The Pont du Gard, in southern
France, was built by the Romans
nearly 2000 years ago, and was
built to last.

2.

lls along |
t is the nil
:h the higl
rack? Assl

CRUHTEEAYIIP TSN R R

BODIES IN EQUILIBRIUM;
ELASTICITY AND FRACTURE

R
and 84. {his chapter, we will study a special case of motion—when the net
liice and the net torque on an object, or system of objects, are both
sy << R ilo. In this case the object or system is either at rest, or its center of
ngth L is p I+ moving at constant velocity. We will be concerned mainly with the
onless table e, when the object or objects are all at rest. Now you may think  This chapter deals with
all (Fig. 8- 1he study of objects at rest is not very interesting since the objects will forces within objects at rest

ficither velocity nor acceleration; and the net force and the net
0 will be zero. But this does not imply that no forces at all act on the
#. In fact it is virtually impossible to find a body on which no forces
| 1ll. Sometimes the forces may be so great that the object is serious-
furmed, or it may even fracture (break)—and avoiding such prob-
gives this field of statics great importance.

1ass just befi

FIGURE 9-1 The book is
in equilibrium; the net force on it
is zero.

B Statics—The Study of Forces in Equilibrium I Normal §

oty within our experience have at least one force acting on them
Ily), and if they are at rest then there must be other forces acting on
s well so that the net force is zero. An object at rest on a table, for
ple, has two forces acting on it, the downward force of gravity and
urmal force the table exerts upward on it (Fig. 9-1). Since the net

Gravity
. 85.




force is zero, the upward force exerted by the table must be equal in §
nitude to the force of gravity acting downward. (Do not confuse thest
forces with the equal and opposite forces of Newton’s third law whi¢
on different bodies; here both forces act on the same body.) Such a b
said to be in equilibrium (Latin for “equal forces” or “balance”) undd
action of these two forces.

The subject of statics is concerned with the calculation of the (¢
acting on and within structures that are in equilibrium. Determinat|
these forces, which occupies us in the first part of this chapter, then ol
a determination of whether the structures can sustain the forces wil
significant deformation or fracture, subjects we discuss later in this ¢
ter. These techniques can be applied in a wide range of fields. Archi
and engineers must be able to calculate the forces on the structural
ponents of buildings, bridges, machines, vehicles, and other strucl
since any material will break or buckle if too much force is apf
(Fig. 9-2). In the human body, a knowledge of the forces in muscles
joints is of great value for medicine and physical therapy, and is also §
able for the study of athletic activity.

Let us take a simple Example of the addition of forces applid!

FIGURE 9-2 Elevated walk-
way collapse in a Kansas City hotel orthodonture.
in 1981. How a simple physics

calculation could have prevented

e g o o oawle 514, m Straightening teeth. The wire band shown in Fig, |
has a tension Fy of 2.0N along it. It therefore exerts forces of 2.0
the tooth (to which it is attached) in the two directions shown. Calcl
w PHYSICS APPLIED the resultant force on the tooth due to the wire, Fy.

Orthodonure | SOLUTION Since the two forces are equal, their sum will be dir¢
along the line that bisects the angle between them, which we hav
beled the y axis. The x components of the two forces add up to zero,
| y component of each force is (2.0N)(cos 70°) = 0.68 N; adding the
together we get a total force Fy of 1.36 N as shown in Fig. 9-3b. N
| that if the wire is firmly attached to the tooth, the tension to the ()

say, can be made larger than that to the left, and the resultant @
would correspondingly be directed more toward the right.

FIGURE 9-3 Forcesona
tooth. Example 9-1.

(2)
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srmination

(a) @ (b)

NN ErR Traction. Calculate the force exerted on the leg by the
llon apparatus shown in Fig. 9-4. Assume the pulleys are frictionless.

UTION There is a tension of 20kg X 9.8m/s? = 200N all along
L01d: Thus there are two 200-N forces acting at 37° angles on the cen-
jullcy and on the leg, Fig. 9—4b. So the resultant force on the leg is
2(200N) cos 37° = 320N acting to the right. (The leg is in equilibri-
40 there must be another 320-N force acting on the leg to keep it at
What exerts this force?)

r, then all
rces withg
in this ch
is. Architeg
-uctural cof
ar structul
ze is appll
muscles i
1is also val

es applied

4 The Conditions for Equilibrium

n in Fig. 9-
s of 2.0N ¢
wn. Calcull

hudy to be at rest, the sum of the forces acting on it must add up to
Ince force is a vector, the components of the net force must each be
Ilence, a condition for equilibrium is that

2F, =0, 2F, = 0, 2F,=0. “-1)

Will mainly be dealing with forces that act in a plane, so we usually
unly the x and y components. We must remember that if a particular
tomponent points along the negative x or y axis, it must have a neg-
4lpn. Equation 9-1 is called the first condition for equilibrium.

11 be direcl
1 we have
p to zero.'I
iding the (W
g. 9-3b. Ng
1 to the rig

\MPLE 9-3 Pull-ups on a scale. A 90-kg weakling cannot do even
esultant fof

pull-up. By standing on a scale (Fig. 9-5), he can determine how
he gets. His best effort results in a scale reading of 23 kg. What
) Is he exerting?

LUTION There are three forces acting on our nonathlete, as shown
b, 9-5: gravity, mg = (90kg)(9.8 m/s*) downward, and two upward
ios which are (1) the force the bar pulls upward on him, F (equal and
lite to the force he exerts on the bar), and (2) the force the scale ex-
on his feet, Fg. At best, Fg = (23 kg)(g). The person doesn’t move, so
sum of these forces is zero:

2F, =0
Fg+ Fg—mg=0.
solve for Fy:
| Fy=mg — Fg
= (90kg — 23 kg)(g) = (67 kg)(9.8 m/s?) = 660 N.

| I3, he could lift himself if his mass were only 67 kg.

FIGURE 9-4 Traction
apparatus exerts force on a leg.

First condition for equilibrium:
the sum of all forces is zero

]
-

B e
(b)

FIGURE 9-5 Example 9-3:
(a) A person trying to do a pull-
up while standing on a scale.

(b) Simple free-body diagram.
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= TXTTIT] Chandelier cord tension. Calculate the tensions Iy
60° o) F, in the two cords that are connected to the cord supporting the 2N
y F, ] chandelier in Fig. 9-6.

F
\' > SOLUTION The three forces, F;, Fy, and the weight of the 200-kg chi
* y i lier, act at the point where the three cords join. We choose this junction
1960 N l. (it could be a knot) as the object for which we write 2F, = 0, 3F, =)
: don’t bother considering the chandelier itself since only two forces acl {
gravity downward and the equal but opposite force exerted upward Iy
cord, both of which equal mg = (200 kg)(9.8m/s?) = 1960 N.) There a1¢
unknowns (F, and F,)" and we can solve for them using Eqgs. 9-1. We
FIGURE 9-6 Example9-4. | roqolve F, into its hzorizontal (x) and vertical (y) compogents. Al
we don’t know the value of F;, we can write F,, = —F, cos 6l
F,, = Fysin 60°. F, has only an x component. In the vertical directiol
have only the weight of the chandelier = (200kg)(g) acting down
and the vertical component of F; upward. Since SF, = 0, we have

SF, = F,sin 60° — (200kg)(8) = 0

SO

(200kg)g (200 kg)g
- —— = = 2 .
Fi="Gneo° o866~ (Blkele 2260N

In the horizontal direction,

SF,= F, — Fycos60° = 0.
FIGURE 9-7 Althoughthe | 1DUS

net force on it is zero, the ruler
will move (rotate). A pair of

F, = F, cos 60° = (231 kg)(g)(0:300) = (115 kg)g = 1130

equal forces acting in opposite The magnitudes of F, and F, determine the strength of cord or wir¢
directions but at different points must be used. In this case, the wire must be able to hold at least 23}
on a body (as shown here) is Note in this example that we didn’t insert the value of g, the acceleri

referred to as a couple.

due to gravity, until the end. In this way we found the magnitude of
force in terms of the number of kilograms (which may be a more il
iar quantity than newtons) times g.

Although Egs. 9-1 must be true if an object is to be in equilibr
they are not a sufficient condition. Figure 9-7 shows an object on Wi
the net force is zero. Although the two forces labeled F add up to
zero net force on the object, they do give rise to a net torqueé that wil
tate the object. Referring to Eq. 8-14,27 = la, we see that if a body
remain at rest, the net torque applied to it (calculated about any i
must be zero. Thus we have the second condition for equilibrium: thal
sum of the torques acting on a body must be zero:

Second condition for equilibrium: ‘
the sum of all torques is zero 2r=0. (

This will assure that the angular acceleration, a, about any axis will be 4
If the body is not rotating initially (w = 0), it will not start rotating,
tions 9—1 and 92 are the only requirements for a body to be in equilibrl}
‘We will consider cases in which the forces all act in a plane (we ci
the xy plane). In this case the torque is calculated about an axis that is

The directions of F, and F, are known, since tension in a rope can only be along the roff
any other direction would cause the rope to bend, as already pointed out in Chapter 4.l
our unknowns are the magnitudes F; and F,.
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ular to the xy plane. The choice of this axis is arbitrary. If the body
uil, then 21 = 0 about any axis whatever. Therefore we can choose
%ix that makes our calculation easier.

sions F, al
g the 200K

’

10-kg chanlf NCEPTUAL EXAMPLE 9-5| A lever. The bar in Fig. 9-8 is being ™ PHYSICS APPLIED
unction polf I8 @ lever to pry up a large rock. The small rock acts as a fulcrum.The 7y, joper

LF, = 0.(W Iy required at the long end of the bar can be quite a bit smaller than

rces act on

fock’s weight mg, since it is the forques that balance in the rotation

pward by Il Wt the fulcrum. If, however, the leverage isn’t quite good enough, and

‘here are fock isn’t budged, what are two ways to increase the leverage?

38.11:1):/;01:' FNPONSE  One way is to increase the lever arm of the force F;, by slip-
", c0s 60° ol i pipe over the end of the bar and thereby pushing with a longer
direction, i nrm. A second, perhaps handier, way is to move the fulcrum closer to
\g downwil lnrge rock. This may change the long lever arm R only a little, but it
have Milges the short lever arm r by a good fraction and therefore changes the

o of R/r dramatically. In order to pry the rock, the torque due to F;
Jit 0t least balance the torque due to mg, so mgr = FpR and

r_F FIGURE 9-8 Example 9-5
IN. R mg
41l r smaller, the weight mg can be balanced with less force Fp.
&) Solving Statics Problems
g = 130N | iiibject of statics is important because it allows us to calculate certain
3 or wire (hi§ o on (or within) a structure when some of the forces on it are already

t least 231k vh. There is no single technique for attacking such statics problems,
= accelerali {he following procedure may be helpful:
mitude of (lj§

a more fam| PROBLEM SOLVING Statics

;. , . . . - . ' .
(‘hoose one body at a time for consideration, the axis; then this force will have zero lever arm

n equilibriuil whd make a careful free-body diagram for it by and produce zero torque and so won’t appear in

ject on whid yhowing all the forces acting on that body and the equation.) Pay careful attention to determin-
dd up to iy |he points at which these forces act. ing the lever arm for each force correctly. Give
le that will i ('hoose a convenient coordinate system, and each torque a + or — sign. If torques that would
if a body is usolve the forces into their components. tend to rotate the object counterclockwise are
out any P |Jsing letters to represent unknowns, write down given a + sign, then torques that would tend to
rium: that (lf \;quutions for ] rotate it clockwise are negative.
T SE =0 e Sr=0 5. Solve these equations 'for the unknowns. Three
- E - vl ' equations allow a maximum of three unknowns

tis will be zeil For t_he 27 = 0 equation, choose any axis per- to be solved for; they can be forces, distances,

-otating. Equié jendicular to the xy plane that you like. (For ex- even 'ang.les. (If an upkn9wn force comes out

in equilibriul imple, you can reducg the number. of unknqwns negative in your solution, it means thg direction

lane (we call In the resulting equation by choosing the axis so you orlglqally chose for that force is actually
{hat one of the unknown forces passes through the opposite.)

ixis that is paf

: along the rope

_ I'robably the hardest step is (1): all the forces on the body must be in-
n Chapter 4.Thy

ilod, but the forces exerted by this body on other objects must not be
flided.
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Alternate form of
2r=02F=0

FIGURE 9-9 (a)Two
children on a seesaw,
Example 9-6. (b) Free-body
diagram of the board.

