,000 rev/min)
(60 s/min)
Then, since @ = Aw/At and At = 5.0min = 300s, we have
- 0w 2100rad/s — 0
At 300s

That is, every second the rotor’s angular velocity increases by 7.0 rad/S
or by (7.0/2m) = 1.1 revolutions per second. j

= 2100 rad/s.

w = 2mf = (2mrad/rev)

= 7.0 rad/s%.

Kinematic Equations for Uniformly
Accelerated Rotational Motion

In Chapter 2, we derived the important equations (2-10) that relate accele’f
ation, velocity, and distance for the situation of uniform linear accelerations
Those equations were derived from the definitions of linear velocity and
acceleration, assuming constant acceleration. The definitions of angula}
velocity and angular acceleration are the same as for their linear counterparts]

CHAPTER8 Rotational Motion



except that 8 has replaced the linear displacement x, » has replaced v, and &
nas replaced a. Therefore, the angular equations for constant angular accel- ,
eration will be analogous to Eqs. 2-10 with x replaced by 6,v by w, and a by (i
a, and they can be derived in exactly the same way. We summarize them |
nere, opposite their linear equivalents (we’ve chosen x, = 0,and 6, = O):

Angular Linear i

w = w, + at v=1v,+ at [constant a,a] (8-9a)  Uniforinly 18
0=wyt+iat? x =+ ja [constant a,a] (8-9b) ccceleraied §

o= wi+2a0 V=05 + 2ax [constant a,a] (8-9¢) ioimional i
- wtoe _ v+ motion
5= 0 v="— 0 [constant a,a] (8-9d) '

Note that w, represents the angular velocity at ¢ = 0, whereas 6 and w rep-
resent the angular position and velocity, respectively, at time ¢. Since the
angular acceleration is constant, « = a. These equations are of course also
valid for constant angular velocity, for which case @ = 0 and we have
w= 0, 0= ay,and v = w. I

EXA‘MEIEE EEGH Centrifuge revisited. Through how many revolutions
has the centrifuge rotor of Example 8-5 turned during its acceleration
period? Assume constant angular acceleration.

SR i e s

|

,‘,
1 SOLUTION We know that w, = 0, @ = 2100rad/s,a = @ = 7.0rad/s?, '
' and t = 300s. We could use either Eq. 8-9b or 8-9c to find 6. The former ‘ i
! gives Al
r 8 = 0 + 1(7.0 rad/s?)(300 s = 3.15 X 10° rad, |

where we have kept an extra digit because this is an intermediate result.
“To find the total number of revolutions, we divide by 27 and obtain '
315 X 10° rad ‘
—— - -— =50 x 10* .
2mrad/rev 30 X 107 rev

Eaa

; mRolling Motion 1

The rolling motion of a ball or wheel is familiar in everyday life: a ball rolling i
across the floor, or the wheels and tires of a car or bicycle rolling along the .
pavement. Rolling without slipping is readily analyzed and depends on static
friction between the rolling object and the ground. The friction is static |
because the rolling object’s point of contact with the ground is at rest at

- each moment. (Kinetic friction comes in if, for example, you brake too
o hard so the tires skid, or you accelerate so fast that you “burn rubber”—
W but these are more complicated situations.)

ar Rolling without slipping involves both rotation and translation. But
ts, there is a simple relation between the linear speed v of the axle and the

SECTION 8-3  Rolling Motion 215
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(b)

FIGURE 8-8 (a) A wheel
rolling to the right. Its center C
moves with velocity v. (b) The
same wheel as seen from a
reference frame in which the axle
of the wheel C is at rest—that

is, we are moving to the right with
velocity v relative to part (a).
Point P, which was at rest in (a),
here in (b) moves to the left with
velocity — v as shown. (See also
Section 3-8 on relative velocity.

FIGURE 8-9 Example 8-7.
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angular velocity  of the rotating wheel or sphere, namely v = rw where ris 4

radius, as we now show. Figure 8-8a shows a wheel rolling to the right with-
out slipping. At the moment shown, point P on the wheel is in contact with
the ground and is momentarily at rest. The velocity of the axle at the
wheel’s center C is v. In Figure 8-8b we have put ourselves in the reference
frame of the wheel—that is, we are moving to the right with velocity v rela-
tive to the ground. In this reference frame the axle C is at rest, whereas the
ground and point P are moving to the left with velocity — v as shown. Here

we are seeing pure rotation. So we can use Eq. 8-4 to obtain v = rw where !
r is the radius of the wheel, and v is still equal to the translational speed of

the wheel’s center.

Bicycle. A bicycle slows down uniformly from v, =
8.40m/s to rest over a distance of 115 m, Fig. 8-9a. Each wheel and tire
has an overall diameter of 68.0 cm. Determine (a) the angular velocity of
the wheels at the initial instant, (b) the total number of revolutions each

and (d) the time it took to come to a stop.

SOLUTION (a) Let us put ourselves in the reference frame of the

us, initially, at a speed of 8.40 m/s, Fig. 8-9b. Since the tire is in contact
with the ground at any moment, then a point on the rim of the tire (such

115m
(a) Bike as seen from the ground (t = 0).

(b) From rider's reference frame, the ground is moving
to the rear at an initial speed of 8.40 m/s (t = 0).

Rotational Motion

wheel rotates in coming to rest, (c) the angular acceleration of the wheel, ‘

bike—that is, as if we were riding the bike. Then the ground is going past :

as that touching the ground) moves at an initial speed of v = 8.40m/s in |

i gt



;s reference frame. Hence the initial angular velocity of the wheel is
v, _ 840m/s
r 0340m

th

Wy —

= 24.7 rad/s.

(b)In coming to a stop, 115 m of ground passes beneath the tire. Because
the tire is in firm contact with the ground, any point on the edge of the
rotating tire travels 115 m total. Each revolution corresponds to a dis-
tance of 277, so the number of revolutions the wheel makes in coming to

a Stop iS ‘v
115m _ 115m _
2ar  (27)(0.340m) >38 rev.

(c) The angular acceleration of the wheel can be obtained from Eq. 8-9c: b
o — of 0— (24.7 rad/s)? _ '
|
!
!
!

= = = —0.902 rad/s?

“= "2 2(27)(53.8 rev) 0902 rad/s’,

where we have set 6 = 2mrrad/rev X 53.8 rev (=338rad) because each

revolution corresponds to 2 radians. [Alternatively, we could have used ’
Eq. 8-1to get the total 6: 8 = [/r = 115m/0.340 m = 338rad.]

(d) Eq. 8-9a or b allows us to solve for the time. The first is easier: l

_@w— @y 0—-247rad/s _
L e T C0902radse 24 |

, |
- b l’" 2 l ‘
= @
Torque I f i
F, F,

We have so far discussed rotational kinematics—the description of rota-

tional motion in terms of angle, angular velocity, and angular acceleration. FIGURE 8-10 Applying the [

Now we discuss the dynamics, or causes, of rotational motion. Just as we same force with different lever arms,

found analogies between linear and rotational motion for the description r, and r,. If r = 3r,, then to create the L

of motion, so rotational equivalents for dynamics exist as well. same effect (angular acceleration), F, I ;
l
i

To make an object start rotating about an axis clearly requires a force. needs to be three times F, or Fy = i F;.
But the direction of this force, and where it is applied, are also important.
Take, for example, an ordinary situation such as the door in Fig. 8-10
(looking down from above). If you apply a force F, perpendicular to the
door as shown, you will find that the greater the magnitude, F,, the more
quickly the door opens. (We assume that only this one force acts—we ig-
nore friction in the hinges, and so on.) But now if you apply the same
magnitude force at a point closer to the hinge, say F, in Fig. 8-10, you will
find that the door will not open so quickly. The effect of the force is less.
Indeed, it is found that the angular acceleration of the door is proportional
not only to the magnitude of the force, but it is also directly proportional to
the perpendicular distance from the axis of rotation to the line along which
the force acts. This distance is called the lever arm, or moment arm, of the
force, and is labeled r, and r, for the two forces in Fig. 8-10. Thus, if ryin
Fig. 8-10 is three times as large as r,, then the angular acceleration of the
door will be three times as great, assuming that the magnitudes of the forces
are the same. To say it another way, if r, = 3r,, then F, must be three times
as large as F to give the same angular acceleration. (Figure 8-11 shows : :
two examples of tools whose long lever arms help produce large torque.) (a) (b) 8

FIGURE 8-11 (a) A plumber
can exert greater torque using a wrench
with a long lever arm. (b) A tire iron
too can have a long lever arm.

SECTION 8—-4 Torque 217
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FIGURE 8-12 (a) Forces acting

at different angles at the doorknob.
(b) The lever arm is defined as the
perpendicular distance from the axis
of rotation (the hinge) to the line of
action of the force.

FIGURE 8-13
Torque = r F = rF,
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The angular acceleration, then, is proportional to the product of the
force times the lever arm. This product is called the moment of the force
about the axis, or, more commonly, it is called the torque, and is abbrevi-
ated 7 (Greek lowercase letter tau). Thus, the angular acceleration « of an
object is directly proportional to the net applied torque, 7:

o< T

This is the rotational analog of Newton’s second law for linear motion,
ax F.

We defined the lever arm as the perpendicular distance of the axis of
rotation to the line of action of the force—that is, the distance which is
perpendicular both to the axis of rotation and to an imaginary line drawn
along the direction of the force. We do this to take into account the effect
of forces acting at an angle. It is clear that a force applied at an angle, such
as F, in Fig. 8-12, will be less effective than the same magnitude force
applied straight on, such as F, (Fig. 8-12a). And if you push on the end of
the door so that the force is directed at the hinge (the axis of rotation), as
indicated by F,, the door will not rotate at all.

