A roller coaster at the highest
point of its journey has its
maximum potential energy (PE).
As it rolls downhill, it loses pe
and gains in kinetic energy (ke).
Total energy is conserved. So if
there is no friction, the loss in pE
equals the gain in KE. If there is
friction, the loss in pE equals the
gain in ke plus the thermal
energy produced by the work
done by friction.
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ntil now we have been studying the motion of an object in terms
of Newton’s three laws of motion. In that analysis, force played a
central role as the quantity determining the motion. In this chapter
il the next, we discuss an alternative analysis of the motion of an object
{¢crms of the quantities energy and momentum. The importance of these
lntities is that they are conserved. That is, in quite general circumstances
gy remain constant. That conserved quantities exist not only gives us a
puper insight into the nature of the world, but also gives us another way to
jproach practical problems. We still consider only translational motion,
{ihout rotation, in this chapter.
‘I'he conservation laws of energy and momentum are especially valu-
)¢ in dealing with systems of many objects in which a detailed consider-
lon of the forces involved would be difficult.

This chapter is devoted to the very important concept of energy and
\u closely related concept of work, which are scalar quantities and thus
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escapes). They wve no direction associated with them. Since these two quantities are
louds orbiting wilurs, they are often easier to deal with than are vector quantities such as
£ 60light-years Jiice and acceleration. Energy derives its importance from two sources.
nresr:;ss of ti§ It it is a conserved quantity. Second, energy is a concept that is useful

0l only in the study of motion, but in all areas of physics and other
Wicnces as well. But before discussing energy itself, we first examine the
vneept of work.
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Work Done by a Constant Force

The word work has a variety of meanings in everyday language. But |
physics, work is given a very specific meaning to describe what is accon
plished by the action of a force when it acts on an object as the obje(
moves through a distance. Specifically, the work done on an object by
constant force (constant in both magnitude and direction) is defined to If
the product of the magnitude of the displacement times the component
the force parallel to the displacement. In equation form, we can write

W=F||d

where F| is the component of the constant force F parallel to the dif
placement d. We can also write

Work defined W = Fd cos 6, (6-1

where F is the magnitude of the constant force, d is the magnitude of tl
displacement of the object, and 0 is the angle between the directions of th
force and the displacement. The cos 8 factor appears in Eq. 6-1 becau
Fcos 6 (= F)) is the component of F parallel to d (Fig. 6-1). Work is
scalar quantity—it has only magnitude.
Let’s first consider the case in which the motion and the force are |
. I ‘ the same direction, so 8 = 0 andcos 6 = 1, and then W = Fd. For exanj
| ple, if you push a loaded grocery cart a distance of 50 m by exerting a hof
izontal force of 30 N on the cart, you do 30N X 50 m = 1500 N-m of wor
on the cart.
Units for work: As this example shows, in SI units, work is measured in newton-meterf,
the joule A special name is given to this unit, the joule (J): 1J = 1 N-m. In the cgs sy
tem, the unit of work is called the erg and is defined as 1 erg = 1 dyne-cn
- In British units, work is measured in foot-pounds. It is easy to show thuj
| 1J = 107 erg = 0.7376 ft-1b.
| A force can be exerted on an object and yet do no work. For examplg
Force without work  if you hold a heavy bag of groceries in your hands at rest, you do no work
! on it. A force is exerted, but the displacement is zero, so the work W = (),
| You also do no work on the bag of groceries if you carry it as you walk

FIGURE 6-1 A person pulling
| a crate along the floor. The work

done by the force Fis W = Fd cos 6,
I where d is the displacement.

I ——
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u do no work
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t as you walk

lzontally across the floor at constant velocity, as shown in Fig, 6-2. No
)izontal force is required to move the package at a constant velocity.
wever, you do exert an upward force F on the package equal to its
#ight. But this upward force is perpendicular to the horizontal motion of
0 package and thus has nothing to do with that motion. Hence, the up-
Wid force is doing no work. This conclusion comes from our definition of
ik, Eq. 6-1: W = 0, because 6 = 90° and cos 90° = 0. Thus, when a par-
i iilnr force is perpendicular to the motion, no work is done by that force.
hen you start or stop walking, there is a horizontal acceleration and
il dlo briefly exert a horizontal force, and thus do work.)