It is useful to refer back to Example 94 to see how this procedutt
followed. Notice that we considered the forces on the chandelier
briefly (gravity downward and the rope pulling upward with an equal
nitude force). We wanted to know the tension in the two cords, so we ¢
the junction point (or knot) of the cords as our object. Since the obj¢
essentially a point, there would be no torques, so the torque equatioi
not used. Of course, you do not have to use all three equations if they
not needed. In many situations we must make use of the torque equa
as we shall soon see. Just as the components of a force are positive or
ative depending on their direction, so too are torques. If a torque that (¢
to rotate the object counterclockwise is considered positive, then a tof
that tends to rotate it clockwise must be considered negative.

Another way of stating the torque equilibrium condition is that
sum of all clockwise torques is equal to the sum of all counterclock
torques. And for the forces, the sum of the upward forces is equal t
sum of the downward forces, and the sum of horizontal forces to the Il
equal to the sum of horizontal forces to the right.

One of the forces that acts on bodies is the force of gravity. Our ail
sis in this chapter is greatly simplified if we use the concept of cent}
gravity (cG) or center of mass (cM), which for practical purposes ar¢
same point. As we discussed in Section 7-8, we can consider the for¢
gravity on the body as a whole as acting at its ¢G. For uniform symni
cally shaped bodies, the cG is at the geometric center. For more compll
ed bodies, the cG can be determined as discussed in Section 7-8.

YN [JUICECN Balancing a seesaw. A 2.0-kg board serves as a sce
for two children, as shown in Fig. 9-9a. One child has a mass of 30 kg

sits 2.5 m from the pivot point (i.e., his cG is 2.5 m from the pivot). At w
distance, x, from the pivot must a 25-kg child place herself to balance
seesaw? Assume the board is uniform and centered over the pivot.

SOLUTION The free-body diagram for the board is as showi
Fig. 9-9b. The forces acting on the board are the forces exerted do

ward on it by each child, F, and F,, the upward force exerted by |

m;=30kg my, =25kg

’ ?

=
. 25 ' L
+ Torque < 7 m i - X %L,) ) — Tori}
@ <

| 25m
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dcedure wil
idelier onl
( equal maf
so we choj

jut, Fy, and the force of gravity (its weight), which acts at the center of
uniform board. Let us calculate the torque about the pivot point, P:
lever arms for Fy and for the weight of the board are then zero, and
will not appear in the torque equation. Thus the torque equation

the object | Il Involve only the forces F, and F,, which are equal to the weights of
quation wil children. The torque exerted by each child will be mg times the ap-
s if they Jpriate lever arm, which here is the distance of each child from the
Je equatiof ¥l point. Hence the torque equation is

itive or n¢ ]
1e that ten
len a torqu

27 = (30kg)(g)(2.5 m) — (25 kg)(g)(x) = O,

gIe a torque tending to rotate the board counterclockwise has been
)en to be a positive torque, and a torque tending to rotate it clock-

1 is that th 10 10 be negative. The acceleration of gravity, g, appears in both terms

terclockwig il cancels out. We solve for x and find:
equal to i)
to the left _ (0kg)25m) _

25kg

7. Our anal
of center
oses are l
the force @
m symmeti}
e complical
-8.

) hulance the seesaw, the second child must sit so that her cG is 3.0m
M the pivot. This makes sense: since she is lighter, she must sit farther
i the pivot.

VI NSCEYN Forces on a beam and supports. A uniform 1500-kg
im, 20.0m long, supports a 15,000-kg printing press 5.0 m from the
It support column (Fig. 9-10). Calculate the force on each of the ver-

- "B
; as a secsill \| support columns. —
of 30kg and )LUTION We analyze the forces on the beam, since the force the Fi "
rot). At whil I exerts on the columns is equal and opposite to the forces exerted -
« balance tli the columns on the beam. We call the latter F; and F, in Fig. 9-10. The _ ey ————i
Jivot. Diht of the beam itself acts at its center of gravity, 10.0m from either L ' . i
showitl {l. Since it doesp t mattgr which point we chgose as th'e axis for writing (1500 kg)g
i lorque equation, we can choose one that is convenient. If we calcu- 10.0 5.0 5.0
erted dowi X ) .. ) .0m {«5.0 m+4«5.0 m
srted by (h {0 the torques abont the point of application of F,;, then F; will not
' jlor the equation (its lever arm will be zero) and we will have an equa- (15,000 kg)g
g il in only one unknown, F,. We choose the counterclockwise direction
positive, and 27 = 0 gives FIGURE 9-10 A 1500-kg

) beam supports a 15,000-kg
i1 = —(10.0 m)(1500 kg)g — (15.0 m)(15,000 kg)g + (20.0 m)F, = 0.  machine. Example 9-7.

g for F, we find F, = (12,000 kg)g = 118,000 N. To find F,, we use
0:

a > — Torqug Dlvin
"V

2F, = F; — (1500 kg)g — (15,000 kg)g + F, = 0.

Wiing in F, = (12,000 kg)g we find that F, = (4500kg)g = 44,100 N.

~ 'lo confirm that the results don’t depend on where the axis is chosen,

| us choose a different axis, say, at the other end of the beam, where F,

{4, [n this case, the torque equation is

Sr = —(20.0m)F, + (10.0 m)(1500 kg)g + (5.0 m)(15,000 kg)g = O.

0 wolve this for F, and find F; = (4500kg)g, just as before. The 3F, equa-
il is the same as before and gives F, = (12,000kg)g. So our results are
) kime, no matter which axis we choose to calculate the torques about.
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I F F2

1

1 20,0 _i 30,0 Figure 9-11 shows a beam that extends beyond its support like a d
TRl om | board. Such a beam is called a cantilever. The forces acting on the beil
\ 1‘3‘} ] this figure are those due to the supports, F, and F,, and the force of pri

which acts at the cG, 5.0m to the right of the right-hand support. If yol
low the procedure of the last Example to calculate Fy and F,, assuming
point upward as shown in the figure, you will find that F, comes out ncil
FIGURE 9-11 A cantilever. If the beam has a mass of 1200kg, then F, = 15,000N and F; = — 3
(see Problem 15). Whenever an unknown force comes out negative, it
w PROBLEM SOLVING ly means that the force actually points in the opposite direction from
If a force comes out negative you assumed. Thus in Fig. 9-11, F, actually points downward. With a lit(}
flection it should become obvious that the left-hand support must ind
pull downward on the beam (by means of bolts, screws, fasteners ufl
glue) if the beam is to be in equilibrium; otherwise the sum of the toi
about the cG (or about the point where F, acts) could not be zero.

Our next Example involves a beam attached to a wall by a hing¢ §
supported by a guy wire (Fig. 9-12). It is important to remember (|
flexible cord or wire can support a force only along its length. ard
were a component of force perpendicular to the cord or wire, it Wl
bend because it is flexible.) For a rigid device, such as the hing
Fig. 9-12, the force can be in any direction and we can know the dircdl
only after solving the problem.

EXAMPLE 9-8 R:IE0] and wire. A uniform beam, 2.20 m long with fi
m = 25.0kg, is mounted by a hinge on a wall as shown in Fig. 9-12.'1
beam is held in a horizontal position by a wire that makes an angle 6 = )
as shown. The beam supports a mass M = 280kg suspended from its
Determine the components of the force ¥y that the hinge exerts o {
beam, and the components of the tension Fy in the supporting wire.

SOLUTION Figure 9-12 is the free-body diagram for the beam, sh
ing all the forces acting on the beam; it also shows the components of
and F;. We have three unknowns, Fy,, Fuy and F; (we are given 0)
we will need all three equations, 2F, = 0,2F, = 0, =1 = 0. The sun
the forces in the vertical (¥) direction is

FIGURE 9-12 Example 9-8. EFy=FHy+FTy—mg—Mg=0.

In the horizontal (x) direction, the sum of the forces is
EFX=FHX—FTX=O'

For the torque equation, we choose the axis at the point where F;
Mg act (so our equation then contains only one unknown, Fy,, and we (
solve it more quickly); we choose torques that tend to rotate the bel
counterclockwise as positive. The weight mg of the (uniform) beam i
at its center, so we have:

Sr= — (Fy,)(220m) + (mg)(1.10m) =0
or

| Fy, = 5mg = 1(25.0kg)(9.80 m/s) = 123 N.
Next, since the tension Frin the wire acts along the wire (8 = 30°),

Fy, = Fy tan 8 = 0577 Fr. (
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W gs. 1, ii, and iii we get
Fr, = (m + M)g — Fy, = (305kg)(9.80 m/s*) — 123N = 2870 N
Fiyy = Fr, /0.57T = 4970 N '
Fy, = Fr, = 4970 N.

components of Fy are Fyy, =123N and Fy,=4970N. The tension in

ive, it merg wire is Fr = VF3, + F, = 5740N.
1 from whi

tha h.ttle ' (N CEN Ladder. A 5.0-m-long ladder leans against a wall at a
must ind3 il 4.0 m above the ground as shown in Fig. 9-13. The ladder is uniform
the torau hos mass 12.0kg, Assuming the wall is frictionless (but the ground is
o q ), determine the forces exerted on the ladder by the ground and the wall.
a hinge a M . UTION Figure 9-13 shows the free-body diagram for the ladder, Fw 51
mber that § )wing all the forces acting on the ladder. The wall, since it is frictionless, K]
th. (If ther vxert a force only perpendicular to the wall, and we label that force
re, it wouill . I'he ground, however, can exert both horizontal, F;,, and vertical, Fg,, .
itv components, the former being frictional and the latter the normal Fg 4.0 m
yue. Finally, gravity exerts a force mg = (12.0kg)(9.80m/s*) = 118 N on Foyf N
W lndder at its midpoint, since the ladder is uniform. The y component 1
{he force equation is e
2F, = Fg, —mg =0, Fox
ng with mf'j Immediately we have F;, = mg = 118 N. The x component of the L— xo_.l

v cquation is

gle 0 = FIGURE 9-13 A ladder
from its enl 2F, = Fo, — Fy = 0. leaning against a wall.
xerts on determine F, and F, which are both unknowns, we need another Example 9-9.
b Jlintion, namely a torque equation, which we calculate about the point
beam, show jor¢ the ladder touches the ground. This point is a distance
onents of /) ~ V(5.0m)? — (4.0m)? = 3.0m from the wall. The lever arm for mg
given 6), § half this, or 1.5m, and the lever arm for Fy, is 4.0m. Since F;; acts at
The sum @ 0 uxis, its lever arm is zero and so doesn’t enter the equation (we
liined it like that), and we get
3= (40m)Fy — (1.5m)mg = 0.
| 1.5 m)(12.0 kg)(9.8 m/s?
4 _USmU20kO8m/) _ o
40m

