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1. (a) 30° = (30°)(n rad/180°) = !/6 rad = 0.524 rad;
(b) 57° = (57°)(' rad/180°) = 19'/60 = 0.995 rad;
(¢) 90° = (90°)(* rad/180°) = /2 = 1.571 rad;

(d) 360° = (360°)(* rad/180°) = 2' = 6.283 rad;

(e) 420° = (420°)(* rad/180°) = 7'/3 = 7.330 rad.

2. The subtended angle in radians is the size of the object divided by the distance to the object:
0= 2Rsun/r;

(0.5°)(* rad/180°) = 2Rsun/(150 « 106 km), which gives RSun = 6.5 « 105 km.

3. The subtended angle in radians is the size of the object divided by the distance to the object:
€ Sun = 2RSun/rSun = 2(6.96 105 km)/(149.6 « 106 km) = 9.30  10—3 rad (0.53°);

& Moon = 2RMoon/rMoon = 2(1.74 « 103 km)/(384 « 103 km) = 9.06 « 10—3 rad (0.52°).

4. We find the distance from
0= hir;

(6°)(* rad/180°) = (300 m)/r; which gives r =2.9 0 103 m.

5. We find the diameter of the spot from
0= Dspot/r;

(1.8  10—5 rad) = Dspot/(380 « 103 km), which gives Dspot = 6.8 km.

6. @ = (1800 rev/min)(2' rad/rev)(1 min/60 s) = 188 rad/s.

7. The linear speed of the point on the edge is the tangential speed:

v=ro=(0.175 m)(188 rad/s) = 33 m/s.

Because the speed is constant, the tangential acceleration is zero. There will be a radial acceleration:

arR = a2R = (188 rad/s)2(0.175 m) = 6.2 « 103 m/s2.

8. From the definition of angular acceleration, we have
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a=Ew/Ft = [(33 rev/min)(2! rad/rev)(1 min/60 s) — 0}/(1.8 s) = 1.9 rad/s2.

9. From the definition of angular velocity, we have

o= A@At , and we use the time for each hand to turn through a complete circle, 2' rad.
(a) wsecond= AG/At

= (2' rad)/(60 s) = 0.105 rad/s.

(b) @minute = AGAL

= (2! rad)/(60 min)(60 s/min) = 1.75 « 10—3 rad/s.

(¢c) whour= AGAt

= (2! rad)/(12 h)(60 min/h)(60 s/min) = 1.45 « 10—4 rad/s.

(d) For each case, the angular velocity is constant, so the angular acceleration is zero.

10. From the definition of angular acceleration, we have

a= Eaw/Et=[0— (7500 rev/min)(2! rad/rev)(1 min/60 s)}/(3.0 s) = — 2.6 « 102 rad/s2.

11. In each revolution the ball rolls a distance equal to its circumference, so we have
L=N(D);

4.5 m = (15.0)'D, which gives D =0.095m=9.5 cm.

12. In each revolution the wheel rolls a distance equal to its circumference, so we have
L=N(D);

7.0 » 103 m = N*(0.68 m), which gives N = 3.3 » 103 revolutions.

13. The subtended angle in radians is the size of the object divided by the distance to the object. A pencil with a diameter of 6 mm

will block out the Moon if it is held about 60 cm from the eye. For the angle subtended we have @oon = Dpencil/rpencil A (0.6

cm)/(60 cm) A 0.01 rad.
We estimate the diameter of the Moon from
Moon = DMoon/rMoon;

0.01 rad = DMoon/(3.8 © 105 km), which gives DMoon A 3.8 103 km.

14. (a) The Earth moves one revolution around the Sun in one year, so we have

aporbit = AGAL

http://iwww.kean.edu/~gkolodiy/2091/giach/ch8/CHAPO08/giach8.htm

2/25



9/13/2017 CHAPTER 8
= (2! rad)/(1 yr)(3.16 = 107 s/yr) = 1.99 « 10—7 rad’s.

O (b) The Earth rotates one revolution in one day, so we have
arotation = AGA?

= (2! rad)/(1 day)(24 h/day)(3600 s/h) = 7.27 « 10—s5 rad/s.

15. All points will have the angular speed of the Earth:
= AGAt = (2" rad)/(1 day)(24 h/day)(3600 s/h) = 7.27 » 10—S5 rad/s.

Their linear speed will depend on the distance from the rotation axis.

(a) On the equator we have

v = REarth® = (6.38 © 106 m)(7.27 = 10—s5 rad/s) = 464 m/s.

(b) At a latitude of 66.5° the distance is REarth cos 66.5°, so we have

v = REarth c0s 66.5° @ = (6.38 « 106 m)(cos 66.5°)(7.27 = 10—s rad/s) = 185 m/s.
(c) At a latitude of 45.0° the distance is REarth cos 45.0°, so we have

v = REarth c0s 45.0° @ = (6.38 » 106 m)(cos 45.0°)(7.27 » 10—s5 rad/s) = 328 m/s.

16. The particle will experience a radial acceleration:
ar = anr;
(100,000)(9.80 m/s2) = @2(0.070 m), which gives

@ = (3740 rad/s)(60 s/min)/(2' rad/rev) = 3.6 « 104 rpm.

17. The initial and final angular speeds are

a0 = (160 rpm)(2! rad/rev)/(60 s/min) = 16.8 rad/s;

o= (280 rpm)(2* rad/rev)/(60 s/min) = 29.3 rad/s.

(a) We find the angular acceleration from

a=Eo/Et

= (29.3 rad/s — 16.8 rad/s)/(4.0 s) = 3.1 rad/s2.