When dealing with work, as with force, it is necessary to specify
Miether you are talking about work done by a specific object or done on a
geilic object. It is also important to specify whether the work done is
10 1o one particular force (and which one), or work done by the total net
i¢e on the object.

FIGURE 6-2 Work done on

NN Work done on a crate. A 50-kg crate is pulled 40m bag of groceries in this case

#long a horizontal floor by a constant force exerted by a person, s zero since F is perpendicular
/', = 100N, which acts at a 37° angle as shown in Fig. 6-3. The floor is o the displacement d.

fough and exerts a friction force F;, = 50 N. Determine the work done by

pich force acting on the crate, and the net work done on the crate.

HOLUTION We choose our coordinate system so that x can be the vec-
{or that represents the 40-m displacement (that is, along the x axis).
I'here are four forces acting on the crate, as shown in Fig. 6-3: the force
‘pxcrted by the person Fp; the friction force Fy; the crate’s weight mg; and
the normal force Fy exerted upward by the floor. The work done by the
firuvitational and normal forces is zero, since they are perpendicular to
{he displacement x (8 = 90° in Eq. 6-1):

Wg = mgxcos90° =0

Wy = Fyx cos 90° = 0.
I'he work done by Fy is

H

Wp = Fpx cos 6 = (100 N)(40 m) cos 37° = 3200J.
I'he work done by the friction force is

W, = F;.x cos 180°

= (50 N)(40 m)(—1) = —20007J.

I'hc angle between the displacement x and Fy, is 180° because they point

I opposite directions. Since the force of friction is opposing the motion,
|| does negative work on the crate.

y FIGURE 6-3 Example 6-1:
50-kg crate being pulled along
x a floor.
Fp
Pt scom) &
B § VA
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W, is the work done by all the
forces acting on the body

Negative work

"I FIGURE 6-4 Example 6-2.

Finally, the net work can be calculated in two equivalent ways. (1) Th “
net work done on an object is the algebraic sum of the work done by
each force, since work is a scalar:

Wit = W + Wy + Wi + Wy,
=0+ 0+ 3200J — 2000J = 1200 J.

(2) The net work can also be calculated by first determining the net forc
on the object and then taking its component along the displacemenl
(Fyet)s = Fp cos 6 — F;.. Then the net work is

Wnet = (Fnet)xx = (FP cos 6 — Ffr)x
= (100 N cos 37° — 50 N)(40 m) = 1200 J.

In the vertical (y) direction, there is no displacement and no work don¢

In Example 6-1 we saw that friction did negative work. In general, th¢
work done by a force is negative whenever the force (or the component of
the force, Fj) acts in the direction opposite to the direction of motion.

Work on a backpack. (a) Determine the work a hiker
must do on a 15.0-kg backpack to carry it up a hill of height 2 = 10.0m,
as shown in Fig. 6-4a. Determine also (b) the work done by gravity on
the backpack, and (c¢) the net work done on the backpack. For simplicity
assume the motion is smooth and at constant velocity (i.e., there is negli¢
gible acceleration).

SOLUTION (a) The forces on the backpack are shown in Fig. 6—4b: th¢
force of gravity, mg, acting downward; and Fy, the force the hiker mus
exert upward to support the pack. Since we assume there is negligible ac«
celeration, horizontal forces are negligible. In the vertical (y) direction, we
choose up as positive. Newton’s second law applied to the backpack gives

2F, = ma,
Fy—mg=0.
Hence,
Fy = mg = (15.0kg)(9.80 m/s?) = 147 N.

To calculate the work done by the hiker on the backpack, Eq. 6-1 can be|
written

Wy = Fy(d cos 6),

and we note from Fig. 6—4a that d cos 8 = h. So the work done by the
hiker can be written:

Wy = Fy(d cos 0) = Fyh

mgh

(147 N)(10.0 m) = 1470 J.

Note that the work done depends only on the change in elevation and
not on the angle of the hill, 6. The same work would be done to lift the
pack vertically the same height A.

148 CHAPTER6 Work and Energy




ys. (1) The
k done by

) I'he work done by gravity is (from Eq. 6-1 and Fig. 6-4c):
W = (Fg)(d) cos (180° — 6).
Jce cos (180° — 6) = —cos 6, we have
Wi = (Fg)(d)(—cos 6)

mg(—d cos 6)

— mgh
—(15.0 kg)(9.80 m/s?)(10.0 m) = —14701J.