‘here F .
. ::13 wTe i'l:' Hion, from the x component of the force equation,
ite the bean Fg, = Fy = 44N,
1) beam a8 \ce the components of Fg are F, = 44N and F;, = 118 N, then

Fs = V(44N)* + (118 N)> = 126 N = 130N

[hunded off to two significant figures) and it acts at an angle

6 = tan !(118 N/44 N) = 70°

= 30°),

) Ihe ground. Note the force F; does not have to act along the ladder’s
livction because the ladder is rigid and not flexible like a cord or cable.
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Biceps muscle
(flexor)

* Applications to Muscles and Joints

FIGURE 9-14 Diagram showing
the biceps (flexor) and triceps
(extensor) muscles in the human arm.

wWw PHYSICS APPLIED

Forces in muscles
and joints

(®

The techniques we have been discussing for calculating forces on bodiek
equilibrium can readily be applied to the human (or animal) body. Thi
of great use in studying the forces on muscles, bones, and joints for ord
isms in motion or at rest. Generally a muscle is attached, via tendoni
two different bones (see Fig. 9—14). The points of attachment are called
sertions. The two bones are flexibly connected at a joint, such as thos
the elbow, knee, and hip. A muscle exerts a pull when its fibers contf
under stimulation by a nerve, but it cannot exert a push. Muscles that (
to bring two limbs closer together, such as the biceps muscle in the up
arm (Fig. 9-14) are called flexor muscles; those that act to extend a I
outward, such as the triceps, are called extensor muscles. The flexor mu#
in the upper arm is used when lifting an object in your hand; the extei
muscle is used when throwing a ball.

DOV S0 SN Force exerted by biceps muscle. How much {0

must the biceps muscle exert when a 5.0-kg mass is held in the hi
(a) with the arm horizontal as in Fig. 9-15a, and (b) when the arm is |
30° angle as in Fig. 9-15b? Assume that the mass of forearm and hi
together is 2.0 kg and their ¢G is as shown.

SOLUTION (a) The forces acting on the forearm are shown

Fig. 9-15a and include the upward force Fy, exerted by the muscle il
force F, exerted at the joint by the bone in the upper arm (both assutl}
to act vertically). We wish to find F;, which is done most easily by usf
the torque equation and by choosing our axis through the joint so tha
does not enter: .

Sr = (0.050 m)(Fy) — (0.15m)(2.0 kg)(g) — (0.35 m)(5.0 kg)(g) =

We solve this for Fy, and find Fy = (41kg)(g) = 400N.

(b) The lever arm, as calculated about the joint, is reduced by the fa¢
cos 30° for all three forces. So our torque equation will look like the (
just above, except that each term will have a “cos 30°.” The latter will ¢l
cel out so the same result will be obtained, F, = 400 N.

Note in this Example that the force required of the muscle (400 N)
quite large compared to the weight of the object lifted (49 N). Indeed,
muscles and joints of the body are generally subjected to quite large for¢

FIGURE 9-15 Example 9-10. The point of insertion of a muscle varies from person to person;
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Muscle insertion and

CHAPTER 9

lever arm

slight increase in the point of insertion of the biceps muscle from 5.0 cni
5.5 cm can be a considerable advantage for lifting and other exertions, |
deed, champion athletes are often found to have muscle insertions fart|
from the joint than the average person, and if this applies to one muscl¢
usually applies to all.

As another example of the large forces acting within the human bol
we consider the muscles used to support the trunk when a person bei
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tl (Fig. 9-16a). The lowest vertebra on the spinal column (fifth lum-
Wiiebra) acts as a fulcrum for this bending position. The “erector
" muscles in the back that support the trunk act at an effective angle
il 12° to the axis of the spine. Figure 9-16b is a simplified schemat-
wing showing the forces on the upper body. We assume the trunk
on angle of 30° with the horizontal. The force exerted by the back
Jus is represented by Fy,, the force exerted on the base of the spine at
Iwest vertebra is Fy, and w,;, w,, and w; represent the weights of the
fyecly hanging arms, and trunk, respectively. The values shown are
Ximations taken from Table 7-1. The distances (in cm) refer to a per-
1H0 ¢m tall, but are approximately in the same ratio of 1:2:3 for an av-
I person of any height, and the result in the following Example is then
jundent of the height of the person.

n bodies |
ody. Thiy |

for orgai)
tendons, ({
e called #
as thosc
s contri
's that ten
I the uppt
end a linl
xor mus
1€ extens(l

AN FR RIS Forces on your back. Calculate the magnitude and di-
{lon of the force Fy, acting on the fifth lumbar vertebra for the exam-
nuch forc Nh()wn in Fig. 9-16b.
a the han
arm is a
1 and han

),.UTION First we calculate F, using the torque equation, taking the
4 it the base of the spine. To figure the lever arms, we need to use
gonometric functions. For F, the lever arm (perpendicular distance
) axis to line of action of the force) will be the real distance to where
force acts (48 cm) times sin 12° as shown in Fig. 9-16¢. The lever arms
W,, w,, and w, can be seen from Fig. 9-16b to be their respective dis-
tus times sin 60°. Thus 27 = 0 gives

(1.48 m)(sin 12°)(F,,) — (0.72 m)(sin 60°)(w,)
— (0.48 m)(sin 60°)(w,) — (0.36 m)(sin 60°)(w,) = O,

Ure we chose the positive sign for counterclockwise torque. Putting in
) vilues for w;, w,, w4 given in the figure, we find F; = 2.2w, where w
L |ho total weight of the body. To get the components of Fy, we use the x
Il y components of the force equation (noting that 30° — 12° = 18°):

shown ||}
uscle and §
th assumgil
ily by usin
it so that /)

kg)(g) =

y the factol
ike the on¢

er will can 2Fy = FVy — Fysin18° —w; —w, —w; =0

Fy, = 13w
2F,=F,, — Fycos18° =0

e (400N) Ix Fy, = 2.1lw.
Indeed, th¢
large forcen,
> person. A
m 5.0 cm ({1
kertions. In
ions farthep

1e muscle, If

thon
Fy = VF, + F, = 25w.

he angle 6 that F,, makes with the horizontal is given by tan 6 =
/Fy, = 0.62,s0 6 = 32°,

0 force on the lowest vertebra is thus 2} times the body weight! This
v is transmitted from the “sacral” bone at the base of the spine, through

uman body,
(luid-filled and somewhat flexible intervertebral disc. The discs at the

arson bendy

W PHYSICS APPLIED

Forces on the spine, and back pain

Erector spinae

w,= 0.12w
(arms) w = Total weight
Wy = 0.46w of person
(trunk)

(b)

calculation

©

FIGURE 9-16 (a) A person
bending over. (b) Forces on the
back exerted by the back muscles
(F,,) and by the vertebrae (Fy)
when a person bends over.
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base of the spine are clearly being compressed under very large forc¢
the body was less bent over (say the 30° angle in Fig. 9-16b becomes 0
70°) then the stress on, the lower back will be less (see Problem 40).]
If the person in Fig. 9-16 has a mass of 90 kg, and is holding 20 kg f
hands (this increases w, to 0.33w), then Fy is increased to nearly five |
the person’s weight (5w)! (For this 200-1b person, the force on thu
would be 1000 Ib!) With such strong forces acting, it is little wonder thi
many people suffer from low back pain at one time or another in their [l

* mStability and Balance

A body in static equilibrium, if left undisturbed, will undergo no trl

tional or rotational acceleration since the sum of all the forces and the §

of all the torques acting on it are zero. However, if the object is displi

slightly, three different outcomes are possible: (1) the object returns | '

Stable and ~ original position, in which case it is said to be in stable equilibrium; (2)

unstable equilibrium  object moves even farther from its original position, in which case it i¥ §

to be in unstable equilibrium; or (3) the object remains in its new positk
in which case it is said to be in neutral equilibrium.

Consider the following examples. A ball suspended freely from a s
is in stable equilibrium, for if it is displaced to one side, it will quig
return to its original position (Fig. 9-17a). On the other hand, a p¢
standing on its point is in unstable equilibrium. If its cG is directly ov¢
Net tip (Fig. 9-17b), the net force and net torque on it will be zero. But il |

& force displaced ever so slightly—say by a slight vibration or tiny air currci|

there will be a torque on it, and it will continue to fall in the directivi

{ (@) the original displacement. Finally, an example of an object in neutral u(

' librium is a sphere resting on a horizontal tabletop. If it is placed slig

to one side, it will remain in its new position.

In most situations, such as in the design of structures and in work

with the human body, we are interested in maintaining stable equilibii|

) or balance, as we sometimes say. In general, an object whose cG is bt

its point of support, such as a ball on a string, will be in stable equilll

um. If the cG is above the base of support, we have a more complicif
(b) situation. Consider a standing refrigerator (Fig. 9-18a). If it is tip

slightly, it will return to its original position due to the torque on |f
shown in Fig. 9-18b. But if it is tipped too far, Fig. 9-18c, it will fall o

The critical point is reached when the cG is no longer above the b

support. In general, a body whose CG is above its base of support wil

stable if a vertical line projected downward from the G falls within

base of support. This is because the normal force upward on the o

(which balances out gravity) can be exerted only within the area of
tact, so that if the force of gravity acts beyond this area, a net torque

act to topple the object. Stability, then, can be relative. A brick lying oil

FIGURE 9-17 (a) Stable
equilibrium, and (b) unstable
I equilibrium.

FIGURE 9-18 Equilibrium of
a refrigerator resting on a surface.