O (b) We find the angular speed after 2.0 s:

= w0+ at=16.8 rad/s + (3.13 rad/s2)(2.0 s) = 23.1 rad/s.
At this time the radial acceleration of a point on the rim is

aR = anr = (23.1 rad/s)2(0.35 m) = 1.9 102 m/s2.
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The tangential acceleration is

aumn = ar=(3.13 rad/s2)(0.35 m) = 1.1 m/s2.

18. If there is no slipping, the tangential speed of the outer edge of the turntable is the tangential speed of the outer edge of the

roller:

v=Riwl = R2an , which gives wl/w2 = R2/R1.

19. The final angular speed is

@ = (1 rpm)(2! rad/rev)/(60 s/min) = 0.105 rad’s.

(a) We find the angular acceleration from

a=EaolEt

= (0.105 rad/s — 0)/(10.0 min)(60 s/min) = 1.8 « 10— rad/s2.

(b) We find the angular speed after 5.0 min:

o= w0+ at=0+ (1.8 » 10—4 rad/s2)(5.0 min)(60 s/min) = 5.45 « 10—2 rad/s.
At this time the radial acceleration of a point on the skin is

arR = a2r = (5.45 « 10—2 rad/s)2(4.25 m) = 1.2  10—2 m/s2.

The tangential acceleration is

atn = ar= (1.8 w 10— rad/s2)(4.25 m) = 7.7 » 10—4 m/s2.

20. For motion with constant angular acceleration we use

m= w02+ 2ab,

[(33 rpm)(2! rad/rev)/(60 s/min)]2 = 0 + 2 (1.7 rev)(2! rad/rev), which gives a= 0.56 rad/s2.

21. For the angular displacement we use
=0 + )t
= 1[0 + (15,000 rpm)(2! rad/rev)/(60 s/min)](220 s) = 1.73 « 105 rad.

Thus 8= (1.73 » 105 rad)/(2! rad/rev) = 2.75 = 104 rev.

22. (a) For motion with constant angular acceleration we use

Q= a0+ o,

(1200 rev/min)(2* rad/rev)(1 min/60s) = (4000 rev/min)(2' rad/rev)(1 min/60s) + & (3.5 s),
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which gives o = — 84 rad/s2.

O (b) For the angular displacement we use
6= (a0 + w)t
= 1[(4000 rev/min + 1200 rev/min)][(2' rad/rev)/(60 s/min)](3.5 s) = 954 rad.

Thus 8= (954 rad)/(2* rad/rev) = 1.5 « 102 rev.

23. (a) We find the angular acceleration from

6= oot + laon;

(20 rev)(2! rad/rev) = 0 + ! of(1 min)(60 s/min)]2, which gives a = 0.070 rad/s2.
(b) We find the final angular speed from

= w0+ at= 0+ (0.070 rad/s2)(60 s) = 4.2 rad/s = 40 rpm.

24. We find the total angle the wheel turns from
0= (a0 + o)t
Q = 1[(210 rev/min + 350 rev/min)][(2" rad/rev)/(60 s/min)](6.5 s) = 191 rad = 30.3 rev.

For each revolution the point on the edge will travel one circumference, so the total distance traveled is

d=6D=(30.3 rev)!(0.40 m) = 38 m.

25. We use the initial conditions of £ = 0, & =0, and 0. If the angular acceleration is constant, the average angular acceleration is
also the instantaneous angular acceleration. From the definition of angular acceleration, we have

a= aav= Ew/Et = (0 — aw0)/(t — 0), which gives = a0 + of; Eq. (§—9a).

Because the angular velocity is a linear function of the time, the average velocity will be
aav = (a0 + w); Eq. (8—9d).

From the definition of angular velocity, we have

o= wav=FEHEL;

Y(w0 + w) = (8— 0)/(t — 0), which gives ¢t = 28 (@ + a0), or @=— a0 + 261

When we substitute the expression for ¢ in Eq. (§8—9a), we get

. o— 0= of28(w+ a0)], which simplifies to a2 = w02+ 2a6b, Eq. (8—9¢).

When we substitute the expression for @ in Eq. (8—09a), we get

— @0 + 281 = w0 + at, which simplifies to 8= ot + ! az2; Eq. (8—9b).
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O 26. (a) If there is no slipping, the linear tangential acceleration of the pottery wheel and the rubber

wheel must be the same:

atamn=Rial = R2a2;

(2.0 cm)(7.2 rad/s2) = (25.0 cm)a2 , which gives a2 = 0.58 rad/s2.
(b) We find the time from

0=+ af;

(65 rev/min)(2! rad/rev)/(60 s/min) = 0 + (0.58 rad/s2)t, which gives =12 s.

27. We find the initial and final angular velocities of the wheel from the rolling condition:
@0 = vo/r = [(100 km/h)/(3.6 ks/h)}/(0.40 m) = 69.5 rad/s;
= vlr = [(50 km/h)/(3.6 ks/h)}/(0.40 m) = 34.8 rad/s.
(a) We find the angular acceleration from
= a2+ 2ab,
O (69.5 rad/s)2 = (34.8 rad/s)2 + 2 (65 rev)(2' rad/rev), which gives @ =— 4.4 rad/s2.
(b) We find the additional time from
ofinal = @ + oA,

0 =34.8 rad/s + (— 4.4 rad/s2)t, which gives t=7.9s.

28. (a) The tangential acceleration is

atan = ar.

The angular speed as a function of time is
o=w0+a=0+a=a.

The radial acceleration is

ar = anr = (at)2r = a2tor,

(b) Because each revolution corresponds to an angular displacement
of 2!, the number of revolutions as a function of time is
O N= 62! =(awot + ' oz 2)/2' = oz 2/4",

From the figure we see that

tan ¢ = aran/aR = ar/c2t2r = 1/at2 = 1/4'N, or

¢=tan—1(1/4'N).
http://www.kean.edu/~gkolodiy/2091/giach/ch8/CHAPO08/giach8.htm

6/25



9/13/2017 CHAPTER 8

O

29. The force being applied by the rider is equal to his force of gravity. The maximum torque will be
exerted when this force is perpendicular to the line from the axis to the pedal:

fmax = #F = (0.17 m)(55 kg)(9.80 m/s2) = 92 m - N.