Nole that the work done by gravity doesn’t depend on the angle of the  Work done by gravity depends on
Iicline but only on the vertical height 4 of the hill. This is because gravity the height of the hill and not on the
oes work only in the vertical direction. We will make use of this impor-  angle of incline

inl result later.

{1') The net work done on the backpack is W, = 0, since the net force on

e backpack is zero (it is assumed not to accelerate significantly). We

L also determine the net work done by writing

W, = Wg + Wy = —1470] + 1470] = 0

e net force
placement:

1200 J.

work done.,

reneral, the

mponent of |
notion. “which is, as it should be, the same result.
Note in this example that even though the net work on the back-  Hiker does work on pack,
L ek is zero, the hiker nonetheless does do work on the backpack equal  but the net work = 0
ork a hiker ) 1470, v Moon
h = 10.0m, _ = T~
7 gravity on DNCEPTUAL EXAMPLE 6-3| Does Earth do work on the Moon? The -7 K, N
r simplicity, non revolves around the Earth in a circular orbit, kept there by the // \\
ere is negli- Wiivitational force exerted by the Earth. Does gravity do (a) positive // \\
wuork, (b) negative work, or (c) no work at all on the Moon? ! \
ig. 6-4b: the 'RIISPONSE The gravitational force on the Moon (Fig. 6-5) acts to- | O }
hiker must wird the Earth (as a centripetal force), inward along the radius of the |\ !
egligible ac- Muoon’s orbit. The Moon’s displacement at any moment is along the \\ Earth /’
lirection, we | tiiele, in the direction of its velocity, perpendicular to the radius and \ /
:pack gives ' L\orpcndicular to the force of gravity. Hence the angle 6 between the AN 7/
| loree and the instantaneous displacement of the Moon is 90°, and the S Pid
work done by gravity is therefore zero (cos 90° = 0). [T 0
" FIGURE 6-5
Conceptual Example 6-3.
(- 6-1 can be “ PROBLEM SOLVING Work
I, Choose an xy coordinate system. If the body is 4. Find the work done by a specific force on the
~ in motion, it may be convenient to choose the body by using W = Fdcos 6. Note that the
done by the direction of motion as one of the coordinate di- work done is negative when a force tends to
rections. [Thus, for an object on an incline, you oppose the displacement.
might choose one coordinate axis to be parallel 5, To find the net work done on the body, either
4703 lo the incline.] (a) find the work done by each force and add
’ ) 3, Draw a free-body diagram showing ail the the results algebraically; or (b) find the net
levatiop and forces acting on the body. force on the object, F,.,, and then use it to find
ne to Lift the }, Determine any unknown forces using Newton’s the net work done:
laws. Woet = Frer d cOs 6.
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* &1 Work Done by a Varying Force

200 + If the force acting on an object is constant, the work done by that force ci

be calculated using Eq. 6-1. But in many cases, the force varies in magnitud
or direction during a process. For example, as a rocket moves away froij
Earth, work is done to overcome the force of gravity, which varies as the i
verse square of the distance from the Earth’s center. Other examples are tl)
force exerted by a spring, which increases with the amount of stretch, or (l)
work done by a varying force in pulling a box or cart up an uneven hill.
Distance, d The work done by a varying force can be determined graphically. Tl
@) procedure is like that for determining displacement when the velocity
known as a function of time (Section 2-8). To determine the work done by
a variable force, we plot F( = Fcos 6, the component of F parallel to th
200 + direction of motion at any pomt) as a function of distance d, as in Fig. 6-0i
We divide the distance into small segments Ad. For each segment, we ind|
cate the average of Fj by a horizontal dashed line. Then the work done fo
each segment is AW = FAd, which is the area of a rectangle (Ad) wid
and (F)) high. The total work done to move the object a total distanc
d = dp — d, is the sum of the areas of the rectangles (five in the cas
0 1 P shown in Fig. 6-6a). Usually, the average value of (F)) for each segmen
) A Distance.d  _ Must be estimated, and a reasonable approximation of the work done ca
b | ’ then be made. If we subdivide the distance into many more segments, A
I (b) can be made smaller and our estimate of the work done more accurate. I
the limit as Ad approaches zero, the total area of the many narrow rectan
FIGURE 6-6 The work done gles approaches the area under the curve, Fig. 6-6b. That is, the work dong
:’gk?nf?r(c:) f hfaa:ulr)r? g?ltilga:::a:ﬁf by a variable force in moving an object between two points is equal to th
the = egcétangles; (b) the area under ~ 97€4 under the F) vs. d curve between those two points.
the curve of Fj vs. d.