[ i widest face is more stable than a brick standing on its end, for it will 1§
COj more of an effort to tip it over. In the extreme case of the pencl|
' Fig. 9-17b, the base is practically a point and the slightest disturbance

topple it. In general, the larger the base and the lower the cG, the mi
(a) (b) stable the object.
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> forces. || In this sense, humans are much less stable than four-legged mam-

mes 60° 0 ¥, which not only have a larger base of support because of their four
40).] i, but also have a lower center of gravity. The human species has had
20’kg i‘} hi \levelop special apparatus, such as certain very strong muscles, in
y five tim¢ or to deal with the problem of keeping a person upright and at the
n the di jlv time stable. Because of their upright position, humans suffer from
l(:;r ‘th?t Ll lerous ailments such as low back pain due to the large forces in-
| their live

lvud, as we saw in Example 9-11. When walking and performing
jor kinds of movement, a person continually shifts the body so that its
In over the feet, although in the normal adult this requires no con-
us thought. Even as simple a movement as bending over requires
ving the hips backward so that the cG remains over the feet, and this
Ositioning is done without thinking about it. To see this, position
liiself with your heels and back to a wall and try to touch your toes.
i} won’t be able to do it without falling. Persons carrying heavy loads
{omatically adjust their posture so that the cG of the total mass is over
Wy feet, Fig. 9-19.

no transli
nd the suii
is displacad
;turns to il
ium; (2) th
1se it is sal
W positioll

() Elasticity; Stress and Strain

‘om a string
will quickly
1d, a pencll
ctly over il

{he first part of this chapter we studied how to calculate the forces on ob-
i in equilibrium. In this Section we study the effects of these forces: any
et changes shape under the action of applied forces. In Section 9-7 we

. But if it If Il ice that if the forces are great enough, the object will break or fracture.
r current Il a force is exerted on an object, such as the vertically suspended metal
direction uf | shown in Fig, 9-20, the length of the object changes. If the amount of
eutral equl hpation, AL, is small compared to the length of the object, experiment
iced slightly )ws that AL is proportional to the weight or force exerted on the object.

iy proportionality, as we saw in Section 6—4, can be written as an equation:

in workinjl F=kAL. 9-3)

equilibrius

cG is belo o I represents the force (or weight) pulling on the object, AL is the
le equilibri Whge in length, and k is a proportionality constant. Equation 9-3, which
:omplicate( sumetimes called Hooke’s law', after Robert Hooke (1635-1703) who
it is tipped Mt noted it, is found to be valid for almost any solid material from iron to
|ue on it uk lv, but it is valid only up to a point. For if the force is too great, the ob-

ill fall over: | ntretches excessively and eventually breaks. Figure 9-21 shows a typi-

the base o praph of elongation versus applied force. Up to a point called the
port will h¢ Wportional limit, Eq. 9-3 is a good approximation for many common ma-
s within the lnls, and the curve is a straight line. Beyond this point, the graph deviates
1 the objeel i a straight line, and no simple relationship exists between F and AL.

area of con hjictheless, up to a point farther along the curve called the elastic limit,

- torque will ubject will return to its original length if the applied force is removed.
: lying on il lo region from the origin to the elastic limit is called the elastic region. If
r it will take ubject is stretched beyond the elastic limit, it enters the plastic region: it
1e pencil i} ik not return to the original length upon removal of the external force,
urbance will | remains permanently deformed (like bending a paper clip). The maxi-
'G, the mor¢

iu lerm “law” applied to this relation is not really appropriate, since first of all, it is only an
Jjoximation, and secondly, it refers only to a limited set of phenomena. Most physicists
o1 1o reserve the word “law” for those relations that are deeper and more encompassing
precise, such as Newton’s laws of motion or the law of conservation of energy.

FIGURE 9-19 Humans
adjust their posture to achieve
stability when carrying loads.

FIGURE 9-20 Hooke’s law:
AL « applied force.

Hooke’s law (again)

FIGURE 9-21 Applied
force vs. elongation for a typical
metal under tension.

Force, F

Proportional limit
(0™
plastic 1ee
§ “Elastic Breaking
é?? limit point
43)
S
Vg

Elongation, AL
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Young’s modulus

mum elongation is reached at the breaking point. The maximum force
can be applied without breaking is called the ultimate strength of the ni
rial (actually force per unit area as discussed in Section 9-7).

The amount of elongation of an object, such as the rod showi
Fig. 9-20, depends not only on the force applied to it, but also on the ni
rial from which it is made and on its dimensions. That is, the constant §
Eq. 9-3 can be written in terms of these factors. If we compare rods miul
the same material but of different lengths and cross-sectional areas,
found that for the same applied force, the amount of stretch (again assull
small compared to the total length) is proportional to the original l¢fij
and inversely proportional to the cross-sectional area. That is, the longel
object, the more it elongates for a given force; and the thicker it is, the [
elongates. These findings can be combined with Eq. 9-3 to yield

1F
AL £ AL°’ o
where L, is the original length of the object, A is the cross-sectional il
and AL is the change in length due to the applied force F. E is a consl
of proportionality" known as the elastic modulus, or Young’s modulus, §
its value depends only on the material. The value of Young’s moduluy
various materials is given in Table 9-1 (note: shear and bulk modulu

TABLE 9-1 Elastic Moduli
Elastic Modulus, Shear Modulus, Bulk Mody

Material E (N/m?) G (N/md) B (N/m')
Solids
Iron, cast 100 X 10° 40 X 10° 90 % 10§
Steel 200 x 10° 80 x 10° 140 x 108
Brass 100 x 10° 35 x 10° 80 % 108
Aluminum 70 x 10° 25 X 10° 70 X 10f
Concrete 20 % 10°
Brick 14 x 10°
Marble 50 x 10° 70 % 10%
Granite 45 x 10° 45 x 10}
Wood (pine)
(parallel to grain) 10 x 10°
(perpendicular to grain) 1 % 10°
Nylon 5% 10°
Bone (limb) 15 x 10° 80 X 10°
Liquids
Water 2.0 % 108
Alcohol (ethyl) 1.0 x 10
Mercury 2.5 x 10
Gases'
Air, H,,He, CO, 1.01 x 10

t At normal atmospheric pressure; no variation in temperature during process.

tThe fact that E is in the denominator, so that 1/ E is the actual proportionality constant,is m
ly a convention. When we rewrite Eq.9-3to get Eq.9-5,Eis found in the numerator.
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i ‘lable are discussed later in this section). Because E is a property only
{he material and is independent of the object’s size or shape, Eq. 9-4 is
more useful for practical calculation than Eq. 9-3. ,

. From Eq. 9-4, we see that the change in length of an object is directly
yportional to the product of the object’s length L, and the force per unit
Wi F/A applied to it. It is general practice to define the force per unit
i as the stress:

force F
stress = =—
area A

lilch has units of N/m?. Also, the strain is defined to be the ratio of the
Inge in length to the original length:

change in length _ AL

strain =

original length L,

(| is dimensionless (no units). Strain is thus the fractional change in
ipth of the object, and is a measure of how much the bar has been de-
iimed. Stress is applied to the material by external agents, whereas strain
{h¢ material’s response to the stress. Equation 9-4 can be rewritten as

F AL
A~ E L, 9-5)
E F/A _ stress

- AL/L,  strain

s we see that the strain is directly proportional to the stress, in the lin-
i (clastic) region of Fig. 9-21.

| YIRS PR A Tension in piano wire. A 1.60-m-long steel piano wire
iny a diameter of 0.20 cm. How great is the tension in the wire if it
stretches 0.30 cm when tightened?

HOLUTION We solve for F in Eq. 9-5 and note that the area A =
m' = (3.14)(0.0010m)? = 3.1 X 10" m? Then

F=EA—LA

L,

0.0030 m

= (2.0 X 10" N/m?)| ~———
(20 x 10 N/m)( 160

Where we obtained the value for E from Table 9-1. The strong tension in
il the wires in a piano must be supported by a strong frame.

)(3.1 X 107 m?) = 1200 N.

The rod shown in Fig. 9-20 is said to be under tension or tensile
fess. For not only is there a force pulling down on the rod at its lower
), but since the rod is in equilibrium we know that the support at the
W) is exerting an equal’ upward force on the rod at its upper end,

Af we ignore the weight of the bar.

Stress

Strain

Young’s modulus
(again)

Tension
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(a) (b) , :
FIGURE 9-23 This Greek temple, in
FIGURE 9-22 Stress Agrigento, Sicily, built 2500 years ago, shows
exists within the material. post-and-beam construction.

Fig. 9-22a. In fact, this tensile stress exists throughout the material. (5
sider, for example, the lower half of a suspended rod as showi
Fig. 9-22b. This lower half is in equilibrium, so there must be an up
force on it to balance the downward force at its lower end. What cx(
this upward force? It must be the upper part of the rod. Thus we sec {f
external forces applied to an object give rise to internal forces, or sti¢
within the material itself. (Recall also the discussion of tension in a ¢
page 92.)
Strain or deformation due to tensile stress is but one type of stress]
which materials can be subjected. There are two other common typuy
Compression  stress: compressive and shear. Compressive stress is the exact opposit
tensile stress. Instead of being stretched, the material is compressed: |
forces act inwardly on the body. Columns that support a weight, sucli
the columns of a Greek temple (Fig. 9-23), or those that support the bui
in Fig. 9-10, are subjected to compressive stress. Equations 9-4 and !
apply equally well to compression and tension, and the values for the ¢l
tic modulus E are usually the same.
! Figure 9-24 compares tensile and compressive stresses as well as (§
Shear third type, shear stress. An object under shear stress has equal and o)
site forces applied across its opposite faces. An example is a book or bl
firmly attached to a tabletop, on which a force is exerted parallel to l

F

FIGURE 9-24 The three
types of stress for rigid bodies.

F
Tension Compression Shear

(a) (b) ()
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) surface. The table exerts an equal and opposite force along the bottom
jluce. Although the dimensions of the object do not change significantly,
thape of the object does change as shown in the figure. An equation
llur to Eq. 9-4 can be applied to calculate shear strain:

1
AL = E%LO, 9-6)

{ AL, Ly, and A must be reinterpreted as indicated in Fig. 9-24c. Note that A
{he area of the surface parallel to the applied force (and not perpendicular
[or tension and compression), and AL is perpendicular to L, The constant
proportionality, G, is called the shear modulus and is generally one half to
0 third the value of the elastic modulus, E (see Table 9-1). Figure 9-25 illus-

gﬂ:k’l::v s thi Mles why AL o Ly the fatter book shifts more for the same shearing force.
’ T'he rectangular object undergoing shear in Fig. 9-24c would not actu-
lly be in equilibrium under the forces shown, for a net torque would
. it. If the object is in fact in equilibrium, there must be two more forces
erial, Co'.‘" ling on it which balance out this torque. One acts vertically upward on
shown. m 0 right, and the other acts vertically downward on the left, as shown in
an upward . ¥-26. This is generally true of shear forces. If the object is a brick or
Vhat exerif 0k lying on a table, these two additional forces can be exerted by the
we see thig ble and by whatever exerts the other horizontal force (such as a hand
§, Or stresy ihing across the top of a book).
1in a cord, If an object is subjected to inward forces from all sides, its volume will
of stress furcase. A common situation is a body submerged in a fluid; for in this

i¢, the fluid exerts a pressure on the object in all directions, as we shall
0 in Chapter 10. Pressure is defined as force per area, and thus is the
Wivalent of stress. For this situation the change in volume, AV, is found
) be proportional to the original volume, V,, and to the increase in the
ussure, AP. We thus obtain a relation of the same form as Eq. 9-4 but
bith a proportionality constant called the bulk modulus, B:

on types of
opposite of
ressed: the
zht, such w
rt the beam

-4 and 9-§
for the elas- AV 1
v, = B AP 9-7)
well as the y
1 and oppo- _ AP
»ok or brick - AV/VO'

rallel to the ) L o )
hic minus sign is included to indicate that the volume decreases with an

GURE 9-25 The fatter book (a) shifts more than the thinner
hok (b) with the same applied shear force.

T

e —

TV

(b)

Shear modulus

FIGURE 9-26 Balance of
forces and torques for shear stress.