The lever arm for a force such as F; is found by drawing a line along
the direction of F, (this is the “line of action” of F3). Then we draw another
line, perpendicular to this “line of action”, that goes to the axis and is per-
pendicular to it. The length of this second line is the lever arm for F; and is
labeled r, in Fig. 8-12b. The lever arm is perpendicular both to the line of
action of the force and, at its other end, perpendicular to the rotation axis.

The magnitude of the torque associated with F; is then r,F. This short
lever arm and the corresponding smaller torque associated with F; is con-
sistent with the observation that F; is less effective in accelerating the
door than is F;. When the lever arm is defined in this way, experiment
shows that the relation a « 7 is valid in general. Notice in Fig. 8-12 that
the line of action of the force F, passes through the hinge and hence its
lever arm is zero. Consequently, zero torque is associated with F, and it
gives rise to no angular acceleration, in accord with everyday experience.

In general, then, we can write the torque about a given axis as

7=r,F, (8-102)

where r/ is the lever arm, and the perpendicular symbol (1) reminds us that
we must use the distance from the axis of rotation that is perpendicular to
the line of action of the force (Fig. 8-13a).

An alternate but equivalent way of determining the torque associated
with a force is to resolve the force into components parallel and perpen-
dicular to the line joining the point of application of the force to the axis,
as shown in Fig. 8—13b. The component Fj exerts no torque since it is directed

Point of

Axis of application

rotation /t/~ hTY of force

N
(‘]
==
b r — f r -
() (b)

Rotational Motion




at the rotation axis (its moment arm is zero). Hence the torque will be |
equal to F, times the distance r from the axis to the point of application of
the force: - 1

!
T=rF,. (8-10b) If
i

That this gives the same result as Eq. 8-10a can be seen from the fact that
F,=F sin @ and r, = rsin 6. [Note that 6 is the angle between the direc-
tions of F and r (radial line from the axis to where F acts)]. So

in either case. We can use any of Egs. 8-10 to calculate the torque, )
whichever is easiest. 1

Since torque is a distance times a force, it is measured in units of m‘N
in SI units,’ cm-dyne in the cgs system, and ft-1b in the English system.

0 [HUSEECH Biceps torque. The biceps muscle exerts a vertical
force on the lower arm as shown in Figs. 8-14a and b. For each case, cal-
culate the torque about the axis of rotation through the elbow joint, as-

suming the muscle is attached 5.0 cm from the elbow as shown.
SOLUTION (a) F = 700N and r, = 0.050 m, so
7= r F = (0.050 m)(700 N} = 35 m-N.

7=rFsin 6 (8-10¢) idagniiude of a iorque ‘ 1\
|
|
1

4 (b) Because the arm is at an angle, the lever arm is shorter (Fig. 8-14c):
i r, = (0.050 m)(sin 60°). F is still 700 N, so

7 = (0.050 m)(0.866)(700 N) = 30 m-N.

The arm can exert less torque at this angle. Weight machines at gyms are
often designed to take this variation with angle into account.

CONCEPTUAL EXAMPLE 8-9| The chimp is no wimp. Adult chimpan-
zees have muscle mass of only about one third of an adult human male,

but have been shown to be over twice as strong in some movements. Can I
you account for this? ,
i

RESPONSE The performance difference can be traced to anatomy. The

e

i | attachment point of the biceps muscle to the forearm, for example, is much Axis k—r,—~ F |
. | farther away from the elbow in chimps than in humans. The increase in the 0o
. | lever arm means that the same muscle force exerted by chimpanzee biceps r

@iuces a greater torque. A chimp has more leverage. ©

FIGURE 8-14 Example 8-8.

T A T P2 T

When more than one torque acts on a body, the acceleration « is
found to be proportional to the net torque. If all the torques acting on a
. body tend to rotate it in the same direction, the net torque is the sum of H

the torques. But if, say, one torque acts to rotate a body in one direction,

L&

o

= “yii‘.

»';Ne"te that the units for torque are the same as those for energy. We write the unit for torque s
5 Dere as m:N (in SI) to help distinguish it from energy (N-m) because the two quantities are v
Ty different. An obvious difference is that energy is a scalar, whereas torque has a direction i

dis a vector. The special name joule (1J = 1 N-m) is used only for energy (and for work), .,::
T for torque. i
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F=50N

FIGURE 8-15 Example
8-10. The torque due to F, tends to
accelerate the wheel counterclock-
wise, whereas the torque due to

F, tends to accelerate the wheel
clockwise.

FIGURE 8-16 Only the
component of F that acts in the
plane perpendicular to the rotation
axis, F , acts to turn the wheel
about the axis. The component
parallel to the axis, F}, would tend
to move the axis itself, which we
assume is fixed.

Axis of |
rotation
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and a second torque acts to rotate the body in the opposite direction (as in
Fig. 8-15), the net torque is the difference of the two torques. We can as-
sign a positive sign to torques that act to rotate the body in one direction
(say counterclockwise) and a negative sign to torques that act to rotate the
body in the opposite direction (clockwise).

Torque on a compound wheel. Two thin cylindrical
wheels, of radii r, = 30cm and r, = 50 cm, are attached to each other on
an axle that passes through the center of each, as shown in Fig. 8-15. Cal-
culate the net torque on this compound wheel due to the two forceg
shown, each of magnitude 50 N.

SOLUTION The force F; acts to rotate the system counterclockwise,
whereas F, acts to rotate it clockwise. So the two forces act in opposition to
each other. We must choose one direction of rotation to be positive—say,
counterclockwise. Then F, exerts a positive torque, 7, = r,Fj, since the lever
arm is r,. F,, on the other hand, produces a negative (clockwise) torque and
does not act perpendicular to r,, so we must use its perpendicular compo-
nent to calculate the torque it produces: 7, = —r,F,, = —r,F,sin¥,
where 6 = 60°. (Note that 6 must be the angle between F, and a radial line
from the axis.) Hence the net torque is

T = nF, — r,F,sin 60°
= (0.30 m)(50 N) — (0.50 m)(50 N)(0.866) = —6.7 m-N.

This net torque acts to accelerate the rotation of the wheel in the clock-
wise direction. Note that the two forces have the same magnitude, yet
produce a net torque because their lever arms are different.

[Since we are interested only in rotation about a fixed axis, we consid-
er only forces that act in a plane perpendicular to the axis of rotation. If
there is a force (or component of a force) acting parallel to the axis of ro-
tation, it will tend to turn the axis of rotation—the component Fj in
Fig. 8-16 is an example. Since we are assuming the axis remains fixed in
direction, either there can be no such forces or else the axis must be an
axle (or the like) which is mounted in bearings or hinges that hold the axis
fixed. Thus, only a force, or component of a force (F, in Fig. 8-16),in a §
plane perpendicular to the axis will give rise to rotation about the axis,
and it is only these that we consider.]

BB Rotational Dynamics; Torque and
Rotational Inertia

o

We have discussed that the angular acceleration a of a rotating body is
proportional to the net torque 7 applied to it:

ax 3T

where we write =7 to remind us' that it is the net torque (sum of all |
torques acting on the body) that is proportional to a. This corresponds t0
Newton’s second law for translational motion, a « ZF, but here torqué
has taken the place of force, and, correspondingly, the angular acceler2” §

TRecall from Chapter 4 that = (Greek letter sigma) means “sum of.”



tion « takes the place of the linear acceleration a. In the linear case, the
acceleration is not only proportional to the net force, but it is also in-
versely proportional to the inertia of the body, which we call its mass, m.
Thus we could write a = ZF/m. But what plays the role of mass for the
rotational case? That is what we now set out to determine. At the same
time, We will see that the relation a « 27 follows directly from Newton’s
second law, 2F = ma.

We first consider a very simple case: a particle of mass m rotating in
a circle of radius r at the end of a string or rod whose mass we can ig-
nore (Fig. 8-17), and we assume a single force F acts on it as shown. The
torque that gives rise to the angular acceleration is 7 = rF. If we make
use of Newton’s second law for linear quantities, 2F = ma, and Eq. 8-5
relating the angular acceleration to the tangential linear acceleration,
Ggn = T WE have

F=ma
= mra.

When we multiply both sides by r, we find that the torque T = rF is given by

T =mrla. [single particle] (8-11)
Here at last we have a direct relation between the angular acceleration
and the applied torque 7. The quantity mr? represents the rotational inertia
of the particle and is called its moment of inertia.

Now let us consider a rotating rigid body, such as a wheel rotating
about an axis through its center, such as an axle. We can think of the wheel
as consisting of many particles located at various distances from the axis
of rotation. We can apply Eq. 8-11 to each particle of the body, and then
sum over all the particles. The sum of the various torques is just the total
torque, 27, so we obtain:

Sr=Cmr)a 8-12)

where we factored out the « since it is the same for all the particles of the
body. The sum, Emr?, represents the sum of the masses of each particle in
the body multiplied by the square of the distance of that particle from the
axis of rotation. If we give each particle a number (1, 2, 3, ...), then
Emr? = mir? + myr + my? + ---. This quantity is called the moment of
inertia (or rotational inertia) of the body, I:

[=3mrl=mr? + myi+ . (8-13)
Combining Eqgs. 8—-12 and 8-13, we can write
37 = Ia. (8-14)

This is the rotational equivalent of Newton’s second law. It is valid for the
rotation of a rigid body about a fixed axis."

We see that the moment of inertia, I, which is a measure of the rota-
tional inertia of a body, plays the same role for rotational motion that mass
does for translational motion. As can be seen from Eq. 8-13, the rotational
inertia of an object depends not only on its mass, but also on how that
mass is distributed with respect to the axis. For example, a large-diameter

"It can be shown that Eq. 8-14 is valid also when the body is'translating with acceleration, as
long as J and « are calculated about the center of mass of the body, and the rotation axis
through the cm doesn’t change direction.

FIGURE 8-17 Amassm
rotating in a circle of radius r
about a fixed point.

Moment of inertia

NEWTON’S SECOND LAW
FOR ROTATION
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FIGURE 8-18 A large-

diameter cylinder has greater
rotational inertia than one of
smaller diameter but equal mass.