E )

(5%} Kinetic Energy, and
the Work-Energy Principle

Energy is one of the most important concepts in science. Yet we cannot givI
a simple general definition of energy in only a few words. Nonetheless, eacl|
specific type of energy can be defined fairly simply. In this chapter, we d¢
fine translational kinetic energy and potential energy. In later chapters, w¢
will examine other types of energy, such as that related to heat (Chapters 14
and 15). The crucial aspect of all the types of energy is that the sum of all
types, the fotal energy, remains the same after any process occurs as it wil
before: that is, the quantity “energy” can be defined so that it is a conserve
quantity. More on this shortly.

For the purposes of this chapter, we can define energy in the tradis
tional way as “the ability to do work.” This simple definition is not very
precise, nor is it really valid for all types of energy.” However, for mechan
ical energy which we discuss in this chapter, it serves to underscore the
fundamental connection between work and energy. We now define and
discuss one of the basic types of energy, kinetic energy.

A moving object can do work on another object it strikes. A flying can
nonball does work on a brick wall it knocks down; a moving hammer docs
work on a nail it strikes. In either case, a moving object exerts a force on il

"Energy associated with heat is often not available to do work, as we will discuss in detail i||
Chapter 15.
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¢ond object and moves it through a distance. An object in motion has the
hility to do work and thus can be said to have energy. The energy of motion

¢illed kinetic energy, from the Greek word kinetikos, meaning “motion.”
In order to obtain a quantitative definition for kinetic energy, let us
Isider an object of mass m that is moving in a straight line with an initial
hued v,. To accelerate it uniformly to a speed v,, a constant net force F,, is
vfted on it parallel to its motion over a distance d, Fig. 6-7. Then the net
ik done on the object is W, = F,., d. We apply Newton’s second law,
= ma, and use Eq. 2-10c, which we now write as v2 = v} + 2ad, with

| I the initial speed and v, the final speed. We solve for a in Eq. 2-10c,

v} — v}
T u

Jjun substitute this into F,,, = ma, and determine the work done:

v — ot
Woet = Fped = mad = m( 2d )d

1 2 _ 1 2
Wi = 2 mv; — ;muy.

(6-2)

¢ define the quantity 3mv? to be the translational kinetic energy (k) of
he object:

KE = 5 mv?. (6-3)

We call this “translational” kinetic energy to distinguish it from rotational
Inctic energy, which we will discuss later, in Chapter 8.) Equation 6-2,
urived here for one-dimensional motion, is valid in general for transla-
pnal motion in three dimensions and even if the force varies. We can

Wt = KE; — KE,
!
W, = AKE (6-4)

{juation 6-4 (or Eq. 6-2) is an important result. It can be stated in words:

The net work done on an object is equal to the change in its kinetic
energy.

his is known as the work-energy principle. Notice, however, that we
Mide use of Newton’s second law, F,., = ma, where F,, is the net force—
lie sum of all forces acting on the object. Thus, the work-energy principle
vilid only if W is the net work done on the object—that is, the work
ine by all forces acting on the object.
The work-energy principle tells us that if (positive) net work W is
e on a body, its kinetic energy increases by an amount W. The principle

SECTION 6-3

FIGURE 6-7 A constant
net force F,, accelerates a
bus from speed v, to speed v,
over a distance d. The work
doneis W = F, . d.

Kinetic energy defined

WORK-ENERGY PRINCIPLE

WORK-ENERGY PRINCIPLE

Kinetic Energy, and the Work-Energy Principle 15




FIGURE 6-8 A moving
hammer strikes a nail and comes
to rest. The hammer exerts a
force F on the nail; the nail
exerts a force — F on the hammer
(Newton’s third law). The work
done on the nail is positive

(W, = Fd > 0). The work

done on the hammer is negative

| (W, = —Fd).

