The faster a bumper car goes,
and the more mass it has, the
more momentum it has. When
two bumper cars collide, the
collision may be nearly elastic:
that is, momentum and kinetic
energy are conserved.

C H A P T E

LINEAR MOMENTUM

R

ous chapter, is one of several great conservation laws in physi(
Among the other quantities found to be conserved are linear n
mentum, angular momentum, and electric charge. We will eventually
cuss all of these because the conservation laws are among the m
important in all of science. In this chapter, we discuss linear momentuf
and its conservation. We then make use of the laws of conservation of
ear momentum and of energy to analyze collisions. Indeed, the law of co
servation of momentum is particularly useful when dealing with two (
more bodies that interact with each other, as in collisions.
Our focus up to now has been mainly on the motion of a single obj(
often thought of as a “particle” in the sense that we have ignored any
tation or internal motion. In this chapter we will deal with systems of t
or more particles (and with extended bodies which can be considered |
collections of particles). An important concept for this study is that of cef
ter of mass, which we discuss later in the chapter.

r l Yhe law of conservation of energy, which we discussed in the pr¢

Momentum and Its Relation to Force

The linear momentum (or “momentum” for short) of a body is defined
the product of its mass and its velocity. Momentum (plural is momenta)
usually represented by the symbol p. If we let m represent the mass of



ly ind v represent its velocity, then its momentum p is
P = mv. , -1

0 velocity is a vector, momentum is a vector. The direction of the mo-
Jum is the direction of the velocity, and the magnitude of the momentum
* my. Since v depends on the reference frame, this frame must be speci-
i, I'he unit of momentum is simply that of mass X velocity, which in SI
% is kg-m/s. There is no special name for this unit.
Iiveryday usage of the term momentum is in accord with the definition
ve. For according to Eq. 7-1, a fast-moving car has more momentum
Il 0 slow-moving car of the same mass, and a heavy truck has more mo-
lum than a small car moving with the same speed. The more mo-
lfum an object has, the harder it is to stop it, and the greater effect it
Il have if it is brought to rest by impact or collision. A football player is
llv likely to be stunned if tackled by a heavy opponent running at top
bod than by a lighter or slower-moving tackler. A heavy, fast-moving
Itk can do more damage than a slow-moving motorcycle.
A force is required to change the momentum of an object, whether it is
licrease the momentum, to decrease it (such as to bring a moving object
Just), or to change its direction. Newton originally stated his second law
{urms of momentum (although he called the product mv the “quantity of
Wllon”). Newton’s statement of the second law of motion, translated into
Wiern language, is as follows:

T'he rate of change of momentum of a body is equal to the net force
applied to it.
) can write this as an equation,
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2F =

) (7-2)

lure 2F is the net force applied to the object (the vector sum of all
Jjuey acting on it) and Ap is the resulting momentum change that occurs
ifing the time interval’ Az. We can readily derive the familiar form of the
vond law, ZF = ma, from Eq. 7-2 for the case of constant mass. If v, is
e initial velocity of an object and v is its velocity after a time At has
Hipsed, then

single object,
ored any ro-
stems of twq
onsidered a At

s that of cen: = ma [constant mass]
viluse, by definition, a = Av/Ar. Newton’s statement, Eq. 7-2, is actually
jure general than the more familiar one because it includes the situation
rce il which the mass may change. This is important in certain circumstances,
th as for rockets which lose mass as they burn fuel.

is defined ay

momenta) iy Niimally we think of Ar as being a small time interval. If it is not small, then Eq. 7-2 is valid if
1€ mass of g ¥ constant over that time interval, or if ZF is the average net force over that time interval.

Linear momentum

NEWTON'S SECOND LAW
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FIGURE 7-1 Example 7-1.
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AP = Pfinal ~ Pinitial

FIGURE 7-2 Conceptual
Example 7-2. Momentum of
water before and after splashing
back, and Ap.

FIGURE 7-3 Momentum is
conserved in a collision of two balls.
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Here is a simple Example of momentum change.

Washing a car: momentum change and force. Wl
leaves a hose at a rate of 1.5 kg/s with a speed of 20m/s and is aimed
the side of a car, which stops it, Fig. 7-1. (That is, we ignore any splasf
ing back.) What is the force exerted by the water on the car?

SOLUTION We take the x direction positive to the right. In each secol

water with a momentum of p, = mv, = (1.5kg)(20m/s) = 30kg-m/y

brought to rest at the moment it hits the car. The magnitude of the for
(assumed constant) that the car must exert to change the momentum ¢
the water by this amount is

= _A£ _ Prinal ~ Pinitial _ 0 —30kg-m/s _
At At 10s

The minus sign indicates that the force on the water is opposite to (f
water’s original velocity. The car exerts a force of 30N to the left to std
the water, so by Newton’s third law, the water exerts a force of 30N ¢
the car.

—30N.

CONCEPTUAL EXAMPLE 7-2| The water splashes back. What if (I

water splashes back from the car in Example 7-1? Would the force
the car be greater or less?

RESPONSE If the water splashes back toward the hose, the change |
momentum will be greater in magnitude, and so the force on the car wif
be greater in magnitude. Note that pg ., will now point in the negative,
direction, as shown in Fig. 7-2 (instead of being zero as in Example 7- 1}
So the result for F (see displayed equation in Example 7-1), will
minus something more than —30N (i.e., —35 to —40N, depending on (|
water’s rebound speed). To put it simply, the car exerts not only a forcc {
stop the water, but also an additional force to give it momentum in (I}

opposite direction.

Conservation of Momentum

The concept of momentum is particularly important because, under certal
circumstances, momentum is a conserved quantity. In the mid-seventeen|
century, shortly before Newton’s time, it had been observed that the vectd
sum of the momenta of two colliding objects remains constant. Conside
for example, the head-on collision of two billiard balls, as shown in Fig, 7~

We assume the net external force on this system of two balls is zero—thi
is, the only significant forces are those that each ball exerts on the oth¢
during the collision. Although the momentum of each of the two ball
changes as a result of the collision, the sum of their momenta is found to |

the same before as after the collision. If m,v, is the momentum of bi
number 1 and m,v, the momentum of ball 2, both measured before the co
lision, then the total momentum of the two balls before the collision

m,v, + m,v,. After the collision, the balls each have a different velocil§
and momentum, which we will designate by a “prime” on the velocity: m,
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11,v5. The total momentum after the collision is m,v; + m,v;. No mat-
huat the velocities and masses involved are, it is found that the total
gntum before the collision is the same as afterwards, whether the col-
) Is head-on or not, as long as no net external force acts:

ce. Water
is aimed al

any splash: momentum before = momentum after

—_— ’ ’
myv, + myv, = myv; + myv,. (7-3)

ach second, .
Okg-m/s if { I3, the total vector momentum of the system of two balls is con-
»f the foree ud: it stays constant.

Although the law of conservation of momentum was discovered ex-
pientally, it is closely connected to Newton’s laws of motion and they
he shown to be equivalent. We will do a simple derivation for the one-
gnsional case illustrated in Fig. 7-3. We assume the force F that one
| uxcrts on the other during the collision is constant over the time of
lislon At. We use Newton’s second law as expressed in Eq. 7-2, and
kiilc it by multiplying both sides by At:

mentum of

N.

osite to the
left to sto))

- of 30N on Ap = FAr (7-4)
ipply this to ball 2, noting that the force F,, on ball 2 due to ball 1 dur-
{he collision is to the right (+ x direction—see Fig. 7-4):

What if the : Ap, = myv; — myv, = F At

he force on Newton’s third law, the force F,, on ball 1 due to ball 2 is F;, = —F,,
| ncts to the left, so

e change in Ap, = myv, — myv, = FpAt = —F,At.

. the car will

e negative \ vin combine these last two equations (their right sides differ only by a

:ample 7-1), fiN sign):

'_1.)’ ol b.c myv) = mvy = —(myv; — myv,)

nding on the

iy a force to . ;

:nytum in the myv, + myv, = mv, + myv,

jlch is Eq. 7-3, the donservation of momentum.

‘I'ne above derivation can be extended to include any number of in-
‘icting bodies. To show this in a simple way, we let p in Eq. 7-2 repre-
il the total momentum of a system—that is, the vector sum of the
menta of all objects in the system. (For our two-body system above,
“ v, + myv,.) If the net force =F on the system is zero [as it was
wve for our two-body system, F + (—F) = 0], then from Eq. 7-2,
) = FAt = 0, so the total momentum doesn’t change. Thus the general
{cment of the law of conservation of momentum is

inder certain
-seventeenth
at the vector
nt. Consider,
7 in Fig. 7-3.
is zero—that
on the other
he two balls
s found to be
ntum of ball
efore the col-
ie collision is
:rent velocity
velocity: m,v,

The total momentum of an isolated system of bodies remains constant.

By a system, we simply mean a set of objects that interact with each
ficr. An isolated system is one in which the only forces present are those
{ween the objects of the system. The sum of all these forces will be zero
penuse of Newton’s third law. If there are external forces—by which we
vin forces exerted by objects outside the system—and they don’t add up
) sero (vectorially), then the total momentum won’t be conserved. How-
o, if the “system” can be redefined so as to include the other objects
orting these forces, then the conservation of momentum principle can

CONSERVATION OF MOMENTUM
(for two bodies colliding)

Fia e Fa
A

FIGURE 7-4  Forces on the
balls during the collision of Fig. 7-3.

LAW OF CONSERVATION
OF LINEAR MOMENTUM
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FIGURE 7-5 Example 7-3.

p=0
(a)
4‘.: ._ = 8 ﬂ_ﬁ-——B
] -
pgas prockel
(b)

FIGURE 7-6 (a) A rocket,
containing fuel, at rest in some
reference frame. (b) In the same
reference frame, the rocket fires and
gases are expelled at high speed out
the rear. The total vector momentum,
Poas + Procket> FEMAInNs zero.

apply. For example, if we take as our system a falling rock, it does |
conserve momentum since an external force, the force of gravity excil
by the Earth, is acting on it and its momentum changes. However, if we
clude the Earth in the system, the total momentum of rock plus Eartl
conserved. (This of course means that the Earth comes up to meet {
ball. Since the Earth’s mass is so great, its upward velocity is very tiny.)