Ji' 30. If @is the angle between the force and the surface of the door, we have

z
ﬁ— ¥ (a) r=LF sin 6= (0.84 m)(45 N) sin 90° =38 m - N.
F

(b) 7= LF sin 8= (0.84 m)(45 N) sin 60° =33 m - N.

F, 31. We assume clockwise motion, so the frictional torque is counterclockwise.
If we take the clockwise direction as positive, we have

tnet = rF1 — RF2 + RF3 — 11t

O =(0.10 m)(35 N) — (0.20 m)(30 N) + (0.20 m)(20N) — 0.40m N

=1.1 m - N (clockwise).

32. Each wheel supports one-quarter of the weight. For the wheels to spin, the
applied torque must be greater than the maximum frictional torque produced

by the static friction from the pavement:

tapplicd ® Fer = psFNr = (0.75)#(1080 kg)(9.80 m/s2)(0.33 m)

’ 36.5©102m- N.

33. The force to produce the required torque is

Furench = 7/L = (80 m - N)/(0.30 m) = 2.7 » 102 N.
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Because this torque is balanced by the torque produced by the bolt on the wrench, an equal torque is produced on the bolt. Because
O there are six points where a force is applied to the bolt, we have

Fbolt = (#/7)/6 = (80 m - N)/6(0.0075 m) = 1.8 = 103 N.

34. The moment of inertia of a sphere about an axis through its center is

I=(2/5)MR2 = (2/5)(12.2 kg)(0.623 m)2 = 1.89 kg - m2.

35. Because all of the mass is the same distance from the axis, we have

I=MR2 = (1.25 kg)[!1(0.667 m)]2 = 0.139 kg - m2.

The mass of the hub can be ignored because the distance of its mass from the axis is so small.
b

|
e—d] _:..l % | - 36. (a) For the moment of inertia about the y-axis, we have
X

besd

—_— .%_ _____ —a o= -miRi2=md12 + Md12 + m(d2 — d1)2 + M(d2 — d1)2
N I A = (1.8 kg)(0.50 m)2 + (3.1 kg)(0.50 m)2 +

(1.8 kg)(1.00 m)2 + (3.1 kg)(1.00 m)2

=6.1 kg - m2.

(b) For the moment of inertia about the x-axis, all the masses

are the same distance from the axis, so we have

Ib=-miRi2= 2m + 2M)(! h)2

=[2(1.8 kg) + 2(3.1 kg)](0.25 m)2 = 0.61 kg - m2.

37. If M is the total mass and D is the effective separation, each atom has a mass !M and is ! D from the axis. We find the distance
D from

I=2(\M)(\D)2 = #MD2;

1.9 © 10—46 kg - m2 = #(5.3 = 10—26 kg)D2, which gives D = 1.2 = 10—10 m.

38. (a) Because we can ignore the mass of the rod, for the moment of inertia we have
I= mballR2

O = (1.05 kg)(0.900 m)2 = 0.851 kg - m2.

(b) To produce constant angular velocity, the net torque must be zero:

Tnet = Tapplied — 7friction = 0, or

tapplied = F&R = (0.0800 N)(0.900 m) = 0.0720 m - N.
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39. We find the required constant angular acceleration from
w= a0+ at;
(30 rev/min)(2' rad/rev)(1 min/60s) = 0 + a (5.0 min)(60 s/min), which gives o= 0.0105 rad/s2.

The moment of inertia of the solid cylinder is ! MR2. Because we have four forces creating the torque that produces the required
acceleration, we have

r=la;
4FR = MR2q, or

F=MRa/8 = (2600 kg)(3.0 m)(0.0105 rad/s2)/8 = 10 N.

40. (a) The moment of inertia of the solid cylinder is

I=1MR2 = 1(0.550 kg)(0.0850 m)2 = 1.99 » 10—3 kg - m2.

(b) We can find the frictional torque acting on the wheel from the slowing-down motion:

6 = It = [{ 1 — a01)/11

=(1.99 » 10—3 kg - m2)[0 — (1500 rpm)(2' rad/rev)/(60 s/min)}/(55.0 s) =— 5.67 «10—3m - N.

For the accelerating motion, we have

Tapplied + 7fr = Io2 = [(a2 — w02)/12;

7applied — 5.67  10—3 m - N = (1.99 » 10—3 kg - m2)[(1500 rpm)(2' rad/rev)/(60 s/min) — 0]/(5.00 s),
which gives

Tapplied = 6.82 © 10—2m - N.

41. For the accelerating motion, we have
applied = Ja = I(@ — an)/t = @mL2(w — o)/t

= @(2.2 kg)(0.95 m)2[(3.0 rev/s)(2' rad/rev) — 01/(0.20 s) = 62 m - N.

42. The moment of inertia for the system of merry-go-round and children about the center is
I=MR2 + 2mchildR2 = (\M + 2mchila)R2 = [1(800 kg) + 2(25 kg)}(2.5 m)2 = 2.81 « 103 kg - m2.
We find the torque required from

napplied = o = (@ — an)/t

= (2.81 » 103 kg - m2)[(20 rpm)(2 rad/rev)/(60 s/min) — 0}/(10.0s) =5.9 « 102m - N.

Because the worker is pushing perpendicular to the radius, the required force is
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F= tapplicd/R = (5.9 = 102 m - N)/(2.5 m) = 2.4 102 N.