Careful:

Mass can not be considered
concentrated at cM for rotational
motion

1
5.0kg : 7.0kg
Axis
(@)
|
} l0som =
' ff——40m——
i —- —8—
! 150kg 7.0kg
| |
! Axis
(b)

‘ FIGURE 8-19 Example
8-11: calculating the moment of
inertia.

I depends on axis of rotation
and on distribution of mass

cylinder will have greater rotational inertia than one of equal mass but §
smaller diameter (and therefore greater length), Fig. 8-18. The former wil] |
be harder to start rotating, and harder to stop. When the mass is concen- |
trated farther from the axis of rotation, the rotational inertia is greater. |
For rotational motion, the mass of a body cannot be considered as concen- |
trated at its center of mass.

Solviggﬁ Problems in Rotational Dynamics |

Whenever you use Eq. 8-14, remember to use a consistent set of units,
which in SI is: @ in rad/s% 7 in m-N; and the moment of inertia, I, in kg-m? |

Two weights on a bar: different axis, different I. Two j
“weights” of mass 5.0kg and 7.0kg are mounted 4.0 m apart on a light §
rod (whose mass can be ignored), as shown in Fig. 8-19. Calculate the |
moment of inertia of the system (a) when rotated about an axis halfway §
between the weights, Fig. 8-19a, and (b) when the system rotates about ]
an axis 0.50 m to the left of the 5.0-kg mass (Fig. 8-19b).

SOLUTION (a) Both weights are the same distance, 2.0 m, from the
axis of rotation. Thus 3

I=3mr* = (5.0kg)(2.0m)* + (7.0 kg)(2.0 m)
= 20kg-m® + 28 kg-m® = 48 kg-m>.

(b) The 5.0-kg mass is now 0.50 m from the axis and the 7.0-kg mass is'
4.50 m from the axis. Then 8

I =3mr* = (5.0kg)(0.50 m)* + (7.0 kg)(4.5 m)? »
= 1.3kg-m? + 142 kg-m? = 143 kg-m>. 8

The above Example illustrates two important points. First, the moment of §
inertia of a given system is different for different axes of rotation. Second,
we see in part (b) that mass close to the axis of rotation contributes little]
to the total moment of inertia; in this example, the 5.0-kg object con-}
tributed less than 1 percent to the total. !
For most ordinary bodies, the mass is distributed continuously, and the 8
calculation of the moment of inertia, 2 mr? can be difficult. Expressions§
can, however, be worked out (using calculus) for the moments of inertia of$
regularly shaped bodies in terms of their dimensions. Figure 8-20 gives
these expressions for a number of solids rotated about the axes specified] &
The only one for which the result is obvious is that for the thin hoop or ring] i
rotated about an axis passing through its center perpendicular to the planeg i
of the hoop (Fig. 8-20a). For this object, all the mass is concentrated at the! i
same distance from the axis, R. Thus Emr? = (Em)R? = MR?, where M i
the total mass of the hoop. '
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Location Moment of FIGURE 8-20 Moments of 18

of axis Inertia inertia for various objects of }

f uniform composition. I

o Through i

8 Thin hoop g 2 1

. :}‘2 dius R center MR I

4 |

‘f.‘ |

" hin hoop ; Thrg:lgh i

A dius R an cen 1 1 i

3 :vfi:i:h W diameter FMR? + SMW? i
ki

i

.’ 3 Sohd cylinder Through 1 2 !n

F?  of radius R center MR :

i

|

’ 3

Hollow cylinder Through 1 2, p2 | {i

of inner radius R; center aM (Ri+ R) .

and outer radius Ry . | i

I i

Uniform Through Ek 1:

sphere of center 2 !

radius R §MR2 - a
% Long uniform Through L2 |
’% " rodoflength L center L 12 | ' ‘,'
» Axis , :
# (g Long uniform Through —— 1y ;
. rod of length L end ~—L—1 3 i
i (b) Rectangular Through 1arr2e w2 fl

. thin plate, of length center M@+ W) ;
L and width W !

= PROBLEM SOLVING Rotational Motion

L As always, draw a clear and complete diagram.
:2. Draw a free-body diagram for the body under
consideration (or for each body if more than
one), showing only (and all) the forces acting
on that body and exactly where they act, so you
can determine the torque due to each. Gravity
acts at the cc of the body (Section 7-8).

3. Identify the axis of rotation and calculate the
torques about it. Choose positive and negative di-
rections of rotation (counterclockwise and clock-
wise), and assign the correct sign to each torque.

s

4. Apply Newton’s second law for rotation, 27 = Ia.
If the moment of inertia is not given, and it is
not the unknown sought, you need to determine
it first. Use consistent units, which in SI are: a in
rad/s% rin m-N; and 7 in kg-m?.

5. Solve the resulting equation(s) for the un-
known(s).

6. As always, do a rough estimate to determine if
your answer is reasonable: does it make sense?

SECTION 8-6
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33.0cm
(=R) 4-‘

FIGURE 8-21 Example 8-12.

FIGURE 8-22 Example 8-13,
with free-body diagram for the fall-
ing bucket of mass m shown in (b).

2

R T

s
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Vot 228
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R

e

&

mg

(b)
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ANV P2 A heavy pulley. A 15.0-N force (represented by Frp) is

applied to a cord wrapped around a pulley of mass M = 4.00kg and ra-
dius R = 33.0cm, Fig. 8-21. The pulley is observed to accelerate uni-
formly from rest to reach an angular speed of 30.0 rad/s in 3.00s. If there
is a frictional torque (at the axle), 7, = 1.10 m'N, determine the moment
of inertia of the pulley. The pulley is assumed to rotate about its center.
Its free-body diagram is shown in Fig. 8-21, although the friction force is
not shown since we are given only its torque.

SOLUTION We can calculate the moment of inertia from Eq. 8-14,
31 = Ia, since from the measurements given we can determine =7 and a.
The net torque is the applied torque due to Fy minus the frictional
torque; we take positive to be counterclockwise:

27 = (0.330 m)(15.0N) — 1.10m- N = 3.85m-N.
The angular acceleration is
Aw 300rad/s — 0

=22 _ — 2
a= 7 3.00s 10.0 rad/s*.
Hence
T 3.85m-N
= 2T 2O (385 kg-ml,
a 10.0rads/s’ 385 kg:m
ANV JUSGCEAE) Pulley and bucket: raising water from a well. Consider

“again the pulley in Fig. 8-21. But this time, suppose that, instead of 2

constant 15.0-N force being exerted on the cord, we now have a bucket
of weight 15.0N (mass m = 1.53 kg) hanging from the cord, which we as-
sume not to stretch or slip on the pulley. See Fig. 8-22a. (a) Calculate the
angular acceleration a of the pulley and the linear acceleration a of the
bucket. (b) Determine the angular velocity  of the pulley and the linear
velocity v of the bucket at ¢t = 3.00s if the pulley (and bucket) start from
rest att = 0.

SOLUTION (a) Let F; be the tension in the cord. Then a force Fr acts
at the edge of the pulley, and we have for the rotation of the pulley:

Ion =37=FR— 7. [pulley]

Next we look at the (linear) motion of the bucket of mass m. Figure 8-22b
shows a free-body diagram for the bucket. Two forces act on the bucket:
the force of gravity mg acts downward, and the tension of the cord Fr
pulls upward. So by SF = ma, for the bucket we have (taking downward
as positive):

mg — F; = ma. [bucket]

Note that the tension Fp, which is the force exerted on the edge of the
pulley, is not equal to the weight of the bucket (=mg = 15.0N). Ther®
must be a net force (so Fy < mg) if the bucket is accelerating. Indeed, b
the last equation above, F; = mg — ma. To obtain «, we use Eq. 8-5,

a = Ra,

which is valid since the tangential acceleration of a point on the edge of the
pulley is the same as the acceleration of the bucket if the cord doesn’t stretch

Rotational Motion




or slip. Substituting F1. = mg — ma into the first equation above, we obtain
Ia = Z7= F{R ~ 7, = (mg — mRa)R — 1, = mgR — mR%a — 7.
Now « appears on both sides of this last relation, so we solve for a:
ol + mR*) = mgR — 7,
3 and then
mgR — 7,
a=———
I + mR?
: Then, since I = 0.385kg-m? (Example 8-12),
4 o~ (150N)(0.330m) — 1.10m-N
0.385 kg-m? + (1.53 kg)(0.330 m)?

* | The angular acceleration is somewhat less in this case than the 10.0 rad/s?
of Example 8-12. Why? Because F; ( = mg — ma) is somewhat less than
the weight of the bucket, mg. The linear acceleration of the bucket is

a = Ra = (0.330 m)(6.98 rad/s?) = 2.30 m/s%. i
(b) Since the angular acceleration is constant, ‘ l
w=w,+ ot =0+ (6.98 rad/s?)(3.00 s) = 20.9 rad/s
after 3.00s. The linear velocity of the bucket is the same as that of a I
r ¢ | point on the wheel’s edge:
i v = Rw = (0.330 m)(20.9 rad/s) = 6.90 m/s. |

The same result can also be obtained by using the linear equation
v =19, +at = 0+ (230m/s*)(3.00s) = 6.90m/s.

= 6.98 rad/s%.

-
0

B &R oo ¥ &

| Rotational Kinetic Energy

The quantity 3mv? is the kinetic energy of a body undergoing translation-
. al motion. A body rotating about an axis is said to have rotational kinetic
* energy. By analogy with translational ke, we would expect this to be given by
. the expression 3/’ where I is the moment of inertia of the body and w is its '
© angular velocity. We can indeed show that this is true. Consider any rigid
rotating object as made up of many tiny particles, each of mass m. If we let r
represent the distance of any one particle from the axis of rotation, then its
linear velocity is v = rw. The total kinetic energy of the whole body will be
the sum of the kinetic energies of all its particles:

i ke = Z(jmv?) = T(imrin?)
he 4 = 13(mr)e?,
H (7

by where we have factored out the § and the »” since they are the same for
. every particle of a rigid body. Since Emr? = I, the moment of inertia,
. Ve see that the kinetic energy of a rigid rotating object, as expected, is

b
it §

rd §

- rotational kg = } I”. (8-15)  Rotational KE
the SEE . .
tch'; 1 The units are joules, as with all other forms of energy.
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FIGURE 8-23 A sphere rolling
down a hill has both translational
and rotational kinetic energy.
Example 8-14.