1 =240m/s = ’ - - v,=0
L |L_I| (at rest)

—

o

(a) Before collision

g T

(b) After collision

Railroad cars collide: momentum conserved. A 10,000
railroad car traveling at a speed of 24.0 m/s strikes an identical car at r¢
If the cars lock together as a result of the collision, what is their comni
speed afterward? See Fig. 7-5. .

SOLUTION The initial total momentum is
myv, + myw, = (10,000 kg)(24.0 m/s) + (10,000 kg)(0 m/s)
= 2.40 X 10° kg-m/s.

and is to the right in the +x direction. After the collision, the total m
mentum will be the same, and it will be shared by both cars. Since 1l
two cars become attached, they will have the same speed, call it v’. The

(m,; + my)v' =240 X 10°kg-m/s

, 240 X 10°kg-m/s
2.00 x 10' kg

to the right. Their mutual speed after collision is half the initial speed of car

=12.0m/s,

The law of conservation of momentum is particularly useful when w
are dealing with fairly simple systems such as collisions and certain types
explosions. For example, rocket propulsion, which we saw in Chapter 4 ci
be understood on the basis of action and reaction, can also be explained o
the basis of the conservation of momentum. Before a rocket is fired, th
total momentum of rocket plus fuel is zero. As the fuel burns, the total m
mentum remains unchanged: the backward momentum of the expelle
gases is just balanced by the forward momentum gained by the rocket itse
(see Fig. 7-6). Thus, a rocket can accelerate in empty space. There is n
need for the expelled gases to push against the Earth or the air (as is som
times erroneously thought), as we already discussed in Chapter 4. Simili
examples are the recoil of a gun and the throwing of a package from a boa
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WU EY: S Rifle recoil. Calculate the recoil velocity of a 5.0-kg

ity.exerl.c( lo that shoots a 0.050-kg bullet at a speed of 120 m/s, Fig. 7-7.
er, if we it 1

OLUTION The total momentum of the system is conserved. We let
ju subscripts B represent the bullet and R the rifle; the final velocities
10 indicated by primes. Then conservation of momentum in the x direc-
O gives

mglg + MgVg = Mgy + Mgy

0 + 0 = (0.050 kg)(120 m/s) + (5.0 kg)(vy)
__ (0.050 kg)(120 m/s) _

R (5.0kg)

Mice the rifle has a much larger mass, its (recoil) velocity is much
N than that of the bullet. The minus sign indicates that the velocity
ind momentum) of the rifle is in the negative x direction, opposite
i) that of the bullet. Notice that it is the vector sum of the momenta
Hit is conserved.

—1.2m/s.

A 10,000-kg gl Collisions and Impulse
1 car at resl, :

eir commot)

Liervation of momentum is a very useful tool for dealing with collision
1iesses, as we already saw in the examples of the previous section. Colli-
jIi are a common occurrence in everyday life: a tennis racket or a base-
Il bat striking a ball, two billiard balls colliding, one railroad car striking
2)(0 m/s) Wither, a hammer hitting a nail. At the subatomic level, scientists learn
hioul the structure of nuclei and their constituents, and about the nature
{ Ihe forces involved, by careful study of collisions between nuclei and/or
lpmentary particles.

In a collision of two ordinary objects, both objects are deformed, often
Milderably, because of the large forces involved (Fig. 7-8). When the collision
W uirs, the force usualfy jumps from zero at the moment of contact to a very
jjie value within a very short time, and then abruptly returns to zero again.
A jwraph of the magnitude of the force one object exerts on the other during a
ulllsion, as a function of time, is something like that shown by the red curve in
seed of car |, I, 7-9. The time interval At is usually very distinct and usually very small.
I'rom Newton’s second law, Eq. 7-2, the net force on an object is equal
{he rate of change of its momentum:

1€ total muo:
8. Since thy
L it v'. Then:

ful when we Ap

tain types of F= A

hapter 4 cail

sxplained on Wo have written F instead of SF for the net force, which we assume is en-
is fired, the 0ly due to the brief but large force that acts during the collision.) This

‘he total mo- Wution applies, of course, to each of the objects in a collision. If we mul-

the expelled )y both sides of this equation by the time interval Az, we obtain

',;(:S’;Zt llstsilj Impulse = F At = Ap. (7-5)

- (as is somes le quantity on the left, the product of the force F times the time At over

:er 4. Similar Hiich the force acts, is called the impulse. We see that the total change in
from a boat, pmentum is equal to the impulse. The concept of impulse is of help

SECTION 7-3
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e b) After shooting

FIGURE 7-7 Example 7-4.

FIGURE 7-8 Tennis racket
striking a ball. Note the deformation
of both ball and racket due to the
large force each exerts on the other.

FIGURE 7-9 Force as a function
of time during a typical collision.

Force, F

o Time, ¢
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FIGURE 7-10 The average
force F acting over an interval of
time At gives the same impulse
(F Af) as the actual force.

FIGURE 7-11 Period during
which impulse acts (Example 7--5).

mainly when dealing with forces that act over a short time, as when a |y

hits a baseball. The force is generally not constant and often its variatig
in time is like thaj graphed in Fig. 7-10. It is often sufficient to approl
mate such a varying force by an average force F acting over a time A/, |
indicated by the dashed line in Fig. 7-10. F is chosen so that the ar

shown shaded in Fig. 7-10 (equal to F X A¢) is equal to the area under I

actual curve of F vs. ¢t (which area represents the impulse). Note fro
Eq. 7-5 that the same impulse, and same change in momentum, can |j
given to an object by a smaller force F if the time Ar over which it acty

greater, as long as the product, F X At, remains the same.

Bend your knees when landing. (a) Calculate the i
pulse experienced when a 70-kg person lands on firm ground after jum
ing from a height of 3.0 m. Then estimate the average force exerted ¢
the person’s feet by the ground, if the landing is (b) stiff-legged, and (
with bent legs. In the former case, assume the body moves 1.0 cm duril
impact, and in the second case, when the legs are bent, about 50 cm.

SOLUTION (a) Although we don’t know F and thus can’t calculate tl)
impulse F At directly, we can use the fact that the impulse equals tli
change in momentum of the object. We need to determine the velocity
the person just before striking the ground, which we can do using conscf!
vation of energy (Eq. 6-11a):

AKE = — APE
jmv? = 0= —mg(y = yo)

where we assume he started from rest (v, = 0),and y, = 3.0mand y =

Thus, after falling 3.0 m, the person’s velocity just before hitting the groun
will be

v ="V2(, - y) = V2(9.8m/s?)(3.0m) = 7.7 m/s.
As the person strikes the ground, the momentum is quickly brought |
zero, Fig. 7-11. The impulse on the person is
FAt = Ap =p — p,
=0 - (70kg)(7.7m/s) = —540 Ns.

The negative sign tells us that the force is opposed to the original mg
mentum—that is, the force acts upward.

(b) In coming to rest, the body decelerates from 7.7 m/s to zero in a distanc¢
d = 1.0cm = 1.0 X 102 m. The average speed during this brief period is
(7.7m/s + 0 m/s)
v =
2
so the collision lasts a time

d_ (10x10"2m)

v (3.8 m/s)
Since the magnitude of the impulse is FAt = 540N-s, and At =
2.6 X 107*s, the average net force F has magnitude

- 540 N-s

=———————=21X10°N.
F 2.6 X107 3s 21 x 10

The force F is the net force upward on the person (we calculated it fron

= 3.8m/s,

At = =26Xx1073s.
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wion’s second law). F equals the vector sum of the average force up-
fd on the legs exerted by the ground, F,,4, which we take as positive,
I» the downward force of gravity, —mg (see Fig. 7-12): ,

F=F,y — mg.
hice mg = (70kg)(9.8 m/s?) = 690 N, then
Fuo=F +mg=21x10°N + 0,690 X 10°N ~ 2.1 x 10°N.

) 'I'his is just like part (b), except d = 0.50m, so At = (0.50m)/(3.8m/s) =
| V%, and

=42 X 10°N.

hie upward force exerted on the person’s feet by the ground is, as in part (b):
Fya=F+mg=42X10°N + 0.69 X 10°N = 4.9 X 10°N.

lenrly, the force on the feet and legs is much less when the knees are
it In fact, the ultimate strength of the leg bone (see Chapter 9, Table
2) is not great enough to support the force calculated in part (b), so
jo lcg would likely break in such a stiff landing, whereas it probably
nuldn’t in part (c).

Conservation of Energy and Momentum
in Collisions

lIring most collisions, we usually don’t know how the collision force
{los over time, and so analysis using Newton’s second law becomes diffi-
It or impossible. But we can still determine a lot about the motion after a

illision, given the initial motion, by making use of the conservation laws

| momentum and energy. We saw in Section 7-2 that in the collision of
1) objects such as billiard balls, the total momentum is conserved. If the
i) objects are very hard and no heat is produced in the collision, then ki-
lic cnergy is conserved as well. By this we mean that the sum of the ki-
{lv cnergies of the two objects is the same after the collision as before. Of
\irse, for the brief moment during which the two objects are in contact,
e (or all) of the energy is stored momentarily in the form of elastic po-
fifinl energy. But if we compare the total kinetic energy before the colli-
) with the total after the collision, they are found to be the same. Such a
llision, in which the total kinetic energy is conserved, is called an elastic
llision. If we use the subscripts 1 and 2 to represent the two objects, we
j| write the equation for conservation of total kinetic energy as

1

Lmw? + Impd = Impi? + s mpit. [elastic collision]  (7-6)

ofe, primed quantities (') mean after the collision and unprimed mean
forc the collision, just as in Eq. 7-3 for conservation of momentum.
Although at the atomic level the collisions of atoms and molecules are
l¢n clastic, in the “macroscopic” world of ordinary objects, an elastic col-
lon is an ideal that is never quite reached, since at least a little thermal
¢rgy (and perhaps sound and other forms of energy) is always produced
jing a collision. The collision of two hard elastic balls, such as billiard

SECTION 7-4

= PROBLEM SOLVING

Free-body diagrams
are always useful!