. Work-energy
principle
summarized

Energy units:
the joule

FIGURE 6-9 Example 6-5.

vy = 20m/s vy = 30 m/s

-~ nall=""" e

also holds true for the reverse situation: if negative net work W is done vj
the body, the body’s kinetic energy decreases by an amount W. That is, |
net force exerted on a body opposite to the body’s direction of motion r

duces its speed and its kinetic energy. An example is a moving hammg|
(Fig. 6-8) striking a nail. The net force on the hammer (—F in the figur

where F is assumed constant for simplicity) acts toward the left, whercuf
the displacement d is toward the right. So the net work done on the hammcf
W), = (F)(d)(cos180°) = — Fd, is negative and the hammer’s kinetic enerpy
decreases (usually to zero). Also note in this example that the hammer, as |
slows down, does positive work on the nail: if the nail exerts a force —F on (¢
hammer to slow it down, the hammer exerts a force +F on the nail (Newton's
third law) through the distance d. Hence the net work done on the nail f
W, = (+ F)(+d) = Fd = — W,, and W, is positive. Thus the decrease ilj
kinetic energy of the hammer is also equal to the work the hammer can do ol
another object—which is consistent with energy being the ability to do work

Note that whereas the translational kinetic energy (=3mw?) is directly’
proportional to the mass of the object, it is proportional to the square o
the speed. Thus, if the mass is doubled, the kinetic energy is doubled. Bu
if the speed is doubled, the object has four times as much kinetic energy
and is therefore capable of doing four times as much work.

To summarize, the connection between work and kinetic energy
(Eq. 6-4) operates both ways. If the net work W done on an object is poy
itive, then the object’s kinetic energy increases. If the net work W done ol
an object is negative, its kinetic energy decreases. If the net work done o1l
the object is zero, its kinetic energy remains constant (which also means ity
speed is constant).

Because of the direct connection between work and kinetic energy
(Eq. 6-4), energy is measured in the same units as work: joules in SI units,
ergs in the cgs, and foot-pounds in the British system. Like work, kineti¢
energy is a scalar quantity. The kinetic energy of a group of objects is the
(algebraic) sum of the kinetic energies of the individual objects.

DGR KE and work done on a baseball. A 145-g baseball i
thrown with a speed of 25 m/s. (a) What is its kinetic energy? (b) How mucl
work was done on the ball to make it reach this speed, if it started from rest’

SOLUTION (a) The kinetic energy is
KE = ;mv? = 1(0.145 kg)(25 m/s)> = 45 J.

(b) Since the initial kinetic energy was zero, the net work done is just
equal to the final kinetic energy, 45 J.

DN ARNEUN Work on a car, to increase its KE. How much work is re-
quired to accelerate a 1000-kg car from 20 m/s to 30 m/s (Fig. 6-9)?

SOLUTION The net work needed is equal to the increase in Kinetic
energy:
W = KE, — KE,

=102 1,72
= 2mv; T MY

= (1000 kg)(30 m/s)> — (1000 kg)(20 m/s)?
=25x%10°7.
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i, = 60 km/h vy=0
: Hes
d(d = 20m) g '

(a)

1 = 120 km/h vy =0

A e
dd="

(b)

ONCEPTUAL EXAMPLE 6-6 | Work to stop a car. An automobile
ijiveling 60 km/h can brake to a stop within a distance of 20 m (Fig. 6-10a).
Al the car is going twice as fast, 120 km/h, what is its stopping distance
{I'lyr. 6-10b)? The maximum braking force is approximately independent
Wl npeed.

HICSPONSE Since the stopping force F is approximately constant, the
Otk needed to stop the car, Fd, is proportional to the distance traveled.
We upply the work-energy principle, noting that F and d are in opposite
Wirections and that the final speed of the car is zero:

W, = Fd cos 180° = — Fd
= AKE = 0 — } %

hius, since the force and mass are constant, we can see that the stopping
{iitunce, d, increases with the square of the speed:

d « %

[ (e car’s initial speed is doubled, the stopping distance is (2)> = 4 times
4 preat, or 80 m.