An object that rotates while its center of mass (cM) undergoes transla-
tional motion will have both translational and rotational K. Equation 8-15
gives the rotational K if the rotation axis is fixed. If the object is moving
(such as a wheel rolling down a hill), this equation is still valid as long as
the rotation axis is fixed in direction. Then the total kinetic energy is

=1 2 1 2

where vy is the linear velocity of the cM, Iy is the moment of inertia
about an axis through the cM,  is the angular velocity about this axis, and
M is the total mass of the body.

AW LUSEEVE Sphere rolling down an incline. 'What will be the speed
of a solid sphere of mass M and radius R when it reaches the bottom of
an incline if it starts from rest at a vertical height H and rolls without slip-

ping? See Fig. 8-23. Ignore losses due to dissipative forces, and compare
your result to that for an object sliding down a frictionless incline.

SOLUTION We use the law of conservation of energy, and we must
now include rotational kinetic energy. The total energy at any point a
vertical distance y above the base of the incline is '

%Mvz + %ICsz + Mgy,

where v is the speed of the cM. We equate the total energy at the top
(y = Hand v = @ = 0) to the total energy at the bottom (y = 0):

0+ 0+ MgH = I Mv* + JIqo® + 0.

From Fig. 8-20, the moment of inertia of a solid sphere about an axis
through its cM is Iy = 3 MR?. Since the sphere rolls without slipping, the
speed, v, of the center of mass with respect to the point of contact (which
is momentarily at rest at any instant) is equal to the speed of a point on
the edge relative to the center, as we saw in Section 8-3 (Fig. 8-8). We
therefore have w = v/R. Hence

2

IMv? + 1 MRZ)(%—Z) = MgH.
Canceling the M’s and R’s, we obtain

(G +50° =gH

V= V%’gH.

Note first that v is independent of both the mass M and the radius R of the
sphere. Also, we can compare this result for the speed of a rolling sphere to
that for an object sliding down a plane without rotating and without friction
(see Section 6-7,3mv? = mgH), in which case v = V2gH, which is greater
An object sliding without friction transforms its initial potential energy et
tirely into translational KE (none into rotational KE), so its speed is greater

or

CONCEPTUAL EXAMPLE 8-15] Who's fastest? Several objects rol
without slipping down an incline of vertical height H, all starting fro™
rest at the same moment. The objects are a thin hoop (or a plain wedding
band), a marble, a solid cylindrical battery (D-cell), an empty soup can,
and an unopened soup can. In addition a greased box slides down with-
out friction. In what order do they reach the bottom of the incline?
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RESPONSE The sliding box wins every time! As we saw in Example
8-14, the speed of a rolling sphere at the bottom of the incline is less
than that for a sliding box (without friction) because the potential energy
loss (MgH) is transformed completely into translational e for the box,
whereas for rolling objects, the initial PE is shared between translational
and rotational kinetic energy. For each of the rolling objects we can state
that the loss in potential energy equals the increase in kinetic energy:

MgH =} Mv? + L.

First we note that for all our rolling objects, the moment of inertia Iy is
a numerical factor times the mass M and the radius R? (Fig. 8-20). The
mass M is in each term, so the translational speed v doesn’t depend on
M, nor does it depend on the radius R since @ = v/R so R? cancels out
for all the rolling objects, just as in Example 8—14. Thus the speed v at
the bottom depends only on that numerical factor in I which expresses
how the mass is distributed. Consequently, the hoop, with all its mass
concentrated at radius R (I = MR?), will have the lowest speed and
will arrive at the bottom behind the D-cell (I, = § MR?) which in turn
will be behind the marble (I, = $ MR?). The empty can, which is mainly
a hoop plus a small disk, has its mass concentrated almost at R; so it will
be a bit faster than the pure hoop but slower than the D-cell. See
Fig. 8-24. The unopened soup can is much more complicated. It cannot
be considered a solid cylinder because the soup can move about inside,

and that will dissipate some energy; so we expect it to be slower than the

D-cell, but that’s about all we can safely say. For all the other objects,
note that the speed at the bottom does not depend on the object’s mass
M or radius R, but only on its shape (and the height of the hill H).

If there had been no friction between the sphere (and other rolling ob-
jects) and the plane in these Examples, the sphere would have slid rather
than rolled. Friction must be present to make a round object roll. We did
not need to take friction into account in the energy equation because it is
static friction and does no work. If we assume the sphere is perfectly rigid
and thus is in contact with the surface at a point, then the force of friction
acts parallel to the plane. But the point of contact of the sphere at each in-
stant does not slide—it moves perpendicular to the plane (first down and
then up) as the sphere rolls (Fig. 8~25). Thus, no work is done by the fric-
tion force because the force and the motion are perpendicular. The reason
the rolling objects in Examples 8—14 and 8-15 move down the slope more
slowly than if they were sliding is not because friction is doing work. Rather
it is because some of the gravitional PE is converted to rotational KE, leaving
less for the translational KE.

The work done on a body rotating about a fixed axis, such as the
wheel or pulley in Fig. 8-21 and 8-22, can be written using angular quan-
tities. As shown in Fig. 8-26, a force F exerting a torque 7 = rF on the
wheel does work W = F Al in rotating the wheel a small distance Al The
wheel has rotated through a small angle A8 = Al/r (see Eq. 8-1). Hence

W = FAl = Fr Ao

2
Since 7 = rF, then

W=r1A0 (8-16)
is the work done by the torque 7 in rotating the wheel through an angle A6.

1"

Hoop
o~
() Empty can
() Solid cylinder (D-cell)
N 3 Sphere (marble)

FIGURE 8-24 Example 8-15.

FIGURE 8-25 A sphere rolling
to the right on a plane surface. The

point in contact with the ground at

any moment, point P, is momentarily
at rest. Point A on the left of Pis _
moving nearly vertically upward at the '
instant shown, and point B on the right
is moving nearly vertically downward.
(An instant later, point B will touch i
the plane and be at rest momentarily.)

FIGURE 8-26 Torquer=rF
does work in rotating a wheel equal
to W = FAl = FrA6 = tA6.

Work done by torque
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Angular momentum

NEWTON'’S SECOND LAW
FOR ROTATION

CONSERVATION OF
ANGULAR MOMENTUM
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mAngular Momentum and Its Conservation

Throughout this chapter we have seen that if we use the appropriate an-
gular variables, the kinematic and dynamic equations for rotational mo-
tion are analogous to those for ordinary linear motion. In the last section
(Section 8-7) we saw, for example, that rotational kinetic energy can be writ-
ten as 3 Jw?, which is analogous to the translational KE = 3mv In like manner,
the linear momentum, p = mw, has a rotational analog. It is called angular
momentum, L, and for a body rotating about a fixed axis it is defined as

L=l (8-17)

where I is the moment of inertia, and w is the angular velocity. The SI
units for L are kg-m?*/s.

We saw in Chapter 7 (Section 7-1) that Newton’s second law can be
written not only as £F = ma, but also more generally in terms of momen-
tum (Eq. 7-2), ZF = Ap/At. In a similar way, the rotational equivalent of
Newton’s second law, which we saw in Eq. 8-14 can be written as 27 = Ia,
can also be written in terms of angular momentum:

AL
=0 (8-13)
where 27 is the net torque acting to rotate the body, and AL is the change
in angular momentum in the time At. Equation 8-14, 31 = Ia, is a special
case of Eq. 8-18 when the moment of inertia is constant. This can be seen
as follows. If a body has angular velocity w, at time ¢ = 0, and angular ve-
locity w at a time At later, then its angular acceleration (Eq. 8-3) is

Aw o~ w
*T At A

Then from Eq. 8-18, we have

AL Jo — I, (o - o) _IAw

rT=—=

A At At A e

which is Eq. 8-14.

Angular momentum is an important concept in physics because, under
certain conditions, it is a conserved quantity. We can see from Eq. 8-18
that if the net torque =7 on a body is zero, then AL/At equals zero. That s,
L does not change. This, then, is the law of conservation of angular mo-
mentum for a rotating body:

The total angular momentum of a rotating body remains constant if
the net torque acting on it is zero.

The law of conservation of angular momentum is one of the great conser
vation laws of physics.

ing
tic
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2 When there is zero net torque acting on a body, and the body is rotat-
¥ ing about a fixed axis or about an axis through its cM such that its direc-
tion doesn’t change, we can write

Iw = Ijw, = constant. ’

I, and w, are the moment of inertia and angular velocity, respectively,
about that axis at some initial time (¢ = 0), and / and  are their values at '
some other time. The parts of the body may alter their positions relative to
one another, so that I changes. But then w changes as well and the product
Iw remains constant.

Many interesting phenomena can be understood on the basis of con-
servation of angular momentum. Consider a skater doing a spin on the
tips of her skates, Fig. 8-27. She rotates at a relatively low speed when her
arms are outstretched, but when she brings her arms in close to her body,

| she suddenly spins much faster. By remembering the definition of moment
) of inertia as I = Emr?, it is clear that when she pulls her arms in closer to
' the axis of rotation, r is reduced for the arms so her moment of inertia is _
| reduced. Since the angular momentum /o remains constant (we ignore the l

small torque due to friction), if I decreases, then the angular velocity o . |
must increase. If the skater reduces her moment of inertia by a factor of 2, |
she will then rotate with twice the angular velocity. ‘ | .
A similar example is the diver shown in Fig. 8-28. The push as she ’ '“
leaves the board gives her an initial angular momentum about her cM. When ,
she curls herself into the tuck position, she rotates quickly one or more |
times. She then stretches out again, increasing her moment of inertia, which -
reduces the angular velocity to a small value, and then she enters the water.
The change in moment of inertia from the straight position to the tuck posi-
tion can be a factor of as much as 3%.
Note that for angular momentum to be conserved, the net torque i
must be zero, but the net force does not necessarily have to be zero. The
net force on the diver in Fig. 8-28, for example, is not zero (gravity is act-
ing), but the net torque on her is zero.