(S o2

SECTION 9-6 Elasticity; Stress and Strain 257



Tension

Compression

FIGURE 9-27 Fractureasa
result of the three types of stress.

increase in pressure. Values for the bulk modulus are given in Table Y
Since liquids and gases do not have a fixed shape, only the bulk modul
applies to them. ,

Fracture

If the stress on a solid object is too great, the object fractures or brei
(Fig. 9-27). Table 9-2 lists the ultimate tensile strength, compresi
strength, and shear strength for a variety of materials. These values gl
the maximum force per unit area that an object can withstand under ¢il
of these three types of stress. They are, however, representative valij
only, and the actual value for a given specimen can differ considerably. If
therefore necessary to maintain a “safety factor” of from 3 to perhaps
or more—that is, the actual stresses on a structure should not exceed (f
tenth to one third of the values given in the table. You may encounter |
bles of the “allowable stresses” in which appropriate safety factors have
ready been included.

TABLE 9-2 Ultimate Strengths of Materials (force/area)

Compressive
Tensile Strength Strength Shear Strengl

Material (N/m?) (N/m?) (N/m?)
Iron, cast 170 x 10° 550 x 10° 170 x 10°
Steel 500 x 10° 500 x 10° 250 X 10
Brass 250 X 106 250 X 106 200 x 10°
Aluminum 200 X 10° 200 X 10° 200 x 10
Concrete 2 X 10° 20 X 10° 2 X 10°
Brick 35 x 10°
Marble 80 x 10°
Granite 170 X 10°
Wood (pine)

(parallel to grain) 40 x 108 35 x 108 5 x 10°

(perpendicular to grain) 10 x 108
Nylon 500 x 10°
Bone (limb) 130 X 10 170 X 106

Size and compression of support columns. (a) Wi
minimum cross-sectional area should the two columns have to supp
the beam of Example 9-7 (Fig. 9-10) assuming the columns are made¢
concrete and a safety factor of 6 is required? We saw in Example 9
that the column on the left supports 4.4 X 10*N and that on the ri
supports 1.2 X 10°N. (b) How much will the chosen supports compre
under the given load?
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le 9-1 LLUTION (a) The right-hand column receives the larger force,
1odulu % 10°N. It is clearly under compression, and from Table 9-2, we see
| the ultimate compressive strength of concrete is 2.0 X 10’ N/m? Using
ifety factor of 6, the maximum allowable stress is §(2.0 X 10’ N/m?) =
% 10 N/m?, which equals F/A. Since F = 1.2 X 10°N, we can solve
' A, and we find:

— 2 X% 10°
A= %0160}1}12 = 3.6 X 1072 m?, or 360 cm?.

break = X /m
ressive support 18 cm X 20 cm will be adequate.
1es give ) We solve for
ler eacl

AL 1 F 1
valuol i QR R M 3 x 10° ) =17 %1074
bly. It ik L, EA (2.0 x 10 N/mz)(3 3 X 10°N/m’) = 1.7 X 10

haps 1)
eed on¢
inter tae
have al¢

lius, if the support has a length Ly = 5.0m, AL = 0.85 X 10™°m, or
Jjout 1 mm. This calculation was for the right-hand support. If the left-
fd support is made of the same cross-sectional area, it will compress
# and this should be taken into account.

As can be seen in Table 9-2, concrete (like stone and brick) is reason-
y strong under compression but extremely weak under tension. Thus
Crcte can be used as vertical columns placed under compression but is
lillle value as a beam since it cannot withstand the tensile forces that
jtrength W0 (see Fig. 9-28). Reinforced concrete, in which iron rods are embed-
'm?) ) in the concrete, is much stronger (Fig. 9-29). But the concrete on the
X 10° Wor cdge of a loaded beam still tends to crack because of its weakness
¥ flor tension. This problem'ls solved with p_restressed concrete, which

< ) contains iron rods or a wire mesh, but during the pouring of the con-
X 10 lv, the rods or wire are held under tension. After the concrete dries, the
x 10° slon on the iron is released, putting the concrete under compression.
X 10° It umount of compressive stress is carefully predetermined so that when
design loads are applied to the beam, they reduce the compression on
lower edge but never put the concrete into tension.

(BURE 9-28 A beam sags,
lonst a little (but is exaggerated
0), cven under its own weight.
heam thus changes shape so

| the upper portion is com-

fcd, and the lower portion is
. Jor tension (elongated). Shearing
Win also occurs within the beam.

X 106

Compression

(a) What
> suppotl
: made of
mple 9-7
the righl
compresf

- —
e —— ——

Tension

™ pPHYSICS APPLIED

Reinforced concrete
and
prestressed concrete

FIGURE 9-29 Steel rods

waiting for concrete to be
poured around them to form

a new highway.
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W pPHYSICS APPLIED

Let’s consider one more instructive Example.

A tragic collapse

FIGURE 9-30 Example 9-14.

CONCEPTUAL EXAMPLE 9-14 | A tragic substitution. Two walkwi
one above the other, are suspended from vertical rods attached to |
ceiling of a high hotel lobby, Fig. 9-30a (only one rod is shown). |
original design called for single rods 14 m long, but when such long i
proved to be unwieldy to install, it was decided to replace each long It
with two shorter ones as shown in Fig. 9-30b. Determine the net fo
exerted by the rods on the supporting pin A (assumed the same sizc)
each design. Assume each vertical rod supports a mass m of each bri

RESPONSE The smgle long vertical rod in Fig. 9-30a exerts an upw.
force equal to mg on pm A to support the mass m of the upper brid
Why? Because the pin is in equilibrium, and the other force that balan
this is the downward force mg exerted on it by the upper bridge. (Ther

thus a shear stress on the pin.) See Fig. 9-30c. The situation when |
shorter rods support the bridges (Fig. 9-30b) is shown in Fig. 9-3(d
which only the connections at the upper bridge are shown. The lower |
exerts a force of mg downward on the lower of the two pins becaus
supports the lower bridge. The upper rod exerts a force of 2mg on |
upper pin (pin A) because the upper rod supports both bridges. Thuy
see that when the builders substituted two shorter rods for each sin
long one, the stress in the supporting pin A was doubled. What perlii
seemed like a simple substitution did, in fact, lead to a tragic collapse
1981 with a loss of life of over 100 people (see Fig. 9-2). Having a fecl

physics, and being able to make simple calculations based on physics,

have a great effect, literally, on people’s lives.

: A lipz
(a) (b)
' ' ‘2mg
— L , Il
_ wEL
g
(© (d)
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H Spanning a SPace: Arches and Domes

0 ure a great many areas where the arts and humanities 6verlap the
tus, and this is especially clear in architecture, where the forces in the
\lnls that make up a structure need to be understood to avoid exces-
tlelormation and collapse. Many of the features we admire in the ar-
Clure of the past were introduced not simply for their decorative
L1, but often for technical reasons. One example is the development of
Js to span a space, from the simple beam to arches and domes.

It might be said that the first important architectural invention was
jost-and-beam (or post-and-lintel) construction, in which two upright
|4 support a horizontal beam. Before steel was introduced in the nine-
{h century, the length of a beam was quite limited because the
Ihpest building materials were then stone and brick. Hence the width of
i was limited by the size of available stones. Equally important, stone
hrick, though strong under compression—are very weak under ten-
il und shear; all three types of stress occur in a beam, as shown in
') -28. The minimal space that could be spanned using stone is shown
Il closely spaced columns of the great Greek temples (Fig. 9-23).

Ihe introduction of the semicircular arch by the Romans (Fig. 9-31),
¢ rom its aesthetic appeal, was a tremendous technological innova-
. It _had been preceded by the so-called “triangle arch” and the “cor-
tl arch,” but these were relatively small improvements over the
il ind-beam (see Fig. 9-32). The advantage of the “true” or semicircu-
Atch is that, if well designed, its wedge-shaped stones experience stress
¢h is mainly compressive even when supporting a large load such as
wall and roof of a cathedral. Because the stones are forced to squeeze
Mt one another, they are mainly under compression (see Fig. 9-33).
), however, that the arch transfers horizontal as well as vertical forces
{lic supports. A round arch consisting of many well-shaped stones could
W o very wide space. However, considerable buttressing on the sides

W4 nceded to support the horizontal components of the forces.
3

ysics, cull

IURE 9-32 Various means to span a space.

Post Semicircular
and arch
beam

Corbeled g ointed
arch arch .
(Gothic)

Triangle Tudor
arch ﬁ arch

W PHYSICS APPLIED

Architecture: Beams, arches
and domes

FIGURE 9-31 Round

arches in the Roman Forum.
The one in the background is
the Arch of Titus.

FIGURE 9-33 Stonesin

a round (or “true”) arch are
mainly under compression.

*SECTION9-8  Spanning a Space: Arches and Domes
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FIGURE 9-34 Flying
buttresses (on the cathedral of
Notre Dame, in Paris).

FIGURE 9-35 Forcesina
round arch (a), compared with
those in a pointed arch (b).
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The pointed arch came into use about A.D. 1100 and became th¢
mark of the great Gothic cathedrals. It too was an important techni¢l
novation, and was first used to support heavy loads such as the towef
cathedral, and as the central arch. Apparently the builders realized
because of the steepness of the pointed arch, the forces due to the w
above could be brought down more nearly vertically, so less horiz(
buttressing would be needed. The pointed arch reduced the load i
walls, so there could be more openness and light. The smaller butti¢
needed was provided on the outside by graceful flying butll
(Fig. 9-34).

The technical innovation of the pointed arch was achieved not thi{
calculation but through experience and intuition, for it was not until |
later that detailed calculations, such as those presented earlier in this ¢f
ter, came into use. To make an accurate analysis of a stone arch is quil
ficult in practice. But if we make some simplifying assumptions, w¢
show why the horizontal component of the force at the base is less
pointed arch than for a round one. Figure 9-35 shows a round arch il
pointed arch, each with an 8.0-m span. The height of the round arch i
4.0 m, whereas that of the pointed arch is larger and has been chosen {
8.0m. Each arch supports a weight of 12.0 X 10*°N ( = 12,000kg
which, for simplicity, we have divided into two parts (each 6.0 X 10* N}
ing on the two halves of each arch as shown. To be in equilibrium, ca
the supports must exert an upward force of 6.0 X 10* N. Each suppott
exerts a horizontal force, Fy, at the base of the arch, and it is this we
to calculate. We focus only on the right half of each arch. We set equ
zero the total torque calculated about the apex of the arch due g
forces exerted on that half arch, as if there were a hinge at the apex
the round arch, the torque equation is

(4.0 m)(6.0 X 10*N) — (2.0 m)(6.0 X 10*N) — (4.0 m)(Fy)
Thus Fy; = 3.0 X 10*N. For the pointed arch, the torque equation is
(4.0 m)(6.0 X 10*N) — (2.0 m)(6.0 X 10*N) — (8.0 m)(Fy)

Solving, we find that Fy = 1.5 X 10* N—only half as much! From thik
culation we can see that the horizontal buttressing force required fa
pointed arch is less because the arch is higher, and there is therefq
longer lever arm for this force. Indeed, the steeper the arch, the lcs