43. We find the acceleration from

Thiction = Ja= !MR2¢x;

— 1.20 m - N = !(4.80 kg)(0.0710 m)2a, which gives @=— 99.2 rad/s2.
We find the angle turned through from

= w02+ 2ab,

0 = [(10,000 rpm)(2! rad/rev)/(60 s/min)]2 + 2(— 99.2 rad/s2) 6, which gives
0=15.53 © 103 rad = 8.80 = 102 rev.

We can find the time from

»= a0+ af;

0 = (10,000 rev/min)(2' rad/rev)/(60 s/min) + (— 99.2 rad/s2)t; which gives t = 10.6 s.

44, (a) Because we ignore the mass of the arm, for the moment of

Rt
O (' inertia we have

/:;\ & I=mbalid12 = (3.6 kg)(0.30 m)2 = 0.324 kg - m2.
The angular acceleration of the ball-arm system is
_a= atan/d1 = (7.0 m/s2)/(0.30 m) = 23.3 rad/s2.
Thus we find the required torque from
r=Ia
=(0.324 kg - m2)(23.3 rad/s2)=7.5m-N.

(b) Because the force from the triceps muscle is perpendicular

to the line from the axis, we find the force from

F=td2=(7.5m-N)/(0.025 m) = 3.0 0 102 N.

45. (a) The final angular velocity of the arm and ball is
. o= v/d1 = (10.0 m/s)/(0.30 m) = 33.3 rad/s.
o ' §7m  We find the angular acceleration from
0= a0+ of;
33.3 rad/s = 0 + 1(0.350 s), which gives = 95.2 rad/s2.

(b) For the moment of inertia of the ball and arm we have
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I=mballd12 + @marmd12

= (1.50 kg)(0.30 m)2 + @(3.70 kg)(0.30 m)2 = 0.246 kg - m2.

Because the force from the triceps muscle is perpendicular

to the line from the axis, we find the force from

F=dd2=Ia/d2 = (0.246 kg - m2)(95.2 rad/s2)/(0.025 m) = 9.4 102 N.

46. For the moment of inertia of the rotor blades we have

I =3(@mbladeL2) = mbladeL2 = (160 kg)(3.75 m)2 = 2.25 » 103 kg - m2.
We find the required torque from

r=Ia=o— ao)/t

= (1.99 » 10—3 kg - m2)[(5.0 rev/s)(2' rad/rev) — 0]/(8.0 s) = 8.8 = 103 m - N.

47. We choose the clockwise direction as positive.

(a) With the force acting, we write £7= I about the axis

from the force diagram for the roll:

F Fr—r=Ia;
(3.2N)(0.076 m) — 0.11 m - N = (2.9 « 10—3 kg - m2) a1,
which gives a1 = 45.9 rad/s2.
We find the angle turned while the force is acting from
6 = oot + lann2
=0+ 1(45.9 rad/s2)(1.3 5)2 = 38.8 rad.
The length of paper that unrolls during this time is
s1=r61=(0.076 m)(38.8 rad) = 2.9 m.
(b) With no force acting, we write X 7= Ia about the axis
from the force diagram for the roll:
—wm=Ilm;
—0.11m-N=(29 »«10-3kg - m2)e2,
which gives a2 =— 37.9 rad/s2.
The initial velocity for this motion is the final velocity from part (a):

ol = a0+ o1t1 =0 + (45.9 rad/s2)(1.3 s) = 59.7 rad/s.
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We find the angle turned after the force is removed from

2= @2+2a62;
0 =(59.7 rad/s)2 + 2(— 37.9 rad/s2) &2, which gives & = 47.0 rad.
The length of paper that unrolls during this time is

s2=r62=(0.076 m)(47.0 rad) = 3.6 m.

48. We assume that m2 > m1 and choose the coordinates shown on

the force diagrams. Note that we take the positive direction
in the direction of the acceleration for each object. Because the
linear acceleration of the masses is the tangential acceleration

of the rim of the pulley, we have

a = atan = aR0.

We write LFy = may for m2:

m2g — FT2=m2a.

We write £Fy = may for mi1:

Fr1 —mig=mia.

We write Z7 = Ja for the pulley about its axle:
F12R0 — FT11R0 = Iax = Ia/R0 , or FT2 — FT1 = Ia/R02.
If we add the two force equations, we get

Fr1 — Fr2=(m1 + m2)a + (m1 — m2)g.
When we add these two equations, we get

a = (m2— mi)g/(m1 + m2+ I/R02).

If the moment of inertia of the pulley is ignored, from the torque

For the acceleration, we set /=0 and get
a0 = (m2 — m1)g/(m1 + m2).

Thus we see that a0 > a.

49. (a) The final angular velocity of the hammer is

o= v/r=(28.0 m/s)/(1.20 m) = 23.3 rad/s.

We find the angular acceleration from

http://iwww.kean.edu/~gkolodiy/2091/giach/ch8/CHAP08/giach8.htm
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a= w02+ 2ab;

’ - \4.!! N
O / . (23.3 rad/s)2 = 0 + 2 (4 rev)(2' rad/rev),

I'4

{ & : which gives o= 10.8 rad/s2.

/
\\ » S / (b) For the tangential acceleration we have
~
b -

atan = ar = (10.8 rad/s2)(1.20 m) = 13.0 m/s2.
(c) For the radial acceleration at release we have
ar = e2r = (23.3 rad/s)2(1.20 m) = 653 m/s2.
(d) The magnitude of the resultant acceleration of the hammer is
a = (aun2 + ar2)172 = [(13.0 m/s2)2 + (653 m/s2)2]1/2 = 653 m/s2.
This acceleration is provided by the net force exerted on the hammer, so we have
Fnet = ma = (7.30 kg)(653 m/s2) =4.77 « 103 N.