FIGURE 7-12 When the
person lands on the ground, the
average net force during impact
is F = Fpy — mg,where Fyis
the force the ground exerts
upward on the person.

Elastic collision

KE conserved in
elastic collisions
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FIGURE 7-13 Two equal mass
objects (a) approach each other
with equal speeds, (b) collide, and
then (c) bounce off with equal
speeds in the opposite directions if
the collision is elastic, or (d) bounce
back much less or not at all, if the
collision is inelastic.

Momentum conservation

KE conservation

FIGURE 7-14 Two particles,
of masses m, and m,, (a) before the
collision, and (b) after the collision.

my m,
—
Vi V2
X
(a)
y
ml m2
,  Se—
v \&]
X
(b)

balls, however, is very close to perfectly elastic, and we often treat il
such. Even when the Kinetic energy is not conserved, the fofal energy s,
course, always conserved.

Collisions in which kinetic energy is not conserved are said to be
elastic collisions. The kinetic energy that is lost is changed into otli
forms of energy, often thermal energy, so that the total energy (as alwu
is conserved. In this case, we can write that

KE, + KE, = KE; + KE; + thermal and other forms of enet|
See Fig. 7-13.

y&%Y Elastic Collisions in One Dimension—
Solving Problems Using Energy and
Momentum Conservation

We now apply the conservation laws for momentum and Kinetic energy
an elastic collision between two small objects (particles) that collide hea
on, so all the motion is along a line. Let us assume that both particles i
initially moving with velocities v; and v, along the x axis, Fig. 7-14a. Al
the collision, their velocities are v] and v;, Fig. 7-14b. For any v > 0, (

particle is moving to the right (increasing x), whereas for v < 0, the pai
cle is moving to the left (toward decreasing values of x).

From conservation of momentum, we have

m; + my, = mu; + myv;.

Because the collision is assumed to be elastic, kinetic energy is also conservi(
1 2 4 1 2 1 2 41 2

2myvy +3myvy = smvT + ampuy.

We have two equations, so we can solve for two unknowns. If we know tl
masses and initial velocities, then we can solve these two equations for i
velocities after the collision, v; and v;. We will do this in a moment in sonj
Examples, but first we derive a useful result. To do so we rewrite the md
mentum equation as

my(v, — vp) = my(v; — V), @
and we rewrite the KE equation as
my (0} — v)%) = my(v’ — V)
or [noting that (a — b)(a + b) = a® — b*] we write this as
my(v; — v)(v; +v)) = my(v; — ) + ). (i
We divide Eq. (ii) by Eq. (i), and (assuming v; # v} and v, # v}) and obta
v+ v =0+,
We can rewrite this equation as
v, -V, =V, —
= —(v] — vy). [head-on elastic collision]  (7-7

This is an interesting result: it tells us that for any elastic head-on collisiot
the relative speed of the two particles after the collision has the same mag
nitude as before (but opposite direction), no matter what the masses are.
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treat it ay
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d to be in«

into other
(as always)

s of energy.

LI NSDAGN Pool or billiards. A billiard ball of mass m moving with
heed v collides head-on with a second ball of equal mass at rest
i, = 0). What are the speeds of the two balls after the collision, assum-
§ it is elastic?

OLUTION Since v, = v and v, = 0, and m; = m, = m, then conser-
wHon of momentum gives

ic energy to
ollide head- m
»articles ar¢ |

I-14a. After 1
yv >0, the
0, the parti-

mv = mv; + mv;

v=17; + v,

Mnce the m’s cancel out. We have two unknowns (v] and v;), so we need
1 #second equation, which could be the conservation of kinetic energy, or
lio simpler Eq. 7-7 we derived from it, which gives

’

— Ay
V=0, =91
(015

i v =, — V.
;0 conserved; 2 1

Wo subtract this equation from our momentum equation (v = v] + v})
Ahd obtain

0 = 2v],

we know the
tions for the
nent in som¢

- i vy = 0.This is one of our desired unknowns, and we can now solve for
rrite the mo-

{he other: ,
() y=v+v=v+0=n0
i

“|b summarize, before the collision we have

v =0, v,=0

und after the collision

(ii) v; =0, vy = .
1) and obtain ‘I'hat is, ball 1 is brought to rest by the collision, whereas ball 2 acquires
Ihe original velocity of ball 1. This result is often observed by billiard and
pool players, and is valid only if the two balls have equal masses (and no

#pin is given to the balls). See Fig. 7-15.

7-7

i-on collision,
he same mag-
masses are.

ision]

SECTION 7-5

Elastic Collisions in One Dimension

FIGURE 7-15 In this multi-
flash photo of a head-on collision
between two balls of equal mass,
the white cue ball is accelerated
from rest by the cue stick and then
strikes the red ball, initially at rest.
The white ball stops in its tracks
and the (equal mass) red ball
moves off with the same speed

as the white ball had before the
collision. See Example 7-6.
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VHe
(b)
FIGURE 7-16 Example 7-7:

(a) before collision, (b) after
collision.

Completely inelastic collision
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m A nuclear collision. A proton of mass 1.01 u (unifi

atomic mass units) traveling with a speed of 3.60 X 10*m/s has an cli
tic head-on collision with a helium (He) nucleus (my, = 4.00 u) initial
at rest. What are the velocities of the proton and helium nucleus after i
collision? (As mentioned in Chapter 1, 1u = 1.66 X 107% kg, but
won’t need this fact.)

SOLUTION Call the initial direction of motion the +x direction. We ha

v, = vy, = 0 and v; = v, = 3.60 X 10*m/s. We want to find the velocil|

v, and vy, after the collision. From conservation of momentum we have
mgv, + 0 = myv, + my vy

Because the collision is elastic, kinetic energy is conserved and we ¢i

use Eq. 7-7, which becomes

vp — 0= vy, — v
Thus
vf, = Vi — Vpy
and substituting this into the momentum equation we get
Mg, = myvy, — Mgty + My V.
Solving for vy, we obtain

2my, 2(1.01 u)(3.60 X 10*m/s)

my, + my, 501u

o, = = 1.45 X 10*m/

The other unknown is 'v",, which we can now obtain from
vF’, = Ve — vy
=145 X 10*m/s — 3.60 X 10*m/s = —2.15 X 10*m/s.

The minus sign tells us that the proton reverses direction upon collisiol
and we see that its speed is less than its initial speed (see Fig. 7-16). Th

makes sense from ordinary experience: the lighter proton would be ¢

pected to “bounce back” somewhat from the more massive helium nucleu
but not with its full original velocity as it would from a rigid wall (whic|
would correspond to extremely large, or infinite, mass).

7411 Inelastic Collisions

Collisions in which kinetic energy is not conserved are called inelastic colll
sions. Some of the initial kinetic energy in such collisions is transformed inl(
other types of energy, such as thermal or potential energy, so the total fini
kinetic energy is less than the total initial kinetic energy. The inverse can aly
happen when potential energy (such as chemical or nuclear) is released, |
which case the total final kinetic energy can be greater than the initial kinel|¢
energy. Explosives are examples of this type. Typical macroscopic collisionf
are inelastic, at least to some extent, and often to a large extent. If two objecl
stick together as a result of a collision, the collision is said to be completel
inelastic. Two colliding balls of putty that stick together or two railroad catf
that couple together when they collide are examples of completely inelastif
collisions. The kinetic energy in some cases is all transformed to other forni
of energy in an inelastic collision, but in other cases only part of it is. If
Example 7-3, for instance, we saw that when a traveling railroad car collide
with a stationary one, the coupled cars traveled off with some kinetic energy.



gompletely inelastic collision, the maximum amount of kinetic energy is
Wormed to other forms consistent with conservation of momentum. Even
gh kinetic energy is not conserved in inelastic collisions, the total energy
ierved, and the total vector momentum is also always conserved.

u (unified
as an elas:
u) initially

15 after the .
g, but we AW 22:N Railroad cars again. For the completely inelastic colli-
i of two railroad cars that we considered in Example 7-3, calculate
m. We have w much of the initial kinetic energy is transformed to thermal or other
e velociticy {ins of energy.
ve haye {)1.LUTION Initially, the total kinetic energy is
Lm? = 1(10,000 kg)(24.0 m/s)? = 2.88 X 10°J.
nd we Ciy fler the collision, the total kinetic energy is
1(20,000 kg)(12.0 m/s)? = 1.44 x 10°J.
lonce the energy transformed to other forms is
2.88 X 10°T — 1.44 X 10°7 = 1.44 X 10°7J,
thich is just half the original KE.
Ny ECR Ballistic pendulum. The ballistic pendulum is a device
uu to measure the speed of a projectile, such as a bullet. The projectile,
X 10 m/s. { mass m, is fired into a large block (of wood or other material) of mass
i/, which is suspended like a pendulum. (Usually, M is somewhat greater
jin m.) As a result of the collision, the pendulum-projectile system
Ings up to a maximum height &, Fig. 7-17. Determine the relationship
hotween the initial speed of the projectile, v, and the height A.
. 4
1 m/s JOLUTION We analyze this process by dividing it into two parts: (1) the
on 00111510{1. Wllision itself, and (2) the subsequent motion of the pendulum from the
7-16). This ¢1tical hanging position to height 4. In part (1), Fig. 7-17a, we assume the
fOUId »be €x- pllision time is very short, and so the projectile comes to rest in the block
um nucle}xs. helore the block has moved significantly from its position directly below its
wall (which sipport. Thus there is no net external force and momentum is conserved:

mv = (m + M)v', ()

Where ' is the speed of the block and embedded projectile just after the col-
Iilon, before they have moved significantly. Once the pendulum begins to
love (part 2, Fig, 7-17b), there will be a net external force (gravity, tending
) pull it back to the vertical position). So, for part (2), we cannot use con-
Jivation of momentum. But we can use conservation of mechanical energy
lice the kinetic energy immediately after the collision is changed entirely to

aelastic colli-
sformed into
he total final
erse can also

s released, in = . _ . . e N
initial kinotic julght, h. Therefore (letting y = 0 for the pendulum in the vertical position):

pic collisions KE, + PE; = KE, + PE,
(f two objects
e completely
railroad cars
stely inelastic
> other forms
irt of it is. In
d car collided

inetic energy.