~—
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FIGURE 8-27 A skater doing FIGURE 8-28 A diver rotates

a spin on ice, illustrating conservation faster when arms and legs are tucked
of angular momentum: in (a), I is in than when they are outstretched. :
large and w is small; in (b), I is Angular momentum is conserved. ;
smaller so w is larger. ‘
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18 i I large, I small,
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FIGURE 8-30 (a)Rotating
wheel. (b) Right-hand rule for
obtaining the direction of @.

FIGURE 8-29 Example 8-16.
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AN LGS Object rotating on a string of changing length. A mass
m attached to the end of a string revolves in a circle on a frictionless
tabletop. The other end of the string passes through a hole in the table
(Fig. 8-29). Initially, the mass revolves with a speed v; = 2.4m/s in a cir-
cle of radius r, = 0.80 m. The string is then pulled slowly through the
hole so that the radius is reduced to r, = 0.48 m. What is the speed, v,, of

the mass now?

SOLUTION The force exerted by the string on the mass m does not
alter its angular momentum about the axis of rotation, because the force
is exerted toward the axis so the lever arm is zero and 7 = 0. Hence, from
conservation of angular momentum:

Lo, = Lw,

Our small mass is essentially a particle whose moment of inertia is
I = mr* (Section 8-5, Eq. 8-11), so we have

mrie, = mryw,,

(r%)
w, = ol 3
2 11 2
r

Then, since v = rw, we can write:

r v (1 "
V) = Wy = Iy _r_% "2r—l r-§ —"’1',_2

= (24 m/s)(

or

0.80m
048 m

) = 4.0m/s.

Lo

N m)’ector Nature of Angular Quantities

Up to now we have considered only the magnitudes of angular variables

such as , o, and L. But they can be treated as vectors, and now we consid- ,_
er in what directions these vectors point. In fact, we have to define the di- |

rections for rotational quantities, and we take first the angular velqcity, @
Consider the rotating wheel shown in Fig. 8-30a. The linear velocities of

different particles of the wheel point in all different directions. The only ; [
unique direction in space associated with the rotation is along the axis of rota-

tion, perpendicular to the actual motion. We therefore choose the axis of

rotation to be the direction of the angular velocity vector, @. Actually, ther ;
is still an ambiguity since w could point in either direction along the axis of 3
Right- rotation (up or down in Fig, 8-30a). The convention we use, called the right- &

hand hand rule, is the following: When the fingers of the right hand are curled

rule  around the rotation axis and point in the direction of the rotation, then th
thumb points in the direction of . This is shown in Fig. 8-30b. Note that ¢
points in the direction a right-handed screw would move when turned in the

direction of rotation. Thus, if the rotation of the wheel in Fig. 8-30a is cou™
terclockwise, the direction of  is upward as shown in Fig. 8-30b. If the §
wheel rotates clockwise, then w points in the opposite direction, downwar® £

Note that no part of the rotating body moves in the direction of .

——e et ]
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If the axis of rotation is fixed, then @ can change only in magnitude.
Thus @ = Aw/At must also point along the axis of rotation. If the rotation
is counterclockwise as in Fig. 8-30a, and if the magnitude o is increasing,
then « points upward; but if w is decreasing (the wheel is slowing down), a
points downward. If the rotation is clockwise, a will point downward if @
is increasing, and point upward if o is decreasing.

Angular momentum, like linear momentum, is a vector quantity. For a
symmetrical body (such as a wheel, cylinder, hoop, sphere) rotating about
a symmetry axis, we can write the vector angular momentum as

L = Jo. (8-19)

The angular velocity vector w (and therefore also L) points along the axis
of rotation in the direction given by the right-hand rule (Fig. 8-30b).

The vector nature of angular momentum can be used to explain a
number of interesting (and sometimes surprising) phenomena. For exam-
ple, consider a person standing at rest on a circular platform capable of ro-
tating without friction about an axis through its center (that is, a simplified
merry-go-round). If the person now starts to walk along the edge of the
platform, Fig. 8-31a, the platform starts rotating in the opposite direction.
Why? First of all because the person’s foot exerts a force on it; but also be-
cause (and this is the most useful analysis here) this is an example of the
conservation of angular momentum. If the person starts walking counter-
clockwise, the person’s angular momentum will be pointed upward along
the axis of rotation (remember how we defined the direction of w using the
right-hand rule). The magnitude of the person’s angular momentum will be™
L = Io = (mr*)(v/r), where v is the person’s speed (relative to Earth, not
the platform), r is his distance from the rotation axis, m is his mass, and his
moment of inertia is mr? if we consider him a particle (mass concentrated
at one point). The platform rotates in the opposite direction, so its angular
momentum points downward. If the initial total angular momentum was
zero (person and platform at rest), it will remain zero after the person
starts walking—that is, the upward angular momentum of the person just
balances the oppositely directed downward angular momentum of the plat-
form (Fig. 8-31b), so the total vector angular momentum remains zero.
Even though the person exerts a force (and torque) on the platform, and

. vice versa, these are internal torques (internal to the system consisting of

platform plus person). There are no external torques (assuming friction-
free bearings of the platform), so the angular momentum remains constant.

CONCEPTUAL EXAMPLE 8-17 | Spinning bicycle wheel. Your physics
teacher is holding a spinning bicycle wheel while standing on a stationary
frictionless turntable (Fig, 8-32). What will happen if the teacher suddenly
flips the bicycle wheel over so that it is spinning in the opposite direction?

RESPONSE The total angular momentum initially is L vertically up-
ward, and that’s what the system’s angular momentum must be afterward
since L is conserved. Thus, if the wheel’s angular momentum afterward is
~L downward, then the angular momentum of teacher plus turntable will
have to be + 2L upward. We can safely predict that the teacher will begin
sLinning around in the same direction the wheel was spinning originally.

t chrson

‘ Lolatform
(b)

FIGURE 8-31 (a)A person
standing on a circular platform, both
initially at rest, begins walking along
the edge at speed v. The platform,
assumed to be mounted on friction-
free bearings, begins rotating in the
opposite direction, so that the total
angular momentum remains zero, as
shown in (b).

FIGURE 8-32 Example 8-17.
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[ | SUMMARY

When a rigid body rotates about a fixed axis, each
point of the body moves in a circular path. Lines
drawn perpendicularly from the rotation axis to
various points in the body all sweep out the same
angle 0 in any given time interval.

Angles are conveniently measured in radians,
where one radian is the angle subtended by an arc
whose length is equal to the radius, or

2mrrad = 360°
1 rad = 57.3°.

Angular velocity, o, is defined as the rate of
change of angular position:

" ar
All parts of a rigid body rotating about a fixed axis
have the same angular velocity at any instant.
Angular acceleration, a, is defined as the rate
of change of angular velocity:
)
At
The linear velocity v and acceleration a of a
point fixed at a distance 7 from the axis of rotation
are related to w and a by -

2

v = ro, Ay, = 10, ag = wr,

where a,,, and ap are the tangential and radial
(centripetal) components of the linear accelera-
tion, respectively.

The frequency f is related to @ by w = 27f,
and to the period Tby T = 1/f.

The equations describing uniformly accelerat-
ed rotational motion (e = constant) have the same
form as for uniformly accelerated linear motion:

w = wy + at; 0=w0t+%at2;

o = W} + 2a6, w=
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The dynamics of rotation is analogous to the dy- 1 You
namics of linear motion. Force is replaced by torque, | of |
7, which is defined as the product of force times heij
lever arm (perpendicular distance from the line of § fror
action of the force to the axis of rotation). Mass is § 2- At
replaced by moment of inertia, J, which depends not ele
only on the mass of the body, but also on how the fgr
mass is distributed about the axis of rotation. Linear bic
acceleration is replaced by angular acceleration. The - Sup
rotational equivalent of Newton’s second law is then vel

tan
37 =l

:  vel
The rotational kinetic energy of a body rotat-
ing about a fixed axis with angular velocity  is

the

KE = } I,

For a body both translating and rotating, the?
total kinetic energy is the sum of the translational}
KE of the body’s cM plus the rotational KE of the
body about its cM:

as long as the rotation axis is fixed in direction. §
The angular momentum, L, of a body about 1
fixed rotation axis is given by |
t

= Jw. '

Newton’s second law, in terms of angular m
mentum, becomes 3y

AL ’
At
If the net torque on the body is zero, AL/At = 0

so L = constant. This is the law of conservation 0%
angular momentum for a rotating body. :

T =



0,
of

-
i

3

0 QUESTIONS

1. You are standing a known distance from the Statue

’ of Liberty. Describe how you could determine its

height using only a meter stick, and without moving
from your place.

2. A bicycle odometer (which measures distance trav-
eled) is attached near the wheel hub and is designed
for 27-inch wheels. What happens if you use it on a
bicycle with 24-inch wheels?

3, Suppose a record turntable rotates at constant angular
velocity. Does a point on the rim have radial and/or
tangential acceleration? If the turntable’s angular
velocity increases uniformly, does the point have radial
and/or tangential acceleration? For which cases would
the magnitude of either of the components of linear
acceleration change?

4. If the angular quantities 6, w, and a were specified in

terms of degrees rather than radians, how would

Egs. 8-9 for uniformly accelerated rotational motion

have to be altered?

Can a small force exert a greater torque than a larg-

er force? Explain.