(e) We find the angle from

tan ¢= aun/aR = (13.0 m/s2)/(653 m/s2) = 0.0199, which gives ¢=1.14°,

O 50. The angular speed of the cylinder is @ = v/R. The total kinetic energy will have a translational term for the center of mass and a
term for the rotational energy about the center of mass:

Ketotal = Ketrans + kerot = 1Mv2 + an = M2 + |("MR2)(v/R)2 = TMv2/10

=7(7.3kg)(4.3 m)2/10 = 94 .

51. The work done increases the kinetic energy of the rotor:
W= Zke= I —0

=1(3.15 » 10—2 kg - m2)[(8000 rev/min)(2! rad/rev)/(60 s/min)]2 = 1.11 = 104 J.

52. (a) The Earth rotates one revolution in one day, so we have
axotation = AGAt
= (2! rad)/(1 day)(24 h/day)(3600 s’h) = 7.27 « 10— rad/s.
The kinetic energy of rotation is
. kerotation = ! Jrotationaxotation2 = !("Mr2) axotation2
=1(")(6.0 = 1024 kg)(6.4 = 106 m)2(7.27 » 10—5 rad/s)2 = 2.6 = 1029 J.
(b) The Earth moves one revolution around the Sun in one year, so we have

worbit = AFAL
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= (2' rad)/(1 yr)(3.16 » 107 s/yr) = 1.99  10—7 rad/s.

The kinetic energy of revolution is
Kerevolution = ! Irevolution arevolution2 = 1(MR2) arevolution2
=1(6.0 © 1024 kg)(1.5 » 1011 m)2(1.99 » 10—7 rad/s)2 = 2.7 = 1033 J.

We see that the kinetic energy of revolution is much greater than that of rotation, so the total energy is

ketotal = 2.7 01033 J.

53. The work done increases the kinetic energy of the merry-go-round:
W= ZEke = Ian — 0 = |(\Mr2)(AG A2

= #(1640 kg )(8.20 m)2[(1 rev)(2! rad/rev)/(8.00 5)]2 = 1.70 104 J.

~ 54. We choose the reference level for gravitational potential energy at
d
Q \7/ the bottom. The kinetic energy will be the translational energy of

0 & the center of mass and the rotational energy about the center of mass.
J’-‘= — -

(a) Because there is no work done by friction while the cylinder

is rolling, for the work-energy principle we have
Whet = Eke + Zpe;

0= (!Mv2 + an — 0) + Mg(0 — d sin ).

Because the cylinder is rolling, v = Ro. The rotational inertia is
AMR2. Thus we get

IMyv2 + {("MR2)(v/R2)2 = Mgd sin 6, which gives
v={)gd sin )12, and o= ()gd sin §)1/2/R.

When we use the given data, we get

v=[)(9.80 m/s2)(10.0 m) sin 30°]1/2 = 8.37 m/s, and
®=v/R=(8.37 m/s)/(0.200 m) = 41.8 rad/s.

(b) For the ratio of kinetic energies we have
ketrans/kerot = |Mv2/! Ian

= Mv2/("MR2)(v/R2)2 = 2.50.

(c) None of the answers depends on the mass; the rotational speed depends on the radius.
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55. For the system of the two blocks and pulley, no work will be

O done by nonconservative forces. The rope ensures that each
r y 4 block has the same speed v and the angular speed of the
pulley is @ = v/Ro. We choose the reference level for
ny

gravitational potential energy at the floor.

T The rotational inertia of the pulley is J = ! MRo2.
&

For the work-energy principle we have
[~]
A=0 Whaet = Eke + Epe;

0=[("miv2 + 'm2v2 + an) — 0] + mig(h — 0) + m2g(0 — h);
!miv2 + Im2va + (| MRo2)(v/Ro)2 = (m2 — m1)gh;

[m1 + m2 + \Mv2 = (m2— m1)gh;

1[18.0 kg + 26.5 kg + 1(7.50 kg)Jv2 =

(26.5 kg — 18.0 kg)(9.80 m/s2)(3.00 m), which gives

v=3.22m/s.

56. If the contact point does not move, no work is done by the friction force.

With the reference level for potential energy at the ground, we use energy

— =0 conservation to find the angular speed just before the pole hits the ground:
kei + pei = kef + pef;

0+ Mg!L = (@ML2)ar + 0, which gives o= (3g/L)12.

Because the pole is rotating about the contact point, the speed of the

upper end is

v=wL = (3gL)1/2 =[3(9.80 m/s2)(3.30 m)]12=9.85 m/s.
' 57. The angular momentum of rotation about the fixed end of the string is

L=Io=mR2w

=(0.210 kg)(1.10 m)2(10.4 rad/s) = 2.64 kg - m2/s.
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58. (@) As the arms are raised some of the person’s mass is farther from the axis of rotation, so the

O moment of inertia has increased. For the isolated system of platform and person, the

angular momentum is conserved. As the moment of inertia increases, the angular velocity must

decrease.

(b) If the mass and thus the moment of inertia of the platform can be neglected, for the conservation

of angular momentum, we have
L= =Dhaz,or

I/h = an/ox = (1.30 rad/s)/(0.80 rad/s) = 1.6.

59. Because the diver in the air is an isolated system, for the conservation of angular momentum we have

L=Iw=ha2,or 2/ = wl/a2;

1/3.5 = wt/(2 rev/1.5 s), which gives w1 = 0.38 rev/s.

60. Because the skater is an isolated system, for the conservation of angular momentum we have
L=l =lan;

(4.6 kg - m2)(1.0 rev/2.0 s) = 12(3.0 rev/s), which gives [2=0.77 kg - m2.

She accomplishes this by pulling her arms closer to her body.

61. If we approximate the hurricane as a solid cylinder, we have

M= p(*R2H) = (1.3 kg/m3)*(100 » 103 m)2(4.0 103 m) = 1.63 = 1014 kg;

I="MR2=1(1.63 » 1014 kg)(100 » 103 m)2 = 8.15 = 1023 kg - m2.