Lm + Mp'? +0=0+ (m + M)gh, (ii)
%0 v’ = V2gh. We combine equations (i) and (ii) to obtain

+ +
v=m Mv,=m M@,
m m

‘which is the final result. To obtain this result, we had to be opportunistic,

SECTION 7-6

Ballistic pendulum

(b)

FIGURE 7-17 Ballistic
pendulum (Example 7-9).
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in that we used whichever conservation laws we could: in (1) we col
use only conservation of momentum, since the collision is inelastic i
conservation of mechanical energy is not valid'; and in (2), conservall
of mechanical energy is valid, but not conservation of momentum,
part (1), if there were significant motion of the pendulum during the

celeration of the projectile in the block, then there would be an exter
force during the collision—so conservation of momentum would not
valid, and this would have to be taken into account.

* ﬁCollisions in Two or Three Dimensions

Conservation of momentum and energy can also be applied to collisiony
two or three dimensions, and the vector nature of momentum is especiill
important. One common type of non-head-on collision is that in whicl)
moving particle (called the “projectile”) strikes a second particle initia
at rest (the “target” particle). This is the common situation in games su
as billiards, and for experiments in atomic and nuclear physics (the proje
tiles, from radioactive decay or a high-energy accelerator, strike a statigl
ary target nucleus).

Figure 7-18 shows particle 1 (the projectile, m,) heading along the
axis toward particle 2 (the target, m,), which is initially at rest. If these
billiard balls, m, strikes m, and they go off at the angles 6; and 0;, respt
tively, which are measured relative to m,’s initial direction (the x axis). Tl
particles may begin to deflect even before they touch if electric, magnelf
or nuclear forces act between them.*

Let us apply the law of conservation of momentum to a collision ik
that of Fig. 7-18. We choose the xy plane to be the plane in which the il
tial and final momenta lie. Because momentum is a vector, and is ¢

served, its components in the x and y directions remain constant. In the
direction,

Pix + Po = Pix + P
or

p, conserved m, = mj cos 6] + myv;cos 6;. (7-8
Because there is no motion in the y direction initially, the y component {

"Total energy of course is conserved.

£You might think, for example, of two magnets oriented so that they repel each other: whei
one moves toward the other, the second moves away before the first one touches it.

my /,

P
FIGURE 7-18 Particle 1, the 4

. . . . /
projectile, collides with particle 2, /\g
the target. They move off afterthe ML __ _ _ _ _ ________ ﬁ/ ! X
collision, with momenta p; and p; P m g
at angles 6] and 6;. N2
~
N, ’

g2
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) we could

elastic and LT
mservatioll Piy T Py = Piy T Py

lutal momentum is zero:

1entum. In
ing the de:
an external
yuld not be

0 = m,v; sin 6 + m,v; sin 6;. (7-8b)

ANy EaUl Billiard ball collision in 2-D. A billiard ball moving
hi speed v, = 3.0m/s in the +x direction (Fig. 7-18) strikes an equal-
s ball initially at rest. The two balls are observed to move off at 45°,
Il 1 above the x axis and ball 2 below. That is 8; = 45° and 05 = —45°

. In. 7-18. ?
jons {ly. 7-18. What are the speeds of the two balls

1), UTION From symmetry we might guess that the two balls have
# snme speed. But let us not assume that now. Even though we aren’t
Il whether the collision is elastic or inelastic, we can still always use

collisions it
s especially

in which i Miscrvation of momentum. So we can apply Eqs. 7-8a and b, and we
icle initially Nt Lo solve for v; and v;. We are given m, = m,(=m) so

es such
(gt::: projecs mv; = mv; cos(45°) + mvj cos( — 45°)

e a station«
0

mv sin(45°) + mv; sin( — 45°).
along the y
If these ar¢
1 6;, respec:
x axis). The
ic, magnetic,

lu /n’s cancel out in both equations. The second equation yields [recall
(- 6) = —sin 4]

o = —! sin(45°) —v'( sin 45° ) -
2 Isin( — 45°) I\ - sin45° L

) lhey do have equal speeds as we guessed at first. The x component
ijuntion gives [recall cos (— 6) = cos 6]:

;ollision lik¢
hich the ini«
a?:;dl:ns t;:::‘:' v, = v] cos(45°) + vj cos(45°) = 2v; cos(45°)

, i ] e 3.0m/s
Y1 % 5 cos(45%) © 2(0.707)

=2.1m/s.
(7-84)

omponent of lon we have two independent equations, we can solve for, at most, two
{howns.
If we know that a collision is elastic, we can then apply conservation

h other: when kinctic energy and obtain a third equation:

hes it.
— ] ’
KE, + KE, = KE; + KE)

for the collision shown in Fig. 7-18,
Tm? = imw? + Imop. [elastic collision] ~ (7-8¢)

1l collision is elastic, we have three independent equations and we can
Vo for three unknowns. If we are given m,, m,, v, (and v,, if it is not zero),
cannot, for example, predict the final variables, v;, v}, 6], and 8;, because
Jo ure four of them. However, if we measure one of these variables, say 6],
i the other three variables (v;, v;, and ;) are uniquely determined, and
¢an determine them using Eqgs. 7-8a, b, c.

*SECTION 7-7

Collisions in Two or Three Dimensions

p, conserved

KE conserved
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- PROBLEM SOLVING MomentumConservation and Collisions

1. Be sure no significant external force acts’ on
your chosen system. That is, the forces that act
between the interacting bodies must be the
only significant ones if momentum conserva-
tion is to be used. [Note: If this is valid for a
portion of the problem, you can use momen-
tum conservation for that portion only.]

2. Draw a diagram of the initial situation, just be-
fore the interaction (collision, explosion) takes
place, and represent the momentum of each
object with an arrow and label. Do the same
for the final situation, just after the interaction.

Choose a coordinate system and “+” and “—”
| directions. (For a head-on collision, you will
need only an x axis.) It is often convenient to
| choose the +x axis in the direction of one ob-
| ject’s initial velocity.

w

4. Write momentum conservation equation(s):

total initial momentum = total final momentuil

You have one equation for each compong|
(x, y, z); only one equation for a head-on coll
sion. [Don’t forget that it is the total momentuif
not the individual momenta, that is conserved,|
5. If the collision is elastic, you can also write dow
a conservation of kinetic energy equation:

total initial KE = total final KE.

[Alternately, you could use Eq. 7-7: v, — v, |
vy — v}, if the collision is one dimensiong
(head-on).]

6. Solve algebraically for the unknown(s).

Center of Mass (CM)

Until now, we have been mainly concerned with the motion of single i
ticles. When we have dealt with an extended body (that is, a body that [
size), we have assumed that it could be approximated as a point particl
that it underwent only translational motion. Real “extended” bodies, ha
ever, can undergo rotational and other types of motion as well. For examj
the diver in Fig. 7-19a undergoes only translational motion (all parts
the body follow the same path), whereas the diver in Fig. 7-19b underg(l

FIGURE 7-19 The motion of [
the diver is pure translationin (a), |
but is translation plus rotation in (b).

; Frm
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m(s):
mentum,

mponent
-on colli-
ymentum,
served.]

rite down

JURE 7-20 Translation plus rotation: a wrench moving over a horizontal
e, The cM, marked with a +, moves in a straight line.

on:
S Il translational and rotational motion. We will refer to motion that is
1ensional jure translation as general motion.
Observations of the motion of bodies indicate that even if a body ro-
) i, or there are several bodies that move relative to one another, there
#\0 point that moves in the same path that a particle would if subjected
v same net force. This point is called the center of mass (abbreviated  Center of mass
= ), I'he general motion of an extended body (or system of bodies) can be ~ and
Ukldered as the sum of the translational motion of the cM, plus rotational,  general motion
_ Jttonal, or other types of motion about the cM.
' As an example, consider the motion of the center of mass of the diver in
" single pats /-19: the cM follows a parabolic path even when the diver rotates, as
)dy that haj Wi in Fig. 7-19b. This is the same parabolic path that a projected particle
t particle of lnws when acted on only by the force of gravity (that is, projectile motion).
odies, hows B\or points in the rotating diver’s body follow more complicated paths. D X .
‘or exampld; Iigure 7-20 shows a wrench translating and rotating along a horizon- ® o—
(all parts ¢ Ainface—note that its cm, marked by a red +, moves in a straight line, m y
o undergoti shown by the dashed white line. e Xem

T'he e is defined in the following way. We can consider any extended
ily ns being made up’of many tiny particles. But first we consider a sys-
) made up of only two particles, of mass m,; and m,. We choose a coor-  of mass of a two-particle system
Jillc system so that both particles lie on the x axis at positions x; and x,, lies on the line joining the two
7-21. The center of mass of this system is defined to be at the posi- masses.

s V.4 given by

FIGURE 7-21 The center

T
oF:
;

mx, + myx, mx;+ myx,
x = —J b
M m; + m, M

7-9q) Center of mass
( ) (x coordinate)

\
& Wi M = m; + m,is the total mass of the system. The center of mass lies
' \\ {he line joining m, and m,. If the two masses are equal (m, = m, = m),
Iy midway between them, since in this case

Xem = mos +x) _ Gt x) [equal masses]
™ m ) q

W mass is greater than the other, say, m; > m,, then the cMm is closer to
lnrger mass. If there are more than two particles along a line, there will
itlditional terms in Eq. 7-9a, as the following Example shows.

SECTION 7-8 Center of Mass




FIGURE 7-22 = — T Fr—
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Example 7-11. _. e

m CM of three guys on a raft. Three people of rouglé
equivalent mass m on a lightweight (air-filled) banana boat sit along Il
x axis at positions x, = 1.0m, x, = 5.0m, and x; = 6.0m (Fig. 1-2

Find the position of the cM.