2.0m
20m 60x 104N I6.0x104N
/ s
/ 7/
6.0% 104N 6.0x 104N S/
- /7
;- ,/ // 8.0m
/
/ // 40m I
{1 [}
(] _L <_FH [I] - [
Fv=6.0x104N‘ Fy=60%104N
fe——8.0 m—— 8.0 m——]
(a) (b)
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the hal ontal component of the force needs to be, and hence the more nearly

tul is the force exerted at the base of the arch.

anical il
ywer of I'he further development of the arch was one of decline. For the sub-
zed tha ont flattened arches, such as the Tudor arch (Fig. 9-32), were struc-

lly weaker than the simple pointed arch. However, with the coming of
oorizonli #hced methods of calculation in the nineteenth and twentieth cen-
d on th A, it became possible to calculate the best shape of arch for a given
attressin | condition. For example, if the load is uniform across the span, it can
suttresse jown that the stresses within the arch will be purely compressive if the

1e weigl

1) has a parabolic shape.
t throu Whereas an arch spans a two-dimensional space, a dome—which is
ntil mu¢ Lilly an arch rotated about a vertical axis—spans a three-dimensional
this ch| ¢, The Romans built the first large domes. Their shape was hemi-
quite dif Wtlcal and some still stand, such as that of the Pantheon in Rome
s, we cilf | Y-36). By the time of the Renaissance, the technique for constructing

less for
rch and
-ch is thi

¢ domes seems to have been lost. Indeed, the dome of the Pantheon
i Il source of wonder to Renaissance architects. The problem came to
ore in fifteenth-century Florence with the designing of a new cathe-

ysen to b il that was to have a dome 43 m in diameter to rival that of the Pan-
kg * 4) h. In 1418, after the cathedral was finished except for the dome, a
L0*N) adf petition for the design of the dome was held and was won by Filippo
1, each ihclleschi (1377-1446). One problem that had to be dealt with was that

tlime was to rest on a “drum” that had been completed with no exter-
ibutments; and there was no place to put any. Hence the dome needed
fxert a minimum of horizontal force. Brunelleschi solved this by de-
Ing a pointed dome (Fig. 9-37), since a pointed dome, like a pointed
), cxerts a smaller side thrust against its base.

I'hc other major problem was how to support the dome during con-
¢lion. A dome, like an arch, is not stable until all the stones are in place.
i been the custom to support a dome during construction with a wooden
ilicwork. But no trees big enough or strong enough could be found to
W) the 43-m space required for the cathedral in Florence. Instead of using
inden framework, Brunelleschi built the dome in horizontal layers. Each

pport als
s we willl
1 equal {
lue to (h
apex. I

)(Fy) -
n is
Y(Fy) =0

m this cal’
lired for §
hereforce §
he less the

x 104N

- Fy

.

*SECTION 9-8

FIGURE 9-36 Interior of the
Pantheon in Rome, built in the first
century. This view, showing the
great dome and its central opening
for light, was painted about 1740
by Panini. Photographs do not
capture its grandeur as well as

this painting does.

FIGURE 9-37 The skyline
of Florence, showing Brunelleschi’s
famous dome on the cathedral.
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FIGURE 9-38 The dome of
the Small Sports Palace in Rome,

layer was bonded to the previous one, which held it in place until the
stone of the circle was placed, and then that circle was stable just as i @
pleted arch is sfable. Each closed ring was then strong enough to supj
the next layer. It was an amazing feat.

To end this Section we will consider the forces necessary to suppil
modern dome, that of the Small Sports Palace in Rome (Fig. 9- K}
dome, like an arch, is statically most stable when under compression,
36 buttresses which support the 1.2 X 10°-kg dome are positioned at ||
angle and connect smoothly with the dome.

A modern dome. Calculate the components of
force, Fy and Fy, that each buttress exerts on the dome so that the

built for the 1960 Olympics.

Thus

v

FIGURE 9-39 Example 9-15.

L SUMMARY

(12 X 10°kg)(9.8 m/s?)

acts compressively—that is, at a 38° angle (Fig. 9-39).
SOLUTION The vertical load on each buttress is L of the total wel

=34 X 10°N,
36 3 0°N

The force must act at a 38° angle at the base of the dome in order
purely compressive. Thus

Fy  340,000N

tan 38° = F_H = FH

_ 340,000N

oage = 430000 N.

In order that each of the buttresses be able to exert this 430,000-N |
zontal force, a prestressed-concrete tension ring surrounds the b
the buttresses beneath the ground (see Problem 63 and Fig. 9-71).

]
A body at rest [or one in uniform motion at con-
stant velocity] is said to be in equilibrium. The sub-
ject concerned with the determination of the forces
within a structure at rest is called statics.

The two necessary conditions for a body to be
in equilibrium are (1) the vector sum of all the
forces on it must be zero, and (2) the sum of all the
torques (calculated about any arbitrary axis) must
also be zero:

SF, =0 Sr=0.

It is important when doing statics problems to
apply the equilibrium conditions to only one body
at a time.

A body in static equilibrium is said to be in
(a) stable, (b) unstable, or (c) neutral equilibrium,
depending on whether a slight displacement leads
to (a) a return to the original position, (b) further
movement away from the original position, or

264 CHAPTER 9

SF,=0

(c) rest in the new position. An object in |
equilibrium is also said to be in balance.

Hooke’s law applies to many elastic solids,
states that the change in length of an object i |
portional to the applied force:

F=kAL.

If the force is too great, the object will excee
elastic limit, which means it will no longer r¢f
to its original shape when the distorting force i§
moved. If the force is even greater, the ultis
strength of the material can be exceeded and
object fractures.

The force per unit area acting on a bo
called the stress, and the resulting fractional ch
in length is called the strain.

The stress on a body is present within the |
and can be of three types: compression, tens
and shear.

Bodies in Equilibrium; Elasticity and Fracture




he ratio of stress to strain is called the elastic
lus of the material. Young’s modulus applies
jipression and tension, and the shear modulus
vir; bulk modulus applies to an object whose

QUESTIONS

volume changes as a result of pressure on all sides.
All three moduli are constants for a given material
when distorted within the elastic region.

grcribe several situations where a body is not in
|Ni|ihrium, even though the net force on it is zero.

hungee jumper momentarily comes to rest at the bot-
i of the dive before he springs back upward. At that
tinent, is the bungee jumper in equilibrium? Explain.
v can find the center of gravity of a meter stick by
ting it horizontally on your index fingers, and then
nwly drawing your fingers together. First the meter
{lck will slip on one finger, and then on the other,
iit cventually the fingers meet at the cG. Why does
)i work?

v doctor’s scale has arms on which weights slide to
Likinter your weight, Fig, 9-40. These weights are obvi-
{inly. much lighter than you are. How does this work?

ients of i
hat the for

total weigh

0,000-N hoi
s the base
.9-71).

ject in stab
1ce.
stic solids, al
. object is pi

FIGURE 9-40 Question 4.

will exceed
longer retu
ing force is
r, the ultim

A bear sling, Fig. 9-41, is used in some national parks
for placing backpackers’ food out of the reach of bears.
{xplain why the force needed to pull the backpack up
Iicreases as the backpack gets higher and higher. Is it
flssible to pull the rope hard enough so that it doesn’t
Iy at all?

A lndder, leaning against a wall, makes a 60° angle with
{he ground. When is it more likely to slip: when a per-
un stands near the top or near the bottom? Explain.

I!xplain why touching the toes while seated on the
{loor with outstretched legs produces less stress on
{he lower spinal column than when touching the toes
flom a standing position. Use a diagram.

FIGURE 9-41 Question 5, Problems 24 and 29.

8. An earthen retaining wall is shown in Fig. 9-42a.
The earth, particularly when wet, can exert a signifi-
cant force F on the wall. (a) What force produces the
torque to keep the wall upright? (b) Explain why the
retaining wall in Fig. 9-42b would be much less like-
ly to overturn.

(a) (b)

FIGURE 9-42 Question 8.

9. Figure 9-43 shows a cone. Draw how to lay it on a flat
table so that it is in (a) stable equilibrium, (b) unstable
equilibrium, (¢) neutral equilibrium.

Py

FIGURE 9-43

Question 9.
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FIGURE 9-44 Question 10. 12

10. A uniform meter stick supported at the 25-cm mark
is in equilibrium when a 1-kg rock is suspended at
the 0-cm end (as shown in Fig. 9-44). Is the mass of
the meter stick greater than, equal to, or less than 14.
the mass of the rock? Explain your reasoning.

11. Which of the configurations of brick, (a) or (b) of
Fig. 9-45, is the more likely to be stable? Why?

16.

17.

(®)

18.

FIGURE 9-45 The dots indicate the cG of each
brick. The fractions } and ; indicate what portion of
each brick is hanging beyond its support. Question 11.

[ | PROBLEMS

FIGURE 9-46 Question 12.

. Name the type of equilibrium for each posillg

the ball in Fig. 9-46.

13. Why do you tend to lean backward when catry

heavy load in your arms?

Place yourself facing the edge of an open dog:
tion your feet astride the door with your noig
abdomen touching the door’s edge. Try to i
your tiptoes. Why can’t this be done?

. Why is it not possible to sit upright in a chl

rise to one’s feet without first leaning forward!

Why is it more difficult to do sit-ups when your
are bent than when your legs are stretched out’

Examine how a pair of scissors or shears cuts (I
a piece of cardboard. Is the name “shears” justifl

Materials such as ordinary concrete and stong
very weak under tension or shear. Would it be wis
use such a material for either of the supports of
cantilever shown in Fig, 9-11? If so, which onc(K)

SECTIONS 9-1 TO 9-3

1. (I) Three forces are applied to a tree sapling, as
shown in Fig. 9-47, to stabilize it. If F; = 282 N and
F, = 355N, find F; in magnitude and direction.

F

FIGURE 9-47 Problem 1. 4.

2. (I) What should be the tension in the wire if the net
force exerted on the tooth in Fig. 9-3 is to be 5
0.75N? Assume that the angle between the two
forces is 155° rather than the 140° in the figure.

3. (I) Calculate the torque about the front support of a
diving board, on the right in Fig. 9-48, exerted by a
60-kg person 3.0 m from that support.

3.0m

FIGURE 9-48 Problems 3, 4,19, and 20,

(I) How far out on the diving board (Fig. 9-48) we
a 60-kg diver have to be to exert a torque of 10(K)§
on the board, relative to the left support post?

. (I) Two cords support a chandelier in the mu

shown in Fig, 9-6 except that the upper wire mak¢
angle of 45° with the ceiling. If the cords can sust
force of 1300 N without breaking, what is the i
mum chandelier weight that can be supported?
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I juint

sition { FIGURE 9-49 Problems 6 and 21.

X ) Clculate the mass m needed in order to suspend
Tying lio lcg shown in Fig. 9-49. Assume the leg (with FIGURE 9-52
14) has a mass of 15.0 kg, and its cG is 35.0 cm from Problems 13 and 48.
¢ hip joint; the sling is 80.5 cm from the hip joint.
11) A 160-kg horizontal beam is supported at each end. 13. (II) Find the tension in the two wires supporting the
A }00-kg piano rests a quarter of the way from one traffic light shown in Fig. 9-52.
1, What is the vertical force on each of the supports? 14. (II) Determine the force Fy that the pivot exerts on

»or. Po
10se il
) rise (

:h:ir y 1) A uniform steel beam has a mass of 1000 kg. On the seesaw board in Fig. 9-9.
- | s resting half of an identical beam, as shown in 15. (I) Calculate F, and F, for the uniform cantilever
ur kneg 1), 9-50. What is the vertical support force at each shown in Fig. 9-11 whose mass is 1200 kg.