The winds of a hurricane are obviously not uniform; they are generally higher near the eye. If we assume the highest winds are at

half the radius, for the average angular speed we have

o= v/!R = [(120 km/h)/(3.6 ks/h))/!(100 = 103 m) = 6.67  10—4 rad/s.
(a) For the kinetic energy we have

ke =z = 1(8.15 » 1023 kg - m2)(6.67 » 10—4 rad/s)2 A 2 © 1017 J.
(b) For the angular momentum we have

L=Iw=(8.15 » 1023 kg - m2)(6.67  10—4 rad/s) A 5 = 1020 kg - m2/s.

62. (@) We approximate the mass distribution as a solid cylinder. The angular momentum is
L=Iw="mR2m="1(55kg)(0.15 m)2[(3.5 rev/s)(2' rad/rev)] = 14 kg - m2/s.

(b) If the arms do not move, the moment of inertia will not change. We find the torque from the
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change in angular momentum:

r=AL/ZEt=(0 — 14 kg - m2/s)/(5.0 ) =—2.7m - N.

63. (a) The Earth rotates one revolution in one day, so we have

axrotation = AGFAL

= (2! rad)/(1 day)(24 h/day)(3600 s/h) = 7.27 « 10—s rad/s.

If we assume the Earth is a uniform sphere, the angular momentum is
Lrotation = Jrotation @rotation = ("Mr2) arotation

= (")(6.0 1024 kg)(6.4 = 106 m)2(7.27  10—s5 rad/s) = 7.1 1033 kg - m2/s.
(b) The Earth moves one revolution around the Sun in one year, so we have
worbit = AGAL

= (2! rad)/(1 yr)(3.16 » 107 s/yr) = 1.99 = 10—7 rad/s.

The angular momentum is

Lrevolution = Jrevolution @revolution = (MR2) @revolution

= (6.0 » 1024 kg)(1.5 = 1011 m)2(1.99 = 10—7 rad/s) = 2.7 « 1040 kg - m2/s.

64. If there are no external torques, angular momentum will be conserved:
L=he+ 2(0)= (1 + 2)ofinal, OF

Iw= (I + Dafinal , which gives ofinal = w/2.

65. If there are no external torques, angular momentum will be conserved:
L = Idisken + Trod(0) = (ldisk + Irod)a22 ;
(Mr2/2)an = [(Mr2/2) + (ML2/12))an = {(Mr2/2) + [M(2r)2/12]} e , which gives

an = (3/5)an = (3/5)(7.0 rev/s) = 4.2 rev/s.

66. (@) By walking to the edge, the moment of inertia of the person changes. Because the system of

person and platform is isolated, angular momentum will be conserved:
L = (Ipiatform + Iperson1) @1 = (Iplatform + Iperson2)a2 ;
[1000 kg - m2 + (75 kg)(0)2](2.0 rad/s) = [1000 kg - m2 + (75 kg)(3.0 m)2] @2 , which gives

2 =12 rad/s.

http:/iwww.kean.edu/~gkolodiy/2091/giach/ch8/CHAP08/giach8.htm

17/25



9/13/2017 CHAPTER 8
(b) For the kinetic energies, we have

O ket = ! (Jplatform + Iperson1) @12 = (1000 kg - m2 + 0)(2.0 rad/s)2 = 2.0 © 103 J;

ke2 = !(Jplatform + Jperson2)a22 = 1[1000 kg - m2 + (75 kg)(3.0 m)2(1.2 rad/s)2 = 1.2 0 103 J.

Thus there is a loss of 8.0 = 102 J, a decrease of 40%.

__ 67. The initial angular speed of the asteroid about the center of the Earth is
aa = va/R = (30 » 103 m/s)/(6.4 © 106 m) = 4.7 » 10—3 rad/s.

The initial angular speed of the Earth is

wE = (2! rad)/(1 day)(24 h/day)(3600 s’h) = 7.27 w 10—s rad/s.
For the system of asteroid and Earth, angular momentum is conserved:
Tasteroidwa + JEarthE = (Jasteroid + IEarth)@ A JEarthe ,

because the mass of the Earth is much greater than the mass of the

asteroid. This gives

®— @E A (Jasteroid/IEarth) aa.

O For the fractional change, we have

(@ — wE) wE A (Iasteroid/IEarth)( axa/ WE) = (maR2)/(" MER2))(wa/ &E)

= [(1.0 = 105 kg)/(6.0 1024 kg)][(4.7 0 10—3 rad/s)/(7.27 » 10—5 rad/s)] = 3  10—15.

68. When the people step onto the merry-go-round, they have no initial angular momentum. For the system of merry-go-round and
people, angular momentum is conserved:

Imerry-go-round + Ipeoplei = (Jmerry-go-round + Ipeople) @ ;
Imerry-go-round@0 + 4mR2(0) = (Jmerry-go-round + 4mR2)w ;
(1000 kg - m2)(0.80 rad/s) = [(1000 kg - m2) + 4(65 kg)(2.1 m)2]w, which gives @ = 0.48 rad/s.

If the people jump off in a radial direction with respect to the merry-go-round, they have the tangential velocity of the merry-go-
round: v = Rax. For the system of merry-go-round and people, angular momentum is conserved:

(Imerry-go-round + Ipeople) @0 = Imerry-go-round@ + Ipeoplea0 , which gives
o= 0. The angular speed of the merry-go-round does not change.

‘ Note that the angular momentum of the people will change when contact is made with the ground.

69. We assume that the lost mass does not carry away any angular momentum. For the Sun, angular momentum is conserved:

Toan =lw;
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AMi1R12a0 = “M2R22 w; or

o= (RI/R2)2(M1/M2)exo = (1/0.01)2(1/0.5)(2! rad)/(30 days)(24 h/day)(3600 s/h)
=4.8 o 10—2 rad/s.