If a force F acts on a body such that its lever arm is

zero, does it have any effect on the body’s motion?

7. Why is it more difficult to do a sit-up with your

hands behind your head than when they are out-
stretched in front of you? A diagram may help you
to answer this.

. Expert bicyclists use very lightweight “sew-up” (tubu-

lar) tires. They claim that reducing the mass of the

tires is far more significant than an equal reduction in
mass elsewhere on the bicycle. Explain why.

A 21-speed bicycle has seven sprockets at the rear

wheel and three at the pedal cranks. In which gear is

it harder to pedal, a small rear sprocket or a large rear

sprocket? Why? In which gear is it harder to pedal, a

small front sprocket or a large front sprocket? Why?

w

(=,
5

9

10. Mammals that depend on being able to run fast have

slender lower legs with flesh and muscle concentrat-
ed high, close to the body (Fig. 8-33). On the basis
of rotational dynamics, explain why this distribution
of mass is advantageous.

FIGURE 8-33 A gazelle. Question 10.

FIGURE 8-34

Question 11.

11. Why do tightrope walkers carry a long, narrow beam

(Fig. 8-34)?

12. If the net force on a system is zero, is the net torque

also zero? If the net torque on a system is zero, is the
net force zero?

13. A stick stands vertically on its end on a frictionless

surface. Describesthe motion of its cM, and of each
end, when it is tipped slightly to one side and falls.

14. Two inclines have the same height but make differ-

ent angles with the horizontal. The same steel ball is
rolled down each incline. On which incline will the
speed of the ball at the bottom be greatest? Explain.

15. Two solid spheres simultaneously start rolling (from

rest) down an incline. One sphere has twice the radius
and twice the mass of the other. Which reaches the
bottom of the incline first? Which has the greater
speed there? Which has the greater total kinetic energy
at the bottom?

16. A sphere and a cylinder have the same radius and

the same mass. They start from rest at the top of an
incline. Which reaches the bottom first? Which has
the greater speed at the bottom? Which has the
greater total kinetic energy at the bottom? Which
has the greater rotational Ke?

17. A cyclist rides over the top of a hill. Is the bicycle’s mo-

tion rotational, translational, or a combination of both?

18. We claim that momentum and angular momentum

are conserved. Yet most moving or rotating bodies
eventually slow down and stop. Explain.

19. If there were a great migration of people toward the

equator, how would this affect the length of the day?

20. Can the diver of Fig. 8-28 do a somersault without

having any initial rotation when she leaves the board?
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*21, In what direction is the Earth’s angular velocity for

its daily rotation on its axis?

*22, The angular velocity of a wheel rotating on a hori-

zontal axle points west. In what direction is the lin-
ear velocity of a point on the top of the wheel? If the
angular acceleration points east, describe the tangen-
tial linear acceleration of this point. Is the angular
speed increasing or decreasing?

*23, When a motorcyclist leaves the ground on a jump, if

the throttle is left on (so that the rear wheel spins),
why does the front of the cycle rise up?

*24, Suppose you are standing on the edge of a large ro-

tating turntable. What happens if you walk toward
the center?

*25, A quarterback leaps into the air to throw a forward

pass. As he throws the ball, the upper part of his
body rotates. If you look quickly you will notice that
his hips and legs rotate in the opposite direction
(Fig. 8-35). Explain.

*26. Look at the face of a clock with a second hand. In what

direction is the angular momentum of the second hand?

L PROBLEMS

FIGURE 8-35
Quarterback in the
air, throwing a pass.
Question 25.

*27. On the basis of the law of conservation of angular 3 1

momentum, discuss why a helicopter must have
more than one rotor (or propeller). Discuss one or
more ways the second propeller can operate in order
to keep the body stable.

SECTION 8-1

1. (I) What are the following angles expressed in radi-
ans: (a) 30°, (b) 57°, (c) 90°, (d) 360°, and (e) 420°?
Give as numerical values and as fractions of .

. (I) The Sun subtends an angle of about 0.5° to us on
the Earth, 150 million km away. What is the radius of
the Sun?

3. (I) Eclipses happen on Earth because of an amazing
coincidence. Calculate, using the information inside
the front cover, the angular diameter (in radians) of
the Sun and the angular diameter of the Moon, as
seen on Earth.

(I) The Eiffel Tower is 300 m tall. When you are stand-
ing at a certain place in Paris, it subtends an angle of
6°. How far are you, then, from the Eiffel Tower?

(I) A laser beam is directed at the Moon, 380,000 km
from Earth. The beam diverges at an angle 6 (Fig. 8-36)
of 1.8 X 10~° rad. What diameter spot will it make on
the Moon?

(I) A 0.35-m diameter grinding wheel rotates at
1800 rpm. Calculate its angular velocity in rad/s.

(I) What is the linear speed and acceleration of a
point on the edge of the grinding wheel in Problem 6?
. (I) A 33-rpm phonograph record reaches its rated

speed 1.8 s after it is turned on. What was the angular
acceleration? '

[

&
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FIGURE 8-36

Problem 5.

9. (I) Calculate the angular velocity of (a) the second]
hand, (b) the minute hand, and (c) the hour hand, of§
a clock. State in rad/s. (d) What is the angular accel§

eration in each case?

10. (I) The blades in a blender rotate at a rate of
7500 rpm. When the motor is turned off during oper:
ation, the blades slow to rest in 3.0's. What is the an;
gular acceleration as the blades slow down? |

11. (II) A child rolls a ball on a level floor 4.5 m to 3%
other child. If the ball makes 15.0 revolutions, %h#!
is its diameter? i

12. (II) A bicycle with 68-cm-diameter tires (rave
7.0 km. How many revolutions do the wheels make’}
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, (1) Estimate the angle subtended by the Moon using a
ruler and your finger or other object to just blot out the
Moon. Describe your measurement and the result ob-
tained and then use it to estimate the diameter of the
Moon. The Moon is about 380,000 km from the Earth.

. (11) Calculate the angular velocity of the Earth (a) in
its orbit around the Sun, and (b) about its axis.

- 15, (I What is the linear speed of a point (a) on the

equator, (b) on the Arctic Circle (latitude 66.5° N), and
(c)ata latitude of 45.0° N, due to the Earth’s rotation?

16. (1) How fast (inrpm) must a centrifuge rotate if a
particle 7.0 cm from the axis of rotation is to experi-
ence an acceleration of 100,000 g’s?

17. (I) A 70-cm-diameter wheel accelerates uniformly
from 160 rpm to 280 rpm in 4.0 s. Determine (a) its an-
gular acceleration, and (b) the radial and tangential
components of the linear acceleration of a point on the
edge of the wheel 2.0s after it has started accelerating,

18. (II) A record player turntable of radius R, is turned
by a circular rubber roller of radius R, in contact
with it at their outer edges. What is the ratio of their
angular velocities, »,/w,?

19. (II) In traveling to the Moon astronauts aboard the
Apollo spacecraft put themselves into a slow rotation
in order to distribute the Sun’s energy evenly. At the
start of their trip, they accelerated from no rotation to
one revolution every minute during a 10-min time in-
terval. The spacecraft can be thought of as a cylinder
with a diameter of 8.5 m. Determine (a) the angular
acceleration, and (b) the radial and tangential compo-
nents of the linear acceleration of a point on the skin
of the ship 5.0 min after it started this acceleration.

SECTIONS 8-2 AND 8-3

20. (I) A phonograph turntable reaches its speed of
33rpm after making 1.7 revolutions. What was its
angular acceleration?

21. (I) A centrifuge accelerates from rest to 15,000 rpm
in 220s. Through how many revolutions did it turn
in this time?

22, (I) An automobile engine slows down from 4000 rpm
to 1200 rpm in 3.5 5. Calculate (a) its angular acceler-
ation, assumed uniform, and (b) the total number of
revolutions the engine makes in this time,

23. (II) Pilots can be tested for the stresses of flying high-
speed jets in a whirling “human centrifuge” which
takes 1.0 min to turn through 20 complete revolutions
before reaching its final speed. () What was its angu-
lar acceleration (assume constant), and (b) what was
its final speed in rpm?

4. (II) A 40-cm-diameter wheel accelerates uniformly
from 240 rpm to 360 rpm in 6.5 s. How far will a point
on the edge of the wheel have traveled in this time?

(II) Starting from the definitions of w and «, derive
Eqgs. 8-9 assuming constant angular acceleration.

26. (II) A small rubber wheel is used to drive a large pot-
tery wheel, and they are mounted so that their circu-
lar edges touch. If the small wheel has a radius of
2.0cm and accelerates at the rate of 7.2 rad/s?, and it
is in contact with the pottery wheel (radius 25.0 cm)
without slipping, calculate (a) the angular acceleration
of the pottery wheel, and (b) the time it takes the pot-
tery wheel to reach its required speed of 65 rpm.

27. (II) The tires of a car make 65 revolutions as the car re-
duces its speed uniformly from 100 km/h to 50 km/h.
The tires have a diameter of 0.80 m. (a) What was the
angular acceleration? (b) If the car continues to de-
celerate at this rate, how much more time is required
for it to stop?

28. (III) A wheel, starting from rest, undergoes uniform
angular acceleration « about its fixed axle. (@) Write
the components of the linear acceleration, a,,, and
ag, for a point P which is a distance r from the axle
in terms of a, r, and time ¢. (b) Let ¢ be the angle be-
tween the linear acceleration vector, a, and the line
drawn between P and the axis. Express ¢ in terms of
the total number of revolutions of the wheel, N.

SECTION 8-4

29. (I) What is the maximum torque exerted by a 55-kg
person riding a bike if the rider puts all her weight
on each pedal when climbing a hill? The pedals ro-
tate in a circle of radius 17 cm.

30. (I) A person exerts a force of 45N on the end of a
door 84cm wide. What is the magnitude of the
torque if the force is exerted (a) perpendicular to the
door, and (b) at a 60° angle to the face of the door?