Potential Energy

/0 have just discussed how an object is said to have energy by virtue of its
tion, which we call kinetic energy. But it is also possible to have poten-
| energy, which is the energy associated with forces that depend on the
ipition or configuration of a body (or bodies) and the surroundings. Var-
Jin types of potential energy (PE) can be defined, and each type is associ-
1o with a particular force.

A wound-up clock spring is an example of potential energy. The clock
piing acquired its potential energy because work was done on it by the
json winding the clock. As the spring unwinds, it exerts a force and does
btk to move the clock hands around.

I’crhaps the most common example of potential energy is gravitational
lential energy. A heavy brick held high in the air has potential energy be-
e of its position relative to the Earth. It has the ability to do work, for if it
jelcased, it will fall to the ground due to the gravitational force, and can do
Wik on, say, a stake, driving it into the ground. Let us determine the gravita-
hal potential energy of an object near the surface of the Earth. In order to

FIGURE 6-10
Conceptual Example 6-6.

Stopping distance «

initial speed squared

Potential energy

PE of gravity
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FIGURE 6-11

F.. (exerted
by hand)

Fg=mg

|—— 1
L__ |

A person exerts

an upward force F,,, = mg to lift a
brick from y, to y,.
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Gravitational PE

lift an object of mass m vertically, an upward force at least equal to its weigl
mg, must be exerted on it, say, by a person’s hand. In order to lift it without 4@
celeration a height A, from position y, to y, in Fig. 6-11 (upward directio
chosen positive), a person must do work equal to the product of the neede
external force, F,,, = mg upward, and the vertical distance 4. That is,

Wy = Foqd cos 0° = mgh

=mg(y, — y1)- (6-5a

Gravity is also acting on the object as it moves from ¥, to y,, and douf
work on it equal to

W = Fgd cos 6 = mgh cos 180°,
where 6 = 180° because F; and d point in opposite directions. So
Ws = —mgh
= —mg(y, — y1). (6-5b

If we now allow the object to start from rest and fall freely under the actiof
of gravity, it acquires a velocity given by v? = 2gh (Eq. 2-10c) after falling
a height h. It then has kinetic energy jmv? = jm(2gh) = mgh, and if ||
strikes a stake it can do work on the stake equal to mgh (work-energ
principle). Thus, to raise an object of mass m to a height & requires a
amount of work equal to mgh (Eq. 6-5a). And once at height 4, the object
has the ability to do an amount of work equal to mgh.

We therefore define the gravitational potential energy of a body uf

the product of its weight mg and its height y above some reference level
(such as the ground):

RE /1oy (6-6
The higher an object is above the ground, the more gravitational potentii
energy it has. We combine Eq. 6-5a with Eq. 6-6:

Wext =mg (y2 - yl)

W« = PE, — PE; = APE. (6-Ta

That is, the work done by an external force to move the mass m fron

point 1 to point 2 (without acceleration) is equal to the change in poten
tial energy of the object between points 1 and 2.

We can also write APE in terms of the work done by gravity itsell;
starting from Eq. 6-5b, and obtain

WG =
WG=

—mg(y, — 1)

— APE. (6-Th)

That is, the work done by gravity as the mass m moves from point 1 g/
point 2 is equal to the negative of the difference in potential energy be
tween points 1 and 2.

Notice that the gravitational potential energy depends on the vertica |
height of the object above some reference level (Eq. 6-6), and in some situ
ations, you may wonder from what point to measure the height y. The
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\Vitational potential energy of a book held high above a table, for exam-
, tlcpends on whether we measure y from the top of the table, from the
I, or from some other reference point. What is physically important in
¥ situation is the change in potential energy, APE, because that is what is
liled to the work done, Egs. 6-7, and it is APE that can be measured. We
| Ihus choose to measure y from any reference point that is convenient,
il we must choose it at the start and be consistent throughout a calcula-
i), The change in potential energy between any two points does not de-
bl on this choice.