SOLUTION We use Eq. 7-9a with a third term:
mx, + mx, + mx;  m(x; + x, + x3)

M~ T mAmt+tm 3m
. + ). + 6. 2.
=(10m 5(;m 60m)=1 :(,’)m=4.Om

If the particles are spread out in two or three dimensions, then we need
specify not only the x coordinate of the cm (o), but also the y and z coorl
nates, which will be given by formulas just like Eq. 7-9a. For example, for t
particles of mass m, and m,, whose y coordinates are y, and y,, respective}
the y coordinate of their cM, y,,, will be:

y coordinate of _ M) Tmy, m) Tmy,
center of mass YeM =™ Tm+m, M 5

For more particles, there would be more terms in this formula.

Center of gravity A concept similar to center of mass is center of gravity (cG). The cG of

body is that point at which the force of gravity can be considered to act. {l

course, the force of gravity actually acts on all the different parts or particl

| of a body, but for purposes of determining the translational motion of

body as a whole, we can assume that the entire weight of the body (which

the sum of the weights of all its parts) acts at the cG. Strictly speaking, the

is a conceptual difference between the center of gravity and the center
mass, but for practical purposes, they are generally at the same point."

It is often easier to determine the cM or ¢G of an extended body expl

mentally rather than analytically. If a body is suspended from any poinl,

will swing (Fig. 7-23) unless it is placed so its CG lies on a vertical liij

' directly below the point from which it is suspended. If the object is twi

| dimensional, or has a plane of symmetry, it need only be hung from t

tThere would be a difference between the two points only if a body were large enough
that the acceleration due to gravity was different at different parts of the body.
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Pivot point |

P -~
D A
|
I
I [
URE 7-23 The force of FIGURE 7-24 Finding the cc.
1y, considered to act at the cG,
i the body to rotate about the
{ point unless the ¢G is on a
vil line directly below the pivot,
jlch case the body remains at rest.
of roughly #ient pivot points and the respective vertical (plumb) lines drawn.
it along the I the center of gravity will be at the intersection of the two lines, as in
Fig. 7-22), | 24.1f the object doesn’t have a plane of symmetry, the cG with re-

| 1o the third dimension is found by suspending the object from at
| three points whose plumb lines do not lie in the same plane. For sym-
flcally shaped bodies such as uniform cylinders (wheels), spheres, and
ingular solids, the cG is located at the geometric center of the body.

CM for the Human Body

¢ have a group of extended bodies, each of whose cM is known, we can
the cM of the group using Eqs. 7-9a and b. As an example, we consider
1 we need t0 human body. Table 7-1 indicates the cM and hinge points (joints) for
ind z coordis diffcrent components of a “representative” person. Of course, there
mple, for twi Wide variations among people, so these data represent only a very
, respectively, ith average. Note that the numbers represent a percentage of the total
uht, which is regarded as 100 units; similarly the total mass is 100 units.
v, for example, if a person is 1.70 m tall, his or her shoulder joint would
(7-9h) {1.70 m)(81.2/100) = 1.38 m above the floor.

BLE 7-1
\iter of Mass of Parts of Typical Human Body

a.
)-The cG of i Il height and mass = 100 units)

red to act. Of

ts or particles Distance of Hinge Points (°) Center of Mass (X) Percent

{ motion of i ge Points (%) (Joints) (% Height Above Floor) Mass
»ody (which i§

: 1.2 Base of skull on spine Head 93.5 6.9
peaking, ther§ B2 Shoulder joint Trunk and neck  71.1 46.1
the center ol r' join tunk and nec . ;
e p oint.! Upper arms 71.7 6.6
1 body experis elbow 62.2 - ; Lower arms 55.3 4.2
n any point, il 52. Hip wrist 46.2 Hands 43.1 1.7
a vertical lin¢ Upper legs (thighs) 42.5 21.5

object is twor & Knee

wung from tw( Lower legs 182 9.6
Ankle Feet 1.8 34

e large enough 58.0 100.0

yody.
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m A leg's CM. Determine the position of the cM of
whole leg (a) when stretched out, and (b) when bent at 90°, as showit

Fig. 7-25. Assume the person is 1.70m tall.

SOLUTION (a) Table 7-1 uses percentage units, meaning the pets
has a mass of 100 units and a height of 100 units. At the end we can i
tiply by (1.70 m/100). We measure the distance from the hip joint us
Table 7—1 and obtain the numbers shown in Fig. 7-25a. Using Eq. 744
we obtain

_(21.5)(9:6) + (9.6)(339) + (34)(50.3) _ 5
o™ 2.5 + 9.6 + 3.4 = 20.4 units,

Thus, the center of mass of the leg and foot is 20.4 units from the ||
joint, or 52.1 — 20.4 = 31.7 units from the base of the foot. Since the
son is 1.70 m tall, this is (1.70 m)(31.7/100) = 0.54 m.

(b) In this part, we have a two-dimensional problem. We use an xy cuf
dinate system, as shown in Fig. 7-25b. First, we calculate how far to (|
right of the hip joint the cMm lies:

. 6) + (9. 6) + (3. R
\ ) o = (21.5)(9.6) ) 29—?);263 f_)?’ 4(3 4)(236) _ 14.9 units.
FIGURE 7-25 Example 7-12: ’ ’ ’
[ finding the cM of a leg in two For our 1.70 m tall person, this is (1.70 m)(14.9/100) = 0.25 m.

different positions (& represents

Next, we calculate the distance, y,,, of the cM above the floor:
the calculated cm).

 (34)(L8) + (96)(182) + (215)(285) _ .
Yom = 215+ 96 + 34 = 23.1 unitg

or (1.70 m)(23.1/100) = 0.39 m. Thus, the cM is located 39 cm above |
floor and 25 cm to the right of the hip joint.

oM can be outside a body Note in this last Example that the cM can actually lie outside the bo
Another example is a doughnut, whose cM is at the center of the hole.

Knowing the cm of the body when it is in various positions is of gt
use in studying body mechanics. One simple example from athleticy
shown in Fig. 7-26. If high jumpers can get into the position shown, th
cM can actually pass below the bar which their bodies go over, wh
means that for a particular takeoff speed, they can clear a higher bar. Tl
is indeed what they try to do.

FIGURE 7-26 Thecmof
a high jumper may actually pass
beneath the bar.
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1e cM of i

Center of Mass and Translational Motion
s shown 11

fientioned in Section 7-8, a major reason for the importance of the
the persoll \0pt of center of mass is that the motion of the cum for a system of par-
ve can mul 4 (or an extended body) is directly related to the net force acting on
joint usin Aystem as a whole. We now show this, taking the simple case of one-di-
g Bq. 7-90, Slonal motion (x direction) and only three particles, but the extension
lore bodies and to three dimensions follows the same lines.

Suppose the three particles lie on the x axis and have masses my, my,

).4 units. W positions x;, x,, x;. From Eq. 7-9a for the cM, we can write

Mxcy = mx, + myx, + myx,,
‘'om the hip

nce the pers ¢ M = m; + m, + m, is the total mass of the system. If these parti-

fire in motion, say along the x axis with velocities vy, ¥,, and v, respec-

an xy cool: Iy. then in a short time At they each will have traveled a distance:

w far to the Ax, = x1 — x; = v, At
Ax, = x5 — x, = v,At
4.9 units. Ax; = x3 — x3 = v;At,

I¢ ¥}, X3, and x; represent their new positions after a time At. The posi-

m. ) ol the new cM is given by
T

Mxcy = myx; + myx; + myx;,
23.1 units, Wo subtract the two cM equations, we get
‘m above th MAxcy = mAx; + myAx, + myAx,.

Jing the time At, the cM will have moved a distance

Axem = Xem — Xem = VemAd,
side the body. pie v, is the velocity of the cM. Into the equation just before the last
the hole. I, we substitute the relations for all the Ax’s:
ms is of greuf ]
n athletics | Mvey At = mw, At + myv, At + myv,At.
 shown, thell divide out At and get
y over, whiclj
gher bar. Thi Muvcy = mv, + myp, + my;,. (7-10)

Since m; + myv, + my, is the sum of the momenta of the particles
{lic system, it represents the total momentum of the system. Thus we see
I\ Iiq. 7-10 that the total (linear) momentum of a system of particles is
itl to the product of the total mass M and the velocity of the center of
I¥ of the system. Or, the linear momentum of an extended body is the
tluct of the body’s mass and the velocity of its cm.

Il there are forces acting on the particles, then the particles may be accel-
ing. In a short time A, each particle’s velocity will change by an amount

Av, = a At Av, = a,At, Avy = a; At
We now use the same reasoning as we did to derive Eq. 7-10, we obtain
Macy = mya, + mya, + mya,.

loiding to Newton’s second law, m,a, = F,, mya, = F,, and mya, = F,,

Total momentum

*SECTION 7-10  Center of Mass and Translational Motion
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Newton’s second law
for a system of particles
or an extended body

FIGURE 7-27
Example 7-13.

where F,, F,, and F; are the net forces on the three particles, respectiv
Thus we get for the system as a whole:

Magy = F, + F, + F; = Fpee -\

That is, the sum of all the forces acting on the system is equal to the (0]
mass of the system times the acceleration of its center of mass. This is N}
ton’s second law for a system of particles, and it also applies to an exicil
ed body (which can be thought of as a collection of particles). Thus
conclude that the center of mass of a system of particles (or of an extentl
body) with total mass M moves like a single particle of mass M acted )¢
by the same net external force. That is, the system moves as if all its mi
were concentrated at the cm and all the external forces acted at that pol
We can thus treat the translational motion of any body or system of Iy
ies as the motion of a particle (see Figs. 7-19 and 7-20). This theor
clearly simplifies our analysis of the motion of complex systems and ¢
tended bodies. Although the motion of various parts of the system may |
complicated, we may often be satisfied with knowing the motion of {§
om. This theorem also allows us to solve certain types of problems v¢
easily, as illustrated by the following Example.