31. (II) Calculate the net torque about the axle of the
wheel shown in Fig. 8-37. Assume that a friction
torque of 0.40 m-N opposes the motion.

35N

30N

FIGURE 8-37
Problem 31.

20N

32. (1) If the coefficient of static friction between tires and
pavement is 0.75, calculate the minimum torque that
must be applied to the 66-cm-diameter tire of a 1080-kg
automobile in order to “lay rubber” (make the wheels
spin, slipping as the car accelerates). Assume each
wheel supports an equal share of the weight.

Problems
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FIGURE 8-38

Problem 33.

33. (II) The bolts on the cylinder head of an engine require
tightening to a torque of 80 m-N. If a wrench is 30 cm
i long, what force perpendicular to the wrench must the
mechanic exert at its end? If the six-sided bolt head is
15mm in diameter, estimate the force applied near
each of the six points by a socket wrench (Fig. 8-38).

SECTIONS 8-5 AND 8-6

34. (I) Calculate the moment of inertia of a 12.2-kg
sphere of radius 0.623 m when the axis of rotation is
through its center.

35. (I) Calculate the moment of inertia of a 66.7-cm-
diameter bicycle wheel. The rim and tire have a
combined mass of 1.25 kg. The mass of the hub can

s be ignored (why?).

. | | 36. (II) Calculate the moment of inertia of the array of

¢ point objects shown in Fig. 8-39 about (g) the vertical
H axis, and (b) the horizontal axis. Assume the objects
¢ are wired together by very light rigid pieces of wire.

About which axis would it be harder to accelerate this
array? In Fig. 8-39, m = 1.8kg and M = 3.1kg. The
array is rectangular and it is split through the middle
by the horizontal axis.

e ty 1.50m —
fe—0.50 m —

m | m
i
| g

g .
050m —4————— Spads _________ -x

!
l |

M : M
I

FIGURE 8-39 Problem 36.

37. (II) An oxygen molecule consists of two oxygen
atoms whose total mass is 5.3 X 10" kg and whose
moment of inertia about an axis perpendicular to the
line joining the two atoms, midway between them, is
1.9 X 10~* kg-m? Estimate, from these data, the ef-
fective distance between the atoms.

38. (II) A small 1.05-kg ball on the end of a light rod is
rotated in a horizontal circle of radius 0.900 m. Cal-
culate (a) the moment of inertia of the system about
the axis of rotation, and (b) the torque needed to
keep the ball rotating at constant angular velocity if
air resistance exerts a force of 0.0800 N on the ball.
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End view of
cylindrical
satellite

FIGURE 8-40
Problem 39.

39, (II) In order to get a flat uniform cylindrical satellite
spinning at the correct rate, engineers fire four tan-
gential rockets as shown in Fig. 8-40. If the satellite
has a mass of 2600 kg and a radius of 3.0 m, what is
the required steady force of each rocket if the satel-
lite is to reach 30 rpm in 5.0 min?

40. (II) A grinding wheel is a uniform cylinder with a ra-
dius of 8.50 cm and a mass of 0.580 kg. Calculate (a)
its moment of inertia about its center, and (b) the
applied torque needed to accelerate it from rest to
1500 rpm in 5.00 s if it is known to slow down from
1500 rpm to rest in 55.0s.

41. (IT) A softball player swings a bat, accelerating it from
rest to 3.0rev/s in a time of 0.20s. Approximate the
bat as a 2.2-kg uniform rod of length 0.95 m, and com-
pute the torque the player applies to one end of it.

42. (I) A day-care worker pushes tangentially on a
small hand-driven merry-go-round and is able to ac-
celerate it from rest to a spinning rate of 20 rpm in
10.0 s. Assume the merry-go-round is a disk of radius
2.5m agd has a mass of 800 kg, and two children
(each with a mass of 25 kg) sit opposite each other
on the edge. Calculate the torque required to pro-
duce the acceleration, neglecting frictional torque.
What force is required? :

43. (II) A centrifuge rotor rotating at 10,000 rpm is shut
off and is eventually brought to rest by a frictional E
torque of 1.20 m-N. If the mass of the rotor is 4.80 kg 2
and it can be approximated as a solid cylinder of ra-
dius 0.0710 m, through how many revolutions will the
rotor turn before coming to rest, and how long willit
take? !

44. (IT) The forearm in Fig. 8-41 accelerates a 3.6-k8
ball at 7.0 m/s? by means of the triceps muscle, & §
shown. Calculate (a) the torque needed, and (b) the §
force that must be exerted by the triceps musclé-§
Ignore the mass of the arm.

30 cm

25cm -~

Axis of rotation (at elb"W):

FIGURE 8-41

S
Triceps™._ T
Problems 44 and 45.

muscle
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45. (I) Assume that a 1.50-kg ball is thrown solely by

FIGURE 8-42
Problem 46.

the action of the forearm, which rotates about the
elbow joint under the action of the triceps muscle,
Fig. 8-41. The ball is accelerated from rest to
10.0 m/s in 0.350s, at which point it is released. Cal-
culate (a) the angular acceleration of the arm, and
(b) the force required of the triceps muscle. Assume
that the forearm has a mass of 3.70 kg and rotates
like-a uniform rod about an axis at its end.

. (ID) A helicopter rotor blade can be considered a

long thin rod, as shown in Fig. 8-42. If each of the
three rotor helicopter blades is 3.75 m long and has a
mass of 160kg, calculate the moment of inertia of
the three rotor blades about the axis of rotation.
How much torque must the motor-apply to bring the
blades up to a speed of 5.0 rev/s in 8.0s?

47. (II) The radius of the roll of paper shown in Fig. 8-43

is 76cm and its moment of inertia is [ =
29 X 1073 kg-m®. A force of 32N is exerted on the
end of the roll for 1.3 s, but the paper does not tear so
it begins to unroll. A constant friction torque of
0.11 m-N is exerted on the roll which gradually brings it
to a stop. Assuming that the paper’s thickness is negli-
gible, calculate (a) the length of paper that unrolls dur-
ing the time that the force is applied (1.3 s) and (b) the
length of paper that unrolls from the time the force
ends to the time where the roll has stopped moving.

FIGURE 8-43
Problem 47. F
48. (III) An Atwood’s machine consists of two masses,

9.

m, and m,, which are connected by a massless inelas-
tic cord that passes over a pulley, Fig. 8-44. If the
pulley has radius R and moment of inertia I about its
axle, determine the acceleration of the masses m,
and m,, and compare to the situation in which the
moment of inertia of the pulley is ignored. [Hint: The
tensions Fp, and Fr, are not necessarily equal.]

(III) A hammer thrower accelerates the hammer
(mass = 7.30 kg) from rest within four full turns (rev-
olutions) and releases it at a speed of 28.0m/s. As-
suming a uniform rate of increase in angular velocity

a0
\_/
v
ml FT2
FIGURE 8-44 m,
Atwood’s machine. .
Problems 48 and 55. ‘v

and a radius of 1.20 m, calculate (a) the angular accel-
eration, (b) the (linear) tangential acceleration, (c) the
centripetal acceleration just before release, (d) the net
force being exerted on the hammer by the athlete just
before release, and (e) the angle of this force with re-
spect to the radius of the circular motion.

SECTION 8-7

50. (I) A bowling ball of mass 7.3 kg and radius 9.0 cm
rolis without slipping down a lane at 4.3 m/s. Calcu-
late its total kinetic energy.

51. (I) A centrifuge rotor has a moment of inertia of
3.15 X 10~2kg-m’. How much energy is required to
bring it from rest to 8000 rpm? '

52. (II) Estimate the kinetic energy of the Earth with re-
spect to the Sun as the sum of two terms, (@) that due
to its daily rotation about its axis, and (b) that due to
its yearly revolution about the Sun. [Assume the Earth
is a uniform sphere, mass = 6.0 X 10% kg, radius =
6.4 X 10°m, and is 1.5 X 10% km from the Sun.]

53. (II) A merry-go-round has a mass of 1640 kg and a
radius of 8.20 m. How much net work is required to
accelerate it from rest to a rotation rate of one revo-
lution in 8.00 s? (Assume it is a solid cylinder.)

54. (II) (a) Calculate the translational and rotational
speeds of a sphere (radius 20.0 cm and mass 1.20 kg),
that rolls without slipping down a 30.0° incline that is
10.0m long, when it reaches the bottom. Assume it
started from rest. (b) What is its ratio of translation-
al to rotational KE at the bottom? Try to avoid
putting in numbers until the end so you can answer:
(c) do your answers in (a) and (b) depend on the ra-
dius of the sphere or its mass?

55. (III) Two masses, m;, = 18.0kg and m, = 26.5kg,
are connected by a rope that hangs over a pulley (as
in Fig. 8-44). The pulley is a uniform cylinder of ra-
dius 0.260 m and mass 7.50 kg. Initially, m, is on the
ground and m, rests 3.00 m above the ground. If the
system is now released, use conservation of energy
to determine the speed of m, just before it strikes
the ground. Assume the pulley is frictionless.

56. (III) A 3.30-m-long pole is balanced vertically on its
tip. It is given a tiny push. What will be the speed of
the upper end of the pole just before it hits the
ground? Assume the lower end does not slip. 237
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SECTION 8-8

57. (I) What is the angular momentum of a 0.210-kg ball
rotating on the end of a string in a circle of radius
1.10 m at an angular speed of 10.4 rad/s?

58. (I) A person stands, hands at the side, on a platform
that is rotating at a rate of 1.30rev/s. If the person
now raises his arms to a horizontal position, Fig. 8—45,
the speed of rotation decreases to 0.80rev/s. (a) Why
does this occur? (b) By what factor has the moment of
inertia of the person changed?

FIGURE 8-45
Problem 58.

59. (I) A diver (such as the one shown in Fig. 8-28) can

[ reduce her moment of inertia by a factor of about 3.5
when changing from the straight position to the tuck
position. If she makes two rotations in 1.5s when in
the tuck position, what is her angular speed (rev/s)
when in the straight position?