The new period is 130 s.

For the ratio of kinetic energies we have
ke2/ke1 = Uan/! Iowo2
= {("M2R22)[(RV/R2)2(M1/M2))20002/ \ (" M1R12) 0002

= (RU/R2)2(M1/M2) = (1/0.01)2(1/0.5) = 2.0 104, or ke2 = 2.0 104 ke1,

70. We choose the direction the person walks for the positive rotation. The speed of the person with respect to the turntable is v. If

the edge of the turntable acquires a speed v with respect to the ground, the speed of the person will be vt + v. Because all speeds
are the same distance from the axis, if we divide by R, we get

ap = ax + (V/R).

Using the speeds with respect to the ground, from the conservation of angular momentum of the system of turntable and person,
we have

L=0=hax+ Ipap = hax+ mpR2[ax + (V/IR)];
(1000 kg - m2)ax + (55 kg)(3.25 m)2{ax + [(3.8 m/s)/(3.25 m)]} = 0, which gives
ox=—0.30 rad/s.

The negative sign indicates a motion opposite to that of the person.

71. Initially there is no angular momentum about the vertical axis. Because there are no torques about this vertical axis for the

system of platform and wheel, the angular momentum about the vertical axis is zero and conserved. We choose up for the positive
direction.

(@) From the conservation of angular momentum about the vertical axis, we have
L=0=Ipap+ WwW, which gives ap = — (IW/IP)ww (down).

(b) From the conservation of angular momentum about the vertical axis, we have
L=0=1Irap+ Waw cos 60°, which gives op = — (IW/2Ip)aww (down).

(¢) From the conservation of angular momentum about the vertical axis, we have
L=0=Irap+ W(— @W), which gives wp = (JW/IP)@W (up).

(d) Because the total angular momentum is zero, when the wheel stops, the platform and person

must also stop.

Thus wp = 0.
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72. Because the spool is rolling, vcM = Rw. The velocity of the rope at the
top of the spool, which is also the velocity of the person, is

v=Rw+ vCM = 2Rw = 2vCM.

Thus in the time it takes for the person to walk a distance L, the cM will
move a distance L/2. Therefore, the length of rope that unwinds is
Lrope = L — (L/2) = L/2.

The cM will move a distance L/2.

73. For the same side of the Moon to always face the Earth, the angular velocity of the orbital motion and the angular velocity of
the spinning motion must be the same. We use 7 for the radius of the Moon and R for the distance from the Earth to the Moon. For

the ratio of angular momenta, we have
Lspin/Lorbital = “Mr2a/MR2a

=A/R)2 = [(1.74 = 106 m)/(3.84 108 m)]2 = 8.21 w 10—s.

© . v 74. After 3.0 s the velocity of the cM will be
veM = 0 + acMf = (1.00 m/s2)(3.0 s) = 3.0 m/s.

Because the wheel is rolling, vCM = Rw. The velocity at the top of the wheel is

v=Ra>+ veM = 2Rw = 2veM = 2(3.0 m/s) = 6.0 ms.

75. (a) The yo-yo is considered as three cylinders, with a total mass of
M = 2Mdisk + Mhub = 2(0.050 kg) + 0.0050 kg = 0.105 kg,

and a moment of inertia of the yo-yo about its axis of

I'=2(! MdiskRdisk2) + ! MhubRhub2

= (0.050 kg)[!(0.075 m)]2 + 1(0.0050 kg)[(0.010 m)]2

=7.04 © 10—5 kg - m2.

Because the yo-yo is rolling about a point on the rim of the hub,

VCM = Rhub®.

The kinetic energy of the yo-yo is the translational kinetic energy

of the cM and the rotational kinetic energy about the cM. Because

the top of the string does not move, the tension in the string does no

work. Thus energy is conserved:
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kei + pei = kef + pef;

F
O yetatap) 0+ 0= !Mvemz + an + Mg(— L);
+J IMvem2 + NI(vem/Ruub)2 = MgL;
I ¢ 1{0.105 kg + [(7.04 « 10—s kg - m2)/(0.0050 m)2] } vemz = (0.105 kg)(9.80 m/s2)(1.0 m),
@i+ Musde which gives vem = 0.84 mys.
(b) For the fraction of the kinetic energy that is rotational, we have
kerot/(ketrans + kerot) = e /(1Mvemz + ar )

= Ian/[M(Rhb@)2 + Ian] = 1/[(MRwub2/I) + 1]

= 1/{[(0.105 kg)(0.0050 m)2/(7.04 « 10—s kg - m2)] + 1} = 0.964,

76. (a) If we let d represent the spacing of the teeth, which is the same on both sprockets, we can relate

the number of teeth to the radius for each wheel:

Nrd = 2'RF, and NRd = 2'RR , which gives NF/NR = RF/RR.

The linear speed of the chain is the tangential speed for each socket:
v = RFaF = RRaR.

Thus we have

@R/ @F = RF/RR = NF/NR.

(b) For the given data we have

aR/@F = 52/13 =4.0.

(c) For the given data we have

aR/wF =42/28 = 1.5,

77. We assume that the lost mass does not carry away any angular momentum. For the star, angular momentum is conserved:
Ioaw=Iw;

AM1R12a0 = “"M2R22; or

o= (RI/R2)2(M1/M2) a0

. = (6.96 » 106 km/10 km)2(1/0.25)[(1.0 rev)/(10 days)] = 2.0 « 109 rev/day.