CONCEPTUAL EXAMPLE 7-13 | A two-stage rocket. A rocket is sl
into the air as shown in Fig, 7-27. At the moment it reaches its highest pol

a horizontal distance d from its starting point, a prearranged explosi
separates it into two parts of equal mass. Part I is stopped in midair il
falls vertically to Earth. Where does part II land? Assume g = constanl,

SOLUTION After the rocket is fired, the path of the cM of the 4
tem continues to follow the parabolic trajectory of a projectile acl
on by only a constant gravitational force. The cM will thus arrive al
point 2d from the starting point. Since the masses of I and II are equ
the cM must be midway between them. Therefore, I lands a distai
3d from the starting point. (If part I had been given a kick up or dow
instead of merely falling, the solution would have been somewl

more complicated.)
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momentum, p, of a body is defined as the
\lct of its mass times its velocity,

p = mv.

1 terms of momentum, Newton’s second law
e written as

Ap,

2F =
At

{ |5, the rate of change of momentum equals
ot applied force.

|'he law of conservation of momentum states
the total momentum of an isolated system of
{I8 remains constant. An isolated system is one
hich the net external force is zero.

I'he law of conservation of momentum is very
il in dealing with collisions. In a collision, two
imore) bodies interact with each other for a
short time, and the force between them dur-
{hix time is very large.

I'hc impulse of a force on a body is defined as
, where F is the average force acting during the
lillly short) time At. The impulse is equal to the
ifte in momentum of the body:

'ocket is shol
aighest poinl,
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UESTIONS

Total momentum is conserved in any collision.
If m,v, and m,v, are the momenta of two objects
before the collision and m;v; and mjv; are their
momenta after, then

j— r !
myy; + myv, = myv; + m,v;.

Total energy is also conserved, but this may not be
helpful in problem solving unless the only type of
energy transformation involves kinetic energy. In
that case kinetic energy is conserved and the colli-
sion is called an elastic collision, and we can write
2mv; + 3mv; = ymi? + ymys’.
If kinetic energy is not conserved, the collision is
called inelastic. A completely inelastic collision is
one in which the colliding bodies stick together
after the collision.

The center of mass (cM) of an object (or group
of objects) is that point at which the net force can
be considered to act for purposes of determining
the translational motion of the body as a whole.
The complete motion of a body can be described
as the translational motion of its center of mass
plus rotation (or other internal motion) about its
center of mass.

II are equal,
1s a distance
up or dowiy,
n somewhal

Wu claim that momentum is conserved. Yet most mov-
Inp objects eventually slow down and stop. Explain.
When a person jumps from a tree to the ground, what
finppens to the momentum of the person upon strik-
Ihg the ground?

Wiy, when you release an inflated but untied bal-
{oon, does it fly across the room?

Il it said that in ancient times a rich man with a bag
i gold coins froze to death stranded on the surface
0l n frozen lake. Because the ice was frictionless, he
tould not push himself to shore. What could he have
tlone to save himself had he not been so miserly?
tlow can a rocket change direction when it is far out
il space and is essentially in a vacuum?

According to Eq. 7-5, the longer the impact time of
uh impulse, the smaller the force can be for the same
ihomentum change, and hence the smaller the defor-
fhntion of the object on which the force acts. Explain
on this basis the value of “air bags,” which are in-
{unded to inflate during an automobile collision and
{uduce the possibility of fracture or death.

7. It used to be common wisdom to build cars to be as
rigid as possible to withstand collisions. Today, though,
cars are designed to have “crumple zones” that col-
lapse upon impact. What advantage does this have?

8. Why is it easier to hit a home run from a pitched ball
than from one tossed in the air by the batter?

9. The speed of a tennis ball on the return of a serve can

be just as fast as the serve, even though the racket

isn’t swung very fast. How can this be?

Is it possible for a body to receive a larger impulse

from a small force than from a large force?

11. A light body and a heavy body have the same kinetic

energy. Which has the greater momentum?

12. Is it possible for an object to have momentum with-
out having kinetic energy? Can it have kinetic energy
but no momentum? Explain.

13. At a hydroelectric power plant, water is directed at
high speed against turbine blades on an axle that turns
an electric generator. Do you think the turbine blades
should be designed so that the water is brought to a
dead stop, or so that the water rebounds?

10

Questions 201




14. A superball is dropped from a height & onto a hard
steel plate (fixed to the Earth), from which it re-
bounds at very nearly its original speed. (a) Is the
momentum of the ball conserved during any part of
this process? (b) If we consider the ball and Earth as
our system, during what parts of the process is mo-
mentum conserved? (c) Answer part (b) for a piece
of putty that falls and sticks to the steel plate.

15. Why do you tend to lean backward when carrying a
heavy load in your arms?

16. Why is the oM of a 1-m length of pipe at its mid-
point, whereas this is not true for your arm or leg?

[ | PROBLEMS

17. Show on a diagram how your cM shifts when

18.

*19.

*20

change from a lying position to a sitting position
Describe an analytic way of determining the ¢
any triangular-shaped, thin uniform plate.

A rocket following a parabolic path through th¢
suddenly explodes into many pieces. What can
say about the motion of this system of pieces?

If only an external force can change the momei
of the center of mass of an object, how can the i
nal force of the engine accelerate a car?

SECTIONS 7-1 AND 7-2

1. (I) What is the magnitude of the momentum of a 22-g
sparrow flying with a speed of 8.1 m/s?

2. (II) A child in a boat throws a 5.40-kg package out
horizontally with a speed of 10.0 m/s, Fig. 7-28. Cal-
culate the velocity of the boat immediately after, as-
suming it was initially at rest. The mass of the child is
26.0 kg and that of the boat is 55.0 kg.

FIGURE 7-28 Problem2.

3. (II) Calculate the force exerted on a rocket, given
that the propelling gases are expelled at a rate of
1300 kg/s with a speed of 40,000 m/s (at the moment
of takeoff).

4. (IT) A halfback on an apparent breakaway for a touch-
down is tackled from behind. If the halfback has a
mass of 95 kg and was moving at 4.1 m/s when he was
tackled by an 85-kg cornerback running at 5.5m/s in
the same direction, what was their mutual speed im-
mediately after the touchdown-saving tackle?

5. (II) A 12,500-kg railroad car travels alone on a level
frictionless track with a constant speed of 18.0m/s.
A 5750-kg additional load is dropped onto the car.
What then will be the car’s speed?

6. (II) A 9500-kg boxcar traveling at 16 m/s strikes a sec-
ond car. The two stick together and move off with a
speed of 6.0 m/s. What is the mass of the second car?
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. (II) A gun is fired vertically into a 1.40-kg block

wood at rest directly above it. If the bullet has a ma 3
21.0 g and a speed of 210 m/s, how high will the bif
rise into the air after the bullet becomes embedded I

. (II) A 15-g bullet strikes and becomes embedde(l

a 1.10-kg block of wood placed on a horizontal sulg
just in front of the gun. If the coefficient of kinetic (|
tion between the block and the surface is 0.25, and

impact drives the block a distance of 9.5m befoi§
comes to rest, what was the muzzle speed of the bulls

. (II) An atomic nucleus at rest decays radioactiVf

10.

11.

into an alpha particle and a smaller nucleus. W
will be the speed of this recoiling nucleus if
speed of the alpha particle is 3.8 X 10° m/s? Assuil
the recoiling nucleus has a mass 57 times grei
than that of the alpha particle.

(II) An atomic nucleus initially moving at 4201
emits an alpha particle in the direction of its velo|
and the new nucleus slows to 350 m/s. If the al
particle has a mass of 4.0u and the original nucl¢
has a mass of 222 u, what speed does the alpha pul
cle have when it is emitted?

(I1) A 13-g bullet traveling 230 m/s penetrates a 2.
block of wood and emerges going 170 m/s. If the bl
is stationary on a frictionless surface when hit, I
fast does it move after the bullet emerges?

. (IT) A 975-kg two-stage rocket is traveling at a s

13.

of 5.80 X 10> m/s with respect to Earth when a |
designed explosion separates the rocket into {
sections of equal mass that then move with a relal|
speed (relative to each other) of 2.20 X 10° my
along the original line of motion. (a) What is
speed and direction of each section (relative
Earth) after the explosion? (b) How much enci
was supplied by the explosion? [Hint: What is ||
change in KE as a result of the explosion?]

(III) A rocket of total mass 3180kg is traveling
outer space with a velocity of 115 m/s toward the S
It wishes to alter its course by 35.0°, and can do this ¢
firing its rockets briefly in a direction perpendicular
its original motion. If the rocket gases are expelled i
speed of 1750 m/s, how much mass must be expelle
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C1TION 7-3

1) A tennis ball may leave the racket of a top player
) Ihe serve with a speed of 65.0 m/s. If the ball’s mass

) L0600kg and it is in contact with the racket for
110X s, what is the average force on the ball? Would
1lx force be large enough to lift a 60-kg person?
{l) A 0.145-kg baseball pitched at 39.0m/sishiton a
Horizontal line drive straight back toward the pitcher
41 52.0 m/s. If the contact time between bat and ball
4 1,00 X 1073, calculate the average force between
{he ball and bat during contact.
{11) A golf ball of mass 0.045 kg is hit off the tee at a
Apoed of 45m/s. The golf club was in contact with
the ball for 5.0 X 1073s. Find (a) the impulse im-
jiirted to the golf ball, and (b) the average force ex-
¢1led on the ball by the golf club.

. {Il) A tennis ball of mass m = 0.060 kg and speed

Il = 25m/s strikes a wall at a 45° angle and rebounds
With the same speed at 45° (Fig. 7-29). What is the

linpulse given the wall?
|

i, |

N A

. ‘f

45° |

BURE 7-29 : f
ihlom 17. U

)

(1) A 115-kg fullback is running at 4.0m/s to the
¢int and is stopped in 0.75 s by a head-on tackle by a
{hckler running due west. Calculate (a) the original
iomentum of the fullback, (b) the impulse exerted
on the fullback, (c) the impulse exerted on the tack-
lor, and (d) the average force exerted on the tackler.