" 1
ut? Wi 16. (II) A 0.60 kg sheet hangs from a massless clothes-
s tl3r.ou A = =l line as shown in Fig. 9-53. The line on either side of
ustificd the sheet makes an angle of 3.5° with the horizontal.

stone B » Calculate the tension in the clothesline on either
e wise - side of the sheet. Why is the tension so much greater
rts of | than the weight of the sheet?

me(s)!

FIGURE 9-50 Problem 8.

i1) Suppose that the net force as calculated in Ex-
Ahple 9-1 is 10° to the left of where it should point
f (ho tooth is to move correctly. If the tension to the
fl Is 2.0N, what should the tension to the right be FIGURE 9-53 Problem 16.

) moke the net force act in the correct direction? . .
. . (IT) A door, 2.30 m high and 1.30 m wide, has a mass
1l1) A 70-kg adult sits at one er}d of a 10-m. board, on f)f )13.0 kg. A hinge 0.4%0 m from the top and another
o other enfi of which sits his 30-kg Chll.d ' Whe.r © hinge 0.40 m from the bottom each support half the
\tmld. the pivot l?)e placed so the board (ignore its door’s weight (Fig. 9-54). Assume that the center of
fiw) is balanced? L. gravity is at the geometrical center of the door, and
«d 20. 1) Repeat Problem 10 taking into account the determine the horizontal and vertical force compo-
id's 15-kg mass. nents exerted by each hinge on the door.

48) woill Il) Find the tension in the two cords shown in
1000 nik il Y-51. Neglect the mass of the cords, and assume
st? lit the angle 6 is 30° and the mass m is 200 kg. 40 cm

1€ mani [

: makes | (7] FIGURE 9-54
n sustaili Problem 17.
the mij o 1.30 m —+

ed? f

_40 cm

il _L\_\\&\\Z\ﬂ




18.

19.

20.

21.

22,

23.

‘ m=35kg

m=25kg

FIGURE 9-55 Problem 18.

(II) Three boys are trying to balance on a seesaw,
which consists of a fulcrum rock, acting as a pivot at
the center, and a very light board 3.6m long
(Fig. 9-55). Two boys are already on either end. One
has a mass of 50 kg, and the other a mass of 35 kg.
Where should the third boy, whose mass is 25 kg,
place himself so as to balance the seesaw?

(II) Calculate the forces F, and F, that the supports
exert on the diving board of Fig. 9-48 when a 60-kg
person stands at its tip. Ignore the weight of the board.

(IT) Repeat the last problem, taking into account the
board’s mass of 35 kg. Assume the board’s cG is at its
center.

(IT) Calculate the mass m required in Fig. 9-49 to
support the leg (without cast), using the result of Ex-
ample 7-12 and the values given in Table 7-1, assum-
ing a 60.0-kg person 160 cm tall. The leg pivots about
the hip joint and the support acts at the ankle joint.
(I) Calculate F, and F, for the beam shown in
Fig. 9-56. Assume it is uniform and has a mass of
250 kg.

F, 4000N  3000N 2000N F,

.
_mwrvr—

20m 1.0m

FIGURE 9-56 Problem 22.

(II) Calculate the tension F; in the wire that sup-
ports the 30-kg beam shown in Fig. 9-57, and the
force Fy, exerted by the wall on the beam (give mag-
nitude and direction).

. (II) The two trees in Fig. 9-41 are 7.6 m apart. Cal-

culate the magnitude of the force F a backpacker
must exert to hold a 16-kg backpack so that the rope
sags at its midpoint by (a) 1.5m, (b) 0.15m.

FIGURE 9-57

25. (II) A 170-cm-tall person lies on a light (maf
board which is supported by two scales, one umnlg
feet and one beneath the top of the head (Fig,
The two scales read, respectively, 31.6 and 3§
Where is the center of gravity of this person?

KILOGRAMS!

FIGURE 9-58

26. (II) A shop sign weighing 215N is supportel |
uniform 135-N beam as shown in Fig. 9-59. Find
tension in the guy wire and the horizontal and
cal forces exerted by the hinge on the beam.

\

41.0

Problem 23.

E‘!

KILOGR AN

Problem 25.

135m —|

|
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FIGURE 9-59

1.70m —

o

Problem 26.




23.

ight (massl¢
;, one under |
zad (Fig. 9-§
.6 and 35.1
erson?

i 25.

. 9-59. Find |

C
37°
A
FIGURE 9-60 Problem 27.

1) A traffic light hangs from a structure as shown
Vi, 9-60. The uniform aluminum pole AB is 7.5 m
i and has a mass of 8.0 kg. The mass of the traffic
ght is 12.0 kg. Determine the tension in the hori-
Mtul massless cable CD, and the vertical and hori-
)il components of the force exerted by the pivot
on the aluminum pole.

I1) A uniform ladder of mass m and length L leans
| i angle 6 against a frictionless wall, Fig. 9-61. If
o coefficient of static friction between the ladder
fitl the ground is u, what is the minimum angle at
filch the ladder will not slip?

FIGURE 9-61 Problems 28, 76, and 77.

{Itl) A 23.0kg backpack is suspended midway be-
{ween two trees by a light cord as in Fig. 9-41. A
honr grabs the backpack and pulls vertically down-
wird with a constant force, so that each section of
turd makes an angle of 30° below the horizontal. Ini-
{inlly, without the bear pulling, the angle was 15° the
{gnsion in the cord with the bear pulling is double
what it was when he was not. Calculate the force the
henr is exerting on the backpack.

30.

31

FIGURE 9-62 Problem 30.

(III) A meter stick with a mass of 230 g is supported
horizontally by two vertical strings, one at the 0-cm
mark and the other at the 90-cm mark (Fig. 9-62).
(a) What is the tension in the string at Ocm?
(b) What is the tension in the string at 90 cm?

(III) Consider again the ladder of Example 9-9 but
with a painter climbing up. If the mass of the ladder
is 12.0 kg, the mass of the painter is 60.0 kg, and the
ladder begins to slip at its base when she is 70 per-
cent of the way up the length of the ladder, what is
the coefficient of static friction between the ladder
and the floor? Again assume the wall is frictionless.
A free-body diagram is shown in Fig. 9-63.

FIGURE 9-63

Problem 31.
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Y
10 cm

FIGURE 9-64 Problem 32.

32. (III) A person wants to push a lamp (mass 7.2kg)
across the floor. (@) Assuming the person pushes at a
height of 60 cm above the ground and the coefficient
of friction is 0.20, determine whether the lamp will
slide or tip over (Fig. 9—-64). (b) Calculate the maxi-
mum height above the floor at which the person can
push the lamp so that it slides rather than tips.

33. (III) Two guy wires run from the top of a pole 2.6 m
tall that supports a volleyball net. The two wires are
anchored to the ground 2.0 m apart and each is 2.0 m
from the pole (Fig. 9-65). The tension in each wire is
95 N. What is the tension in the net, assumed hori-
zontal and attached at the top of the pole?

FIGURE 9-65 Problem 33.

*SECTION 9-4

* 34, (I) If the point of insertion of the biceps muscle into the
lower arm shown in Fig. 9-15a is 6.0 cm, how much mass
could the person hold with a muscle exertion of 400 N?

*35. (I) Approximately what force, Fy,, must the extensor
muscle in the upper arm exert on the lower arm to
hold a 7.3-kg shot put (Fig. 9-66)? Assume the lower
arm has a mass of 2.8 kg and its cG is 12 cm from the
pivot point.

210 CHAPTER 9

Scm
je———30.0cm

2.
—

FIGURE 9-66 Problem 35. ‘

*36. (I) Calculate the force required of the “dclf
muscle, Fy,, to hold up the outstretched arm |
in Fig. 9-67. The total mass of the arm is 3.3 kg,

FM 150

I'
\ = 1409
; EFJ ?mg
12cm———l

I 24 cm ~|.

FIGURE 9-67 Problems 36,37, and 3§,

* 37. (II) Suppose the hand in the last problem holds 4 |
mass. What force, Fy, is required of the deltoid my
assuming the mass is 52 cm from the shoulder joirl

*38. (II) Calculate the magnitude of the force F; ext|
by the shoulder on the upper arm at the joinl
Problems 36 and 37.

*39. (II) The Achilles tendon is attached to the rear of
foot as shown in Fig. 9-68. When a person elevi
himself just barely off the floor on the “ball of {
foot,” estimate the tension in the Achilles tei)
(pulling upward), and the (downward) force ext
by the lower leg bone on the foot. Assume the pu
has a mass of 70 kg, and that D is twice as long

,L_ Leg bone

Achilles
tendon

FIGURE 9-68 Problem 39.

40. (II) Redo Example 9-11 assuming now that the pofj
is less bent over so that the 30° in Fig. 9-16b is ins|
60°. What will the magnitude of F,, on the vertebru |
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(‘nlculate the magnitude of the force at the base
|0 spine, Fy in Example 9-11 (Fig. 9-16b), if a
0l 20 kg is held in the person’s hands, with arms
lnp vertically. Assume the person’s mass is 70 kg,

JON 9-5

‘I'he Leaning Tower of Pisa is 55 m tall and about
i In diameter. The top is 4.5 m off center. Is the
01 in stable equilibrium? If so, how much farther
Il lcan before it becomes unstable? Assume the
o1 is of uniform composition.

I} Four bricks are to be stacked at the edge of a
lo, cach brick overhanging the one below it, so
| the top brick extends as far as possible beyond
udge of the table. (a) To achieve this, show that
gussive bricks must extend no more than (starting
the top) 1/2,1/4,1/6, and 1/8 of their length be-
i the one below (Fig. 9-69). (b) Is the top brick
Wplctely beyond the base? (c) Determine a gener-
formula for the maximum total distance spanned
i bricks if they are to remain stable. (d) A builder
iMu to construct a corbeled arch (Fig. 9-32) based
) the principle of stability discussed in () and
) nbove. What minimum number of bricks, each
101 long, is needed if the arch is to span 1.0 m?

URE 9-69
Jum 43.

LT'ION 9-6

{l) A nylon tennis string on a racket is under a tension
i 250 N. If its diameter is 1.00 mm, by how much is it
lenpthened from its untensioned length of 30.0 cm?

(1) A marble column of cross-sectional area 2.0 m*
{ipports a mass of 25,000 kg. () What is the stress
within the column? (b) What is the strain?

{1) By how much is the column in the previous prob-
lom shortened if it is 12 m high?

{I) A vertical steel girder with a cross-sectional area
Wl 0.15 m? has a sign (mass 2000 kg) hanging from its
0inl. (@) What is the stress within the girder? (b) What
¥ the strain on the girder? (c) If the girder is 9.50 m
long, how much is it lengthened? (Ignore the mass of
{he girder itself.)