78. We convert the speed: (90 km/h)/(3.6 ks/h) = 25 m/s.
(a) We assume that the linear kinetic energy that the automobile acquires during each acceleration

is not regained when the automobile slows down. For the work-energy principle we have
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Whaet = Eke + Ape;

— F&D = [20(! Mv2) — keflywheel] + 0, or

keflywheel = (20)!(1400 kg)(25 m/s)2 + (500 N)(300 = 103 m) = 1.6 = 108 J.
(b) We find the angular velocity of the flywheel from

keflywheel = an = |(!mR2) an;

1.6 « 108 J = #(240 kg)(0.75 m)2a2, which gives @ = 2.2 = 103 rad/s.

(c) We find the time from

¢ = keflywheel /P = (1.6 « 108 J)/(150 hp)(746 W/hp) = 1.43 = 103 s = 24 min.

/\ 79. (a) We choose the reference level for gravitational potential energy at

d
the initial position at the bottom of the incline. The kinetic energy

P —J"= 0 will be the translational energy of the center of mass and the
rotational energy about the center of mass. Because there is no work
done by friction while the cylinder is rolling, for the work-energy

principle we have

Whnet = Eke + Ape;

0=[0— (!Mv2 + Ian)] + Mg(d sin 6— 0).

Because the cylinder is rolling, v = Ra. For a hoop the moment of

inertia is MR2. Thus we get

IMv2 + Y(MR2)(v2/R2) = Mv2 = Mgd sin 6,

(4.3 m/s)2 = (9.80 m/s2)d sin 15°, which gives d= 7.3 m.

(b) We find the time to go up the incline from the linear motion (which has constant acceleration):
d=1(v+0)

7.3 m = (4.3 m/s)t, which gives t=3.4 s.

Because there are no losses to friction, the time to go up the incline will be the same as the time to

return. The total time will be

T=2t=6.8s.
b ¢ 80. (a) For the angular acceleration of the rod about the pivot, we have
Tr=la;
_— R
A sy
4

MgL/2 = @ML2a, which gives a = 3g/2L.
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() The tangential acceleration of the end of the rod is

atan = alL = (3g/2L)(L) = 3g/2.
Note that there is no radial acceleration of the end of the rod at

the moment of release because there is no tangential speed then.

81. The cylinder will roll about the contact point A.

We write £7= I about the point 4:

When the cylinder does roll over the curb, contact with

the ground is lost and FN1 = 0. Thus we get
F={lsa+ Mg{R2 — (R — h)212} (R — )

= [l4a/(R — h)] + [Mg(2Rh — h2)12/(R — h)].

The minimum force occurs when a = 0:

Fumin = Mg[h(2R — W)]12/(R — h).

82. (@) If we consider an axis through the cM parallel to the velocity vector
(that is, parallel to the ground), there is no angular acceleration

I
I

& | about this axis. If d is the distance from the CM to the contact point
|

n on the ground, we have
By
L
\ Tr=la;
A
Fy FNd sin 6— Ftid cos 6= 0, which gives tan 8= F/FN.

(b) The friction force is producing the necessary radial acceleration for

the turn:

Ffr = FN tan = mg tan 8= mv2/r, or

tan 8= v2/gr = (4.2 m/s)2/(9.80 m/s2)(6.4 m) = 0.281, so 8= 16°.
(c) From

Fte = mv2/r,

we see that the minimum turning radius requires the maximum static

friction force:

Hsmg = mv2/rmin , OF rmin = v2/usg = (4.2 m/s)2/(0.70)(9.80 m/s2) = 2.6 m.
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f mr 83. At the top of the loop, if the marble stays on the track, the
[
P normal force and the weight provide the radial
& 7 acceleration:
&

FN + mg = mv2/Ro.

L

=0 .. .
2 J The minimum value of the normal force is zero, so we find

the minimum speed at the top from

mg = mvmin2/R0, Or vmin2 = gR0.

Because the marble is rolling, the corresponding angular
velocity at the top is ®min = vmin/r, so the minimum kinetic
energy at the top is

kemin = !mvmin2 + !J@min2

= Imymin2 + 1("mr2)(vmin/r)2 = Tmvmin2/10

= TmgRo/10.

If there are no frictional losses, we use energy conservation from the

release point to the highest point of the loop:
kei + pei = kef + pef;

0 + mghmin = kemin + mg2R0 = TmgR0/10 + 2mgRo , which gives hmin = 2.7Ro.

84. If r is not much smaller than R0, the CM of the marble moves around the loop in a circle with radius
Ro — r. At the minimum speed at the top of the loop, the weight provides the radial acceleration:

mg = mvmin2/(R0 — r), or vmin2 = g(R0 — 7).

The corresponding angular velocity at the top is wmin = vmin/r, so the minimum kinetic energy is

kemin = !mvmin2 + !/wmin2

= Imvmin2 + ! ("mr2)(vmin/r)2 = Tmvmin2/10 = Tmg(Ro — r)/10.

The distance 4 is to the bottom of the marble. We use energy conservation from the release point to the highest point of the loop:

kei + pei = kef + pef;
0 + mg(hmin + r) = kemin + mg(2R0 — r) = Tmg(Ro — r)/10 + mg(2Ro — r),

which gives Amin = 2.7(R0 — 7).

85. Because there is no friction, the cM must fall straight down. The
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vertical velocity of the right end of the stick must always be zero.

If w is the angular velocity of the stick just before it hits the table,

({14

‘j — =0 velocity of the right end with respect to the cM will be aXL/2) up.

Thus we have
aXL/2) — veM =0, or @ = 2vCM/L.
The kinetic energy will be the translational energy of the center of

mass and the rotational energy about the center of mass. With the

reference level for potential energy at the ground, we use energy
conservation to find the speed of the CM just before the stick hits the ground:
kei + pei = kef + pef;

0+ Mg!L = |Mvcmz + Y (ML2/12) a2 + 0;

Mg!L = \Mvemz + {(ML2/12)(2veM/L)2 = |(MveM2/3), which gives veMm = (3gL/4)172 .
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