L (I1) Suppose the force acting on a tennis ball (mass

{1060 kg) points in the +x direction and is given by
{he graph of Fig. 7-30 as a function of time. Use
jraphical methods to estimate (a) the total impulse
giiven the ball, and (b) the velocity of the ball after
heing struck, assuming the ball is being served so it is
flearly at rest initially.

(111) From what maximum height can a 75-kg person
Jmp without breaking the lower leg bone on either
Jup? Ignore air resistance and assume the cm of the
jlerson moves a distance of 0.60 m from the standing
{0 the seated position (that is, in breaking the fall).
Awiume the breaking strength (force per unit area)
ol bone is 170 X 10°N/m? and its smallest cross-
juctional area is 2.5 X 107 m?.

OO 0.05 0.10
t(s)
FIGURE 7-30 Problem 19.

SECTIONS 7-4 AND 7-5

21. (II) A ball of mass 0.440 kg moving east (+x direc-
tion) with a speed of 3.70 m/s collides head-on with
a 0.220-kg ball at rest. If the collision is perfectly
elastic, what will be the speed and direction of each
ball after the collision?
(IT) A 0.450-kg ice puck, moving east with a speed of
3.00 m/s, has a head-on collision with a 0.900-kg puck
initially at rest. Assuming a perfectly elastic collision,
what will be the speed and direction of each object
after the collision?
(IT) Two billiard balls of equal mass undergo a per-
fectly elastic head-on collision. If the speed of one
ball was initially 2.00 m/s, and of the other 3.00 m/s
in the opposite direction, what will be their speeds
after the collision?
24. (IT) A 0.060-kg tennis ball, moving with a speed of
2.50 m/s, has a head-on collision with a 0.090-kg ball
initially moving away from it at a speed of 1.00 m/s.
Assuming a perfectly elastic collision, what is the
speed and direction of each ball after the collision?
(I) A softball of mass 0.220 kg that is moving with a
speed of 5.5m/s collides head-on and elastically with
another ball initially at rest. Afterward it is found that
the incoming ball has bounced backward with a speed
of 3.7m/s. Calculate (a) the velocity of the target ball
after the collision, and (b) the mass of the target ball.
26. (II) A pair of bumper cars in an amusement park ride
collide elastically as one approaches the other directly
from the rear (Fig. 7-31). One has a mass of 450 kg and
the other 550 kg, owing to differences in passenger mass.
If the lighter one approaches at 4.50 m/s and the other is
moving at 3.70 m/s, calculate (a) their velocities after the
collision, and (b) the change in momentum of each.

22

23

25

m = m,=
450 kg 550 kg
- P
B0,
1_)1 " 1}2 3
(a) 450m/s 3.70m/s
’ ~ ’
(b) LB Lp)

FIGURE 7-31 Problem 26: (a) before collision,
(b) after collision. 203



27.

28.

29.

(TII) A 0.280-kg croquet ball makes an elastic head-on
collision with a second ball initially at rest. The second
ball moves off with half the original speed of the first
ball. () What is the mass of the second ball? (b) What
fraction of the original kinetic energy (AKE/KE) gets
transferred to the second ball?

(111) In a physics lab, a small cube slides down a fric-
tionless incline as shown in Fig. 7-32, and elastically
strikes a cube at the bottom that is only one-half its
mass. If the incline is 30 cm high and the table is
90 cm off the floor, where does each cube land?

FIGURE 7-32 Problem 28.

(I1I) Take the general case of a body of mass m, and
velocity v, elastically striking a stationary (v, = 0)
body of mass m, head-on. (a) Show that the final ve-
locities v] and v} are given by

(T
1 m+my) "

, 2m,
vy, =|—7]v.
2 \m+my) !

(b) What happens in the extreme case when m, is
much smaller than m,? Cite a common example of
this. (c) What happens in the extreme case when m,
is much larger than m,? Cite a common example of
this. (d) What happens in the case when m; = m,?
Cite a common example of this.

SECTION 7-6
30. (II) An 18-g rifle bullet traveling 230 m/s buries it-

204

self in a 3.6-kg pendulum hanging on a 2.8-m-long
string, which makes the pendulum swing upward in
an arc. Determine the horizontal component of the
pendulum’s displacement.

CHAPTER 7
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31. (II) (a) Derive a formula for the fraction of ki
energy lost, AKE/KE, for the ballistic pendulum cd
sion of Example 7-9. (b) Evaluate for m = 14/
and M = 380g.

32. (II) An explosion breaks an object into two pict
one of which has 1.5 times the mass of the othei|]
7500 J were released in the explosion, how much
netic energy did each piece acquire?

33. (II) A 1.0 x 10°-kg Toyota collides into the rear ¢
of a 2.2 X 10*kg Cadillac stopped at a red light. [}
bumpers lock, the brakes are locked, and the |
cars skid forward 2.8 m before stopping. The pull
officer, knowing that the coefficient of kinetic i
tion between tires and road is 0.40, calculates (|
speed of the Toyota at impact. What was that spc¢

34. (II) A measure of inelasticity in a head-on collisiol
two bodies is the coefficient of restitution, e, defincd

v -

e

where v} — v} is the relative velocity of the two b
ies after and v, — v, is their relative velocity bef
the collision. (a) Show that for a perfectly elastic ¢
lision, ¢ = 1, and for a completely inelastic collisi
e = 0.(b) A simple method for measuring the couf
cient of restitution for a body colliding with a v¢
hard surface like steel is to drop the body ontq
heavy steel plate, as shown in Fig. 7-33. Determiii¢
formula for e in terms of the original height A i
the maximum height reached after collision A'.

O

/ &l

{

FIGURE 7-33 Problem 34. Measurement of
coefficient of restitution.

35. (III) A wooden block is cut into two pieces, one wi
three times the mass of the other. A depressiot
made in both faces of the cut, so that a firecrac
can be placed in it with the block reassembled. I
reassembled block is set on a rough-surfaced tal
and the fuse is lit. When the firecracker explodes, {
two blocks separate. What is the ratio of distand
each block travels?




1) A 5.0-kg body moving in the +x direction at
5 m/s collides head-on with a 3.0-kg body moving
) the — x direction at 4.0 m/s. Find the final velocity
{ viach mass if: (a) the bodies stick together; (b) the
Lullision is elastic; (c) the 5.0-kg body is at rest after
he collision; (d) the 3.0-kg body is at rest after the
illision; (e) the 5.0-kg body has a velocity of
{}m/s in the —x direction after the collision. Are
hu results in (c), (d), and (e) “reasonable”? Explain.
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CIION 7-7

{I1) A radioactive nucleus at rest decays into a second
flliclcus, an electron, and a neutrino. The electron and
Ioulrino are emitted at right angles and have momenta
0l 9.30 X 107® kg-m/s, and 5.40 X 102 kg-m/s, re-
Apuctively. What is the magnitude and direction of the
fliomentum of the second (recoiling) nucleus?

{Il) An eagle (m, = 43kg) moving with speed
§), = 7.8m/s is on a collision course with a second
giple (m, = 5.6 kg) moving at v, = 102 m/s in a di-
j¢ction at right angles to the first. After they collide,
{hey hold onto one another. In what direction, and
with what speed, are they moving after the collision?
{I1) A billiard ball of mass m, = 0.400 kg moving with
ipeed v, = 1.80 m/s strikes a second ball, initially at

“the two bod:
zlocity befor¢
tly elastic col:
astic collision,
ing the coetll:

g with a very junt, of mass my = 0.500 kg. As a result of the colli-
body onto i #lom, the first ball is deflected off at an angle of 30.0°
« Determinc | with a speed v}, = 1.10 m/s. (a) Taking the x axis to
height h and lo the original direction of motion of ball A, write

lision A'. (lown the equations expressing the conservation of
{homentum for the components in the x and y direc-
{lons separately. (b) Solve these equations for the
#peed, vg, and angle, €', of ball B. Do not assume the
yollision is elastic.
(111) An atomic nucleus of mass m traveling with
3
upeed v collides elastically with a target particle of
Mngs 2m (initially at rest) and is scattered at 90°.
{#) At what angle does the target particle move after
the collision? (b) What are the final speeds of the two
purticles? (c) What fraction of the initial ke (AKE/KE)
% transferred to the target particle?
(111) After a completely inelastic collision between
{wo objects of equal mass, each having initial speed
i, the two move off together with speed v/3. What
wis the angle between their initial directions?

(I11) In order to convert a tough split in bowling, it is
liceessary to strike the pin a glancing blow as shown
in Fig. 7-34. Assume that the bowling ball, initially
{ruveling at 12.0 m/s, has five times the mass of a pin
iind that the pin goes off at 80° from the original di-
juction of the ball. Calculate (a) the final speed of
{he pin, (b) the final speed of the ball, and (c) the
ingle through which the ball was deflected. Assume
{he collision is elastic.

:ment of

sieces, one witl}
\ depression if
at a firecrackel
assembled. Th¢
i-surfaced tabl¢
er explodes, the
tio of distances

FIGURE 7-34 Problem 42.

* 43, (III) A neutron collides elastically with a helium nu-
cleus (at rest initially) whose mass is four times that
of the neutron. The helium nucleus is observed to re-
bound at an angle 8; = 45°. Determine the angle of
the neutron, 6y, and the speeds of the two particles,
v, and vy, after the collision. The neutron’s initial

speed is 6.2 X 10°m/s.

* 44, (IIT) Two billiard balls of equal mass move at right
angles and meet at the origin of an xy coordinate
system. One is moving upward along the y axis at
2.0m/s, and the other is moving to the right along
the x axis with speed 3.7 m/s. After the collision (as-
sumed elastic), the second ball is moving along the
positive y axis (Fig. 7-35). What is the final direction

of the first ball, and what are their two speeds?

* 45, (III) Prove that in the elastic collision of two objects
of identical mass, with one being a target initially at
rest, the angle between their final velocity vectors is

always 90°.