60. (I) A figure skater during her finale can increase her
rotation rate from an initial rate of 1.0rev every 2.0s
to a final rate of 3.0 rev/s. If her mitial moment of in-
ertia was 4.6 kg-m?, what is her final moment of iner-
tia? How does she physically accomplish this change?

61. (II) Hurricanes can involve winds in excess of
120 km/h. Make a crude estimate of (a) the energy,
and (b) the angular momentum, of such a hurricane,
approximating it as a rigidly rotating uniform cylin-
der of air (density 1.3 kg/m®) of radius 100 km and
height 4.0 km.

62. (II) (a) What is the angular momentum of a figure
skater spinning (with arms in close to her body) at
3.5 rev/s, assuming her to be a uniform cylinder with
a height of 1.5m, a radius of 15cm, and a mass of
55 kg. (b) How much torque is required to slow her to
a stop in 5.0 s, assuming she does not move her arms?

63. (II) Determine the angular momentum of the Earth
(a) about its rotation axis (assume the Earth is a uni-
form sphere), and (b) in its orbit around the Sun (treat
the Earth as a particle orbiting the Sun). The Earth
has mass = 6.0 X 10% kg, radius = 6.4 X 10°m, and is

: i 1.5 X 10*km from the Sun.
i 64. (II) A nonrotating cylindrical disk of moment of iner-
i tia  is dropped onto an identical disk rotating at an-
g gular speed . Assuming no external torques, what is
the final common angular speed of the two disks?

kY
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65.

(II) A uniform disk, such as a record turntable, turns
at 7.0 rev/s around a frictionless spindle. A nonrotat-
ing rod, of the same mass as the disk and length equal
to the disk’s diameter, is dropped onto the freely spin-
ning disk. They then both turn around the spindle
with their centers superposed, Fig. 8—46. What is the
angular velocity in rev/s of the combination?

FIGURE 8-46
Problem 65. |

66.

67.

@9.

(I1) A person of mass 75 kg stands at the center of a
rotating merry-go-round platform of radius 3.0m
and moment of inertia 1000 kg-m?. The platform ro-
tates without friction with angular velocity 2.0 rad/s.
The person walks radially to the edge of the plat-
form. (a) Calculate the angular velocity when the
person reaches the edge. (b) Compare the rotational
kinetic energies of the system of platform plus per-
son before and after the person’s walk.

(I) An asteroid of mass 1.0 X 10°kg, traveling at a
speed of 30 km/s relative to the Earth, hits the Earth
at the equator. It hits the Earth tangentially and in the
direction of Earth’s rotation. Use angular momentum
to estimate the fractional change in the angular speed
of the Earth as a result of the collision.

. (IT) A 4.2-m-diameter merry-go-round is rotating freely

with an angular velocity of 0.80 rad/s. Its total moment
of inertia is 1760 kg-m?* Four people standing on the
ground, each of mass 65 kg, suddenly step onto the edge
of the merry-go-round. What is the angular velocity of
the merry-go-round now? What if the people were on it
initially and then jumped off in a radial direction (re}
ative to the merry-go-round)?

(I1) Suppose our Sun eventually collapses into a white
dwarf, in the process losing about half its mass and
winding up with a radius 1.0 percent of its existing 1&
dius. What would its new rotation rate be? (Take the
Sun’s current period to be about 30 days.) What would
be its final KE in terms of its initial KE of today?

*SECTION 8-9
#79, (II) Suppose a 55-kg person stands at the edge of 8

6.5-m-diameter merry-go-round turntable that i
mounted on frictionless bearings and has a moment of
inertia of 1700 kg-m?. The turntable is at rest initially
but when the person begins running at a speed of
3.8 m/s (with respect to the turntable) around its edg>
the turntable begins to rotate in the opposite dire¢
tion. Calculate the angular velocity of the turntable.
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*71.

(IT) A person stands on a platform, initially at rest, that
can rotate freely without friction. The moment of iner-
tia of the person plus the platform is I,. The person
holds a spinning bicycle wheel with axis horizontal. The
wheel has moment of inertia Iy, and angular velocity

| GENERAL PROBLEMS

wyw. What will be the angular velocity wp of the plat-
form if the person moves the axis of the wheel so that
it points (a) vertically upward, (b) at a 60° angle to the
vertical, (c) vertically downward? (d) What will w;, be if
the person reaches up and stops the wheel in part (@)?

12.

73.

.

A large spool of rope stands on the ground with the
end of the rope lying on the top edge of the spool. A
person grabs the end of the rope and walks a dis-
tance L, holding onto it, Fig. 8-47. The spool rolls
behind the person without slipping. What length of
rope unwinds from the spool? How far does the
spool’s cM move?

FIGURE 8-47 Problem 72.

The Moon orbits the Earth so that the same side al-
ways faces the Earth. Detesmine the ratio of its spin
angular momentum (about its own axis) to its orbital
angular momentum. (In the latter case, treat the
Moon as a particle orbiting the Earth.)

A cyclist accelerates from rest at a rate of 1.00 m/s%.
How fast will a point on the rim of the tire (diame-
ter = 68 cm) at the top be moving after 3.0s? [Hint:
At any moment, the lowest point on the tire is in con-
tact with the ground and is at rest—see Fig. 8-48.]
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TS This point on tire
at rest momentarily

FIGURE 8-48 Problem 74.

- (@) A yo-yo is made of two solid cylindrical disks,

each of mass 0.050 kg and diameter 0.075 m, joined
by a (concentric) thin solid cylindrical hub of mass
0.0050 kg and diameter 0.010 m. Use conservation of
énergy to calculate the linear speed of the yo-yo
Wwhen it reaches the end of its 1.0-m-long string, if it
Is released from rest. (b) What fraction of its kinetic
energy is rotational?

g

(1033 N}
Front sprocket |

FIGURE 8-49 '“‘
Problem 76.
76. (a) How is the angular speed of the rear wheel (wg)

71.

78.

of a bicycle related to that of the pedals and front
sprocket (wg)? That is, derive a formula for wg/wg.
Let Np and N be the number of teeth on the front
and rear sprockets, respectively. The teeth are spaced
equally on all sprockets so that the chain meshes
properly. See Fig. 8-49. Then evaluate the ratio wy /wg
when (b) the front and rear sprockets have 52 and 13
teeth, respectively, and (c) when they have 42 and 28.
Suppose a star the size of our Sun, but of mass
8.0 times as great, were rotating at a speed of 1.0 revo-
lution every 10 days. If it were to undergo gravitation-
al collapse to a neutron star of radius 10 km, losing 3 of
its mass in the process, what would its rotation speed
be? Assume the star is a uniform sphere at all times
and loses no angular momentum in the process.

One possibility for a low-pollution automobile is for
it to use energy stored in a heavy rotating flywheel.
Suppose such a car has a total mass of 1400 kg, uses
a 1.50-m diameter uniform cylindrical flywheel of
mass 240 kg, and should be able to travel 300 km
without needing a flywheel “spinup.” (a) Make rea-
sonable assumptions (average frictional retarding
force = 500 N, twenty acceleration periods from rest
to 90km/h, equal uphill and downhill—assuming
during downhill, energy can be put back into the fly-
wheel), and show that the total energy needed to be
stored in the flywheel is about 1.6 X 108 J. (b) What
is the angular velocity of the flywheel when it has a
full “energy charge”? (c) About how long would it
take a 150-hp motor to give the flywheel a full ener-
gy charge before a trip?

239
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FIGURE 8-50 Problem 80.

79. A hollow cylinder (hoop) is rolling on a horizontal
surface at speed v = 4.3 m/s when it reaches a 15° in-
cline. (a) How far along the incline will it go? (b) How
long will it be on the incline before it arrives back at
the bottom?

80. A uniform rod of mass M and length L can pivot
freely (i.e., we ignore friction) about a hinge attached
to a wall, as in Fig. 8-50. The rod is held horizontally
and then released. At the moment of release, deter-
mine (a) the angular acceleration of the rod and
(b) the linear acceleration of the tip of the rod.
Assume that the force of gravity acts at the center of
mass of the rod, as shown. [Hint: See Fig. 8-20g.]

81. A wheel of mass M has radius R. It is standing verti-
cally on the floor, and we want to exert a horizontal
force F at its axle so that it will climb a step against
which it rests (Fig. 8-51). The step has height A,
where & < R. What minimum force F is needed?

FIGURE 8-51 Problem 8L

82. A bicyclist traveling with speed v = 42m/s on a flat
road is making a turn with a radius r = 6.4 m. The
forces acting on the cyclist and cycle are the normal
force (Fy) and friction force (F,) exerted by the
road on the tires, and mg, the total weight of the cy-
clist and cycle (see Fig. 8-52). (@) Explain carefully
why the angle 6 the bicycle makes with the vertical
(Fig. 8-52) must be given by tan 8 = F,/Fyif the cy-
clist is to maintain balance. (b) Calculate 8 for the
values given. [Hint: Consider the “circular” transla-
tional motion of the bicycle and rider.] (c) If the co-
efficient of static friction between tires and road is
i, = 0.70, what is the minimum turning radius?
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FIGURE 8-52 Problem 82.

$3. A marble of mass m and radius r rolls along the
looped rough track of Fig. 8-53. What is the mini-
mum value of 4 if the marble is to reach the highest 3
point of the loop without leaving the track? Assume
r << R, and ignore frictional losses.

FIGURE 8-53 Problems 83 and 84.

34. Repeat Problem 83, but do not assume r << R. i
85. A thin uniform stick of mass M and length L is pOSi' ;
tioned vertically, with its tip on a frictionless table. It 2
is released and allowed to slip and fall (Fig. 8-54)
Determine the speed of its center of mass just beforé §
it hits the table. ‘

o

FIGURE 8-54 Problem 85.