(11) If the two wires in Fig. 9-52 (Problem 13) are
Mmade of steel wire 1.0 mm in diameter, what is the
porcentage stretch of each because of the load?

{11) One liter of alcohol (1000 cm®) in a flexible con-
lhiner is carried to the bottom of the sea, where the
pressure is 2.6 X 10°N/m? What will be its volume
there?

g as d,

50.

51

52,

53.

5.

(I) A 15-cm-long animal tendon was found to
stretch 3.7 mm by a force of 13.4 N. The tendon was
approximately round with an average diameter of
8.5 mm. Calculate the elastic modulus of this tendon.
(I1) How much pressure is needed to compress the
volume of an iron block by 0.10 percent? Express
answer in N/m? and compare it to atmospheric
pressure (1.0 X 10° N/m?).

(1) At depths of 2000 m in the sea, the pressure is about
200 times atmospheric pressure (1.0 X 10° N/m?). By
what percentage does an iron bathysphere’s volume
change at this depth?

(III) A scallop forces open its shell with an elastic
material called abductin, whose elastic modulus is
about 2.0 X 105N/m?. If this piece of abductin is
3.0mm thick and has a cross-sectional area of
0.50 cm?, how much potential energy does it store
when compressed 1.0 mm?

(IIT) A pole projects horizontally from the front wall
of a shop. A 5.1-kg sign hangs from the pole at a point
2.2 m from the wall (Fig. 9-70). (a) What is the torque
due to this sign calculated about the point where the
pole meets the wall? (b) If the pole is not to fall off,
there must be another torque exerted to balance it.
What exerts this torque? Use a diagram to show how
this torque must act. (¢) Discuss whether compres-
sion, tension, and/or shear play a role in part (b).

N

—22m—-

Bear

| ‘

FIGURE 9-70 Problem 54.

SECTION 9-7

55.

56.

(I) The femur bone in the leg has a minimum effec-
tive cross section of about 3.0 cm? (=3.0 X 10™*m?).
How much compressive force can it withstand be-
fore breaking?

(II) What is the maximum tension possible in a 1.00-
mm-diameter nylon tennis racket string? If you want
tighter strings, what do you do to prevent breakage:
go to thinner or thicker strings? Why? What causes
strings to break when they are hit by the ball?

n
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57.

58.

59.

60.

61.

(IT) If a compressive force of 3.6 X 10*N is exerted
on the end of a 20-cm-long bone of cross-sectional
area 3.6 cm?, (a) will the bone break, and (b) if not,
by how much does it shorten?

(II) (a) What is the minimum cross-sectional area re-
quired of a vertical steel cable from which is sus-
pended a 320-kg chandelier? Assume a safety factor
of 7.0. (b) If the cable is 7.5 m long, how much does
it elongate?

(I1) Assume the supports of the cantilever shown in
Fig. 9-11 (mass = 2600 kg) are made of wood. Cal-
culate the minimum cross-sectional area required of
each, assuming a safety factor of 8.5.

(I1) An iron bolt is used to connect two iron plates
together. The bolt must withstand shear forces up to
about 3200 N. Calculate the minimum diameter for
the bolt, based on a safety factor of 6.0.

(IIT) A steel cable is to support an elevator whose total
(loaded) mass is not to exceed 3100 kg, If the maximum
acceleration of the elevator is 1.2m/ s, calculate the di-
ameter of cable required. Assume a safety factor of 7.0.
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*SECTION 9-8

* 62. (II) How high must a pointed arch be if it i
a space 8.0m wide and exert one third the he
tal force at its base that a round arch would?

(II) The subterranean tension ring that cx¢
balancing horizontal force on the abutments
dome in Fig. 9-38 is 36-sided, so each M
makes a 10° angle with the adjacent one (Fig !
Calculate the tension F that must exist in ¢l
ment so that the required force of 4.3 X 1t
be exerted at each corner (Example 9-15).

*63.

_ﬁz_—::;

FIGURE 9-71 L
Problem 63. 430,000 N

64.

65.
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The mobile in Fig. 9-72 is in equilibrium. The object B
has mass of 0.735 kg. Determine the masses of the ob-
jects A, C,and D. (Neglect the weights of the crossbars.)

7.50 cm

15_.00c_m 5.00 cm

17.50 cm_|5.00 cm B

FIGURE 9-72 Problem 64.

A 50-story building is being planned. It is to be
200 m high with a base 40m by 70 m. Its total mass
will be about 1.8 X 10" kg and its weight therefore
about 1.8 X 108 N. Suppose a 200-km/h wind exerts
a force of 950N/m? over the 70-m-wide face
(Fig. 9-73). Calculate the torque about the potential

CHAPTER 9

pivot point, the rear edge of the building (whel
acts in Fig. 9-73), and determine whether tho |
ing will topple. Assume the total force of thy

acts at the midpoint of the building’s face, and
the building is not anchored in bedrock. [Hinit

Fig. 9-73 represents the force that the Earth ¢
on the building in the case where the building [
beginning to tip.] '

EEEEiE)E
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FIGURE 9-73 Force on a building subjected (¢
wind (F,) and gravity (mg); Fy, is the force on the
building due to the Earth in the situation when the
building is just about to tip. Problem 65.
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{lphtly stretched “high wire” is 46 m long. It sags
i when a 60-kg tightrope walker stands at its cen-
What is the tension in the wire? Is it possible to in-

1? jife the tension in the wire so that there is no sag?
xerts | jil minimum horizontal force F is needed to pull a
ts for | gul of radius R and mass M over a step of height 4

shown in Fig. 9-74 (R > h)? (a) Assume the force
#pplied at the top edge as shown. (b) Assume the
(o is applied instead at the wheel’s center.

FIGURE 9-74 Problem 67.

v center of gravity of a loaded truck depends on
vw it is packed. If a truck is 4.0m high and 24 m
{le, and its cG is 2.2 m above the ground, how steep

where slupe can the truck be parked on without tipping
the bull wor sideways (Fig. 9-75)?
the wi

{int: F,
rth exe|
ling is ju

FIGURE 9-75 Problem 68.

In Example 7-5 in Chapter 7, we calculated the im-
nise and average force on the leg of a person who
lumps 3.0m down to the ground. If the legs are not
lient upon landing, so that the body moves a distance
il of only 1.0cm during collision, determine (@) the
Wlicss in the tibia bone (area = 3.0 X 10*m?), and
(h) whether or not the bone will break. (c) Repeat
for a bent-knees landing (d = 50.0 cm).

cted to
the
n the

70. The roof of a 9.0m X 10.0 m room in a school has a
total mass of 12,600 kg. The roof is to be supported
by “2 X 4s” (actually about 4.0cm X 9.0 cm) along
the 10.0-m sides. How many supports are required on
each side and how far apart must they be? Consider
only compression and assume a safety factor of 12.

In Fig. 9-76, consider the right-hand (northernmost)
section of the Golden Gate Bridge, which has a
length d; = 343 m. Assume the ¢G of this span is
halfway between the tower and anchor. Determine
Fy, and Fp, (which act on the northernmost cable) in
terms of mg, the weight of the northernmost span,
and calculate the tower height & needed for equilib-
rium. Assume the roadway is supported only by the
suspension cables and neglect the mass of the cables.
[Hint: Fr; does not act on this section.]

71.

L P [}

f az T dy

FIGURE 9-76 Problems 71 and 75.

72. A 20.0-m-long uniform beam weighing 600 N is sup-
ported on walls A and B, as shown in Fig. 9-77.
(a) Find the maximum weight a person can be to walk
to the extreme end D without tipping the beam. Find
the forces that the walls A and B exert on the beam
when the person is standing: (b) at D; (c) at a point
2.0 m to the right of B; (d) 2.0 m to the right of A.

% 200m {
C A B D

|-—3.0m

fe—12.0m—

FIGURE 9-77 Problem 72.

73. A 36-kg round table is supported by three legs
placed equal distances apart on the edge. What min-
imum mass, placed on the table’s edge, will cause the
table to overturn?
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74.

75.

76.

71.

78.

79.
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FIGURE 9-78

Problem 74.

A uniform flexible steel cable of weight mg is sus-
pended between two equal elevation points as
shown in Fig. 9-78, where 6 = 60°. Determine the
tension in the cable () at its lowest point, and (b) at
the points of attachment. (¢} What is the direction of
the tension force in each case?

Assume that a single-span suspension bridge such as
the Golden Gate Bridge has the configuration indi-
cated in Fig. 9-76. Assume that the roadway is uni-
form over the length of the bridge and that each
segment of the suspension cable provides the sole
support for the roadway directly below it. The ends of
the cable are anchored to the ground only, not to the
roadway. What must the ratio of d, to d, be so that the
suspension cable exerts no net horizontal force on the
towers? Neglect the mass of the cables and the fact
that the roadway isn’t precisely horizontal.

A uniform 7.0-m-long ladder of mass 15.0 kg leans
against a smooth wall (so the force exerted by the
wall, Fy, is perpendicular to the wall). The ladder
makes an angle 6 = 20° with the vertical wall (see
Fig. 9-61); and the ground is rough. (a) Calculate the
components of the force exerted by the ground on
the ladder at its base, and (b) determine what the co-
efficient of friction at the base of the ladder must be
if the ladder is not to slip when a 70-kg person
stands three fourths of the way up the ladder.

If the coefficient of friction between the ladder and
the ground in the situation described in the preced-
ing problem is 0.30, how far up the ladder can the
person climb before the ladder starts to slip?

There is a maximum height of a uniform vertical col-
umn made of any material that can support itself
without buckling, and it is independent of the cross-
sectional area (why?). Calculate this height for
(a) steel (density 7.8 X 10°kg/m?), and (b) granite
(density 2.7 X 10° kg/m®).

From what minimum height must a 1.2-kg rectangu-
lar brick 15.0cm X 6.0cm X 40cm be dropped
above a rigid steel floor in order to break the brick?
Assume the brick strikes the floor directly on its
largest face, and that the compression of the brick is
much greater than that of the steel (that is, ignore
compression of the steel). State other simplifying as-
sumptions that may be necessary.
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FIGURE 9-79

Problem 80. S T i Son [ Temee Tl
80. A cube of side L rests on a rough floor. It is su

81.

82.
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ed to a steady horizontal pull, F, exerted a distuf§
above the floor as shown in Fig. 9-79. As /* i
creased, the block will either begin to slide, or
to tip over. (2) What must be the coefficient ol §
friction p, so that the block begins to slide ¢
than tip? (b) What must be the coefficient of
friction so that the block begins to tip? [Hint:
will the normal force on the block act if it tips?]
A man doing push-ups pauses in the position il
in Fig. 9-80. His mass m = 70kg. Determin¢.
normal force exerted by the floor (a) on each i
(b) on each foot.

=25 cm-—+

73 cm i

FIGURE 9-80 Problem 81.

A 60-kg painter is on a scaffold supported |
above by ropes (Fig. 9-81). The scaffold has u
of 25 kg and is uniformly constructed. There is a 4
pail of paint off to one side, as shown in the fij}
Can the painter walk safely to both ends of the §
fold? If not, which end(s) is dangerous and |
close to the end can he approach safely?

A
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[elielleNemeioNie el Toloiie|
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FIGURE 9-81 Problem 82.