FIGURE 7-35 Problem 44. (Ball 1 after the
collision is not shown.)

+y

1)’2

v, =3.7m/s

"= 20 m/s

Problems

+x
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SECTION 7-8

46. (I) The distance between a carbon atom (m = 12u)
and an oxygen atom (m = 16 u) in the CO molecule,
is 1.13 X 1079 m. How far from the carbon atom is
the center of mass of the molecule?

47. (I) An empty 1050-kg car has its cM 2.50 m behind
the front of the car. How far from the front of the
car will the cM be when two people sit in the front

I seat 2.80 m from the front of the car, and three people

: sit in the back seat 3.90 m from the front? Assume
that each person has a mass of 70.0 kg.

48. (IT) Three cubes, of side k, 2/, and 3, are placed

next to one another (in contact) with their centers
along a straight line and the I = 2/, cube in the cen-
ter (Fig. 7-36). What is the position, along this line,
of the cM of this system? Assume the cubes are
made of the same uniform material.

- e @ Y = el = e i = - — e — —

1 20— EY PR—
FIGURE 7-36 Problem 48.

49. (I) A square uniform raft, 18 m by 18 m, of mass
6200 kg, is used as a ferryboat. If three cars, each of
mass 1200 kg, occupy the NE, SE, and SW corners,
determine‘the oM of the loaded ferryboat.

50. (IT) A (light) pallet has a load of cases of tomato paste
(see Fig. 7-37), each of which is a cube of length / and
has identical mass. Find the center of gravity in the
horizontal plane, so that the crane operator can pick
up the load without tipping it.

@ @

@ ,
ity
| e
, @
@
FIGURE 7-37
Problem 50.
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S el
FIGURE 7-38 Problem 51.

51. (II) A uniform circular plate of radius 2R has a ¢
cular hole of radius R cut out of it. The center of |
smaller circle is a distance 0.80R from the center
the larger circle, Fig. 7-38. What is the position of |
center of mass of the plate? [Hint: Try subtraction|

*SECTION 7-9

* 52, (I) Assume that your proportions are the same as th
in Table 7—1, and calculate the mass of one of your l¢

*53, (I) Determine the cM of an outstretched arm usiil
Table 7-1.

* 54, (IT) Use Table 7-1 to calculate the position of the (%
of an arm bent at a right angle. Assume that the |
son is 155 cm tall.

* 55, (II) Calculate how far below the torso’s median lig}
the cM will be when a jumper is in a position su
that his arms and legs are hanging vertically, and If
trunk and head are horizontal. Will this be outs
the body? Use Table 7-1.

*SECTION 7-10

*56. (II) The masses of the Earth and Moon Al
598 % 10%kg and 7.35 x 10% kg, respectively, ui
their centers are separated by 3.84 X 10%s
(@) Where is the cM of this system located? (b) WIi
can you say about the motion of the Earth-Mog
system about the Sun, and of the Earth and Mog
separately about the Sun?

*57, (II) A 55-kg woman and a 90-kg man stand 10.0§
apart on frictionless ice. (a) How far from the wom
is their cM? (b) If they hold on to the two ends of
rope, and the man pulls on the rope so that he mové
2.5 m, how far from the woman will he be now
(c) How far will the man have moved when he collidt
with the woman? ;




8.00 cm

H) A mallet consists of a uniform cylindrical head
f mass 2.00 kg and a diameter 0.0800 m mounted on
uniform cylindrical handle of mass 0.500kg and
lonpth 0.240 m, as shown in Fig. 7-39. If this mallet is
{osned, spinning, into the air, how far above the bot-
{m of the handle is the point that will follow a par-
iholic trajectory?

i1.
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GENERAL PROBLEMS

*59. (II) (a) Suppose that in Example 7-13 (Fig. 7-27),
my = 3m;. Where then would my land? (b) What if
my = 3my?

*60. (IIT) A helium balloon and its gondola, of mass M,
are in the air and stationary with respect to the
ground. A passenger, of mass m, then climbs out and
slides down a rope with speed v, measured with re-
spect to the balloon. With what speed and direction
(relative to Earth) does the balloon then move?
What happens if the passenger stops?

During a Chicago storm, winds can whip horizontally

i\t speeds of 100 km/h. If the air strikes a person at
{he rate of 40 kg/s per square meter and is brought
{u rest, calculate the force of the wind on a person.

Ansume the person’s area to be 1.50m high and

{),50 m wide. Compare to the typical maximum force
ol friction (u = 1.0) between the person and the
giround, if the person has a mass of 70 kg.

A 5800-kg open railroad car coasts along with a con-
stant speed of 8.60 m/s on a level track. Snow begins to
full vertically and fills the car at a rate of 3.50 kg/min.
lpnoring friction with the tracks, what is the speed of
{he car after 90.0 min?

A 0.145-kg pitched baseball moving horizontally at
15.0 m/s strikes a bat and is popped straight up to a
height of 55.6 m before turning around. If the con-
tinet time is 0.50 ms, calculate the average force on
the ball during the contact.

A rocket of mass m traveling with speed v, along the
v uxis suddenly shoots out fuel, equal to one third of
i4 mass, parallel to the y axis with speed 2v,. Give
(the components of the final velocity of the rocket.

A novice pool player is faced with the corner pocket
thot shown in Fig. 7-40. The relative size of some of
{he dimensions (the units aren’t important, only
iheir ratios) are also shown. Should the player be
worried about this being a “scratch shot,” one where
(he cue ball will also fall into a pocket? Give details.
A 140-kg astronaut (including space suit) acquires a
#peed of 2.50m/s by pushing off with his legs from
nn 1800-kg space capsule. (¢) What is the change in
speed of the space capsule? (b) If the push lasts
().500 s, what is the average force exerted by each on
the other? As the reference frame, use the position
ol the capsule before the push.

‘@ Cue ball

FIGURE 7-40 Problem 65.

67. A golf ball rolls off the top of a flight of concrete stairs
of total vertical height 4.00 m. The ball hits four times
on the way down, each time striking the horizontal
part of a different step. If all collisions are perfectly
elastic, what is the bounce height on the fifth bounce
when the ball reaches the bottom of the stairs?

68. A ball of mass m makes a head-on elastic collision
with a second ball (at rest) and rebounds with a
speed equal to one-fourth its original speed. What is
the mass of the second ball?

69. You have been hired as an expert witness in a court
case involving an automobile accident. The accident
involved a car of mass 2000kg (car A) which ap-
proached a stationary car of mass 1000 kg (car B). The
driver of car A applied his brakes 15m before he
crashed into car B. After the collision, car A slid 15m
while car B slid 30 m. The coefficient of kinetic friction
between the locked wheels and the road was mea-
sured to be 0.60. Prove to the court that the driver of
car A was exceeding the 55-mph speed limit before ap-
plying the brakes.
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| *70. Two people, one of mass 75 kg and the other of mass

60 kg, sit in a rowboat of mass 80 kg. With the boat

initially at rest, the two people, who have been sit-

ting at opposite ends of the boat 2.0 m apart from

each other, now exchange seats. How far and in what
direction will the boat move?

71. A meteor whose mass was about 10®kg struck the

Earth (m = 6.0 X 10%kg) with a speed of about

15 km/s and came to rest in the Earth. () What was

the Earth’s recoil speed? (b) What fraction of the

meteor’s kinetic energy was transformed to KE of the

Earth? (¢) By how much did the Earth’s ke change

. as a result of this collision?

72. An explosion breaks an object, originally at rest, into
two fragments. One fragment acquires twice the kinetic
energy of the other. What is the ratio of their masses?

73. The force on a bullet is given by the formula
F = 580 — 1.8 X 10° over the time interval t = 0 to
t = 3.0 X 10735, In this formula, ¢ is in seconds and F
is in newtons. (a) Plot a graph of F vs. ¢ for t = 0 to
t = 3.0 ms. (b) Estimate, using graphical methods, the
impulse given the bullet. (c) If the bullet achieves a
speed of 220 m/s as a result of this impulse, given to
it in the barrel of a gun, what must its mass be?

/—

75.

76.

- T T T e~ FIGURE 7-42 Problem

FIGURE 7-41 Problems 74 and 75.

In Problem 74 (Fig. 7-41), what is the upper limit ¢
the mass m if it is to rebound from M, slide up ||
incline, stop, slide down the incline, and collide wit
M again?

A 0.25-kg skeet (clay target) is fired at an angle of 3!
to the horizon with a speed of 30 m/s (Fig. 7-42]
When it reaches the maximum height, it is hit fro
below by a 15-g pellet traveling vertically upward
a speed of 200 m/s. The pellet is embedded in t}
skeet. (@) How much higher did the skeet go ujl
(b) How much extra distance, Ax, does the skl
travel because of the collision?

Skeet/// ’:' S~a
e A = S~
v =200 m/s \\\\\ Sa
~
Pellet =~ N
h i =~ N
~
~o N
\\ \
= \
Zp = | —Ax |

74. A block of mass m = 2.20 kg slides down a 30.0° in-
cline which is 3.60 m high. At the bottom, it strikes a
block of mass M = 7.00 kg which is at rest on a hori-
zontal surface, Fig. 7-41. (Assume a smooth transition
at the bottom of the incline.) If the collision is elastic,
and friction can be ignored, determine (a) the speeds
of the two blocks after the collision, and (b) how far
back up the incline the smaller mass will go.

e
——— -

U'Sp=?
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77. The gravitational slingshot effect. Figure 7-43 sho

the planet Saturn moving in the negative x direction
its orbital speed (with respect to the sun) of 9.6 km/
The mass of Saturn is 5.69 X 10%kg. A spacecrif
with mass 825 kg approaches Saturn, moving initiul|
in the +x direction at 10.4 km/s. The gravitational
traction of Saturn (a conservative force) causes (||
spacecraft to swing around it (orbit shown as dashgf
line) and head off in the opposite direction. Estimu
the final speed of the spacecraft after it is far enoug
away to be nearly free of Saturn’s gravitational pull,

FIGURE 7-43
Problem 77.