An important result we discussed earlier (see Example 6-2 and
I, 6-4) is that, since the gravity force does work only in the vertical di-
t1lon, the work done by gravity depends only on the vertical height A,
il not on the path taken, whether it be purely vertical motion or, say,
Jitlon along an incline. Thus, from Eqs. 6—7, we see that changes in grav-

o its weight,

without ac-
rd direction
the needed
tis,

(6-5a)

15, and does

.So

(6-5b)

2r the action
after falling
gh, and if it
work-energy
requires an
h, the objecl

IV JU=RCEYE Potential energy changes for a roller coaster. A 1000-kg
\uller-coaster car moves from point A, Fig. 6-12, to point B and then to
jhint C. (@) What is its gravitational potential energy at B and C relative
1)) point A? That is, take y = 0 at point A. (b) What is the change in po-
gntial energy when it goes from B to C? (c) Repeat parts (2) and (b),
hut take the reference point (y = 0) to be at point C.

SOLUTION (a) We take upward as the positive direction, and measure
[ fhe heights from point A, which means initially that the potential energy
4 z¢ro. At point B, where y; = 10m,

PE; = mgy; = (1000 kg)(9.8 m/s?)(10m) = 9.8 X 10*J.
Al point C, yo = —15m, since C is below A. Therefore,
PE. = mgy. = (1000 kg)(9.8 m/s?)(—15m) = —1.5 X 10°J.
4 (h) In going from B to C, the potential energy change (PEg,,; — PEiial) 1S
PE. — PEp = (—1.5 X 10°J) — (9.8 X 10*])
=—-25X%X10°J.

f a body as
‘erence level

(6-6)

nal potential

(6-7a)

nass m from

1ge in poten- | |'he gravitational potential energy decreases by 2.5 X 10°J.

{¢) In this instance, y, = +15m at point A, so the potential energy ini-
llully (at A) is equal to

PE, = (1000 kg)(9.8 m/s?)(15m) = 1.5 X 10°J.
Al B, yg = 25m, so the potential energy is
Ep = 2.5 X 10°].

gravity itself,

(6-Th)

ym point 1 to

Al C,y- = 0,s0 the potential energy is zero. The change in potential energy
al energy be-

| poing from B to Cis
PE. — PEg =0 — 2.5 X 10°] = —2.5 X 10°7J,

“which is the same as in part (b).

n the vertical
.1in some situ-
height y. The
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FIGURE 6-12 Example 6-7.



FIGURE 6-13 A spring (a)
can store energy (elastic pE) when
compressed as in (b), and can do
work when released, as in (c).

PE defined in general

| PE of elastic spring

FIGURE 6-14 (a) Springin
normal (unstretched) position.
(b) Spring is stretched by a person
exerting a force F to the right

| (positive direction). The spring pulls
back with a force Fg when Fg = —kx.
() Person compresses the spring
(x < 0), and the spring pushes back
with a force Fg = — kx where Fg > 0
because x < 0.

|‘ Elastic pE

(b)

There are other kinds of potential energy besides gravitational. Eacl
form of potential energy is associated with a particular force, and can be d¢
fined analogously to gravitational potential energy. In general, the change |
potential energy associated with a particular force, is equal to the negative (
the work done by that force if the object is moved from one point to a secon
point (as in Eq. 6-7b for gravity). Alternatively, we can define the change (i
potential energy as the work required of an external force to move the obju
without acceleration between the two points, as in Eq. 6-7a.

We now consider another type of potential energy, that associated will
elastic materials. This includes a great variety of practical applications. i
take a simple example, consider the simple coil spring shown in Fig, 6-1}
The spring has potential energy when compressed (or stretched), for when |
is released, it can do work on a ball as shown. For a person to hold a sprir|
either stretched or compressed an amount x from its normal (unstretched
length requires a force F that is directly proportional to x. That is,

Fp = kx,

where k is a constant, called the spring constant, and is a measure of tli

stiffness of the particular spring. The spring itself exerts a force in the op
posite direction (Fig. 6-14),

FS = —kx. (6-8

This force is sometimes called a “restoring force” because the spring cx
erts its force in the direction opposite the displacement (hence the miny
sign), acting to return it to its normal length. Equation 6-8 is known i
the spring equation and also as Hooke’s law (see Chapter 9), and is accu
rate for springs as long as x is not too great.

In order to calculate the potential energy of a stretched spring, let u
calculate the work required to stretch it (Fig. 6-14b). We might expect ((
use Eq. 6-1 for the work done on it, W = Fx, where x is the amount it |§
stretched from its normal length. But this would be incorrect since th
force Fp, (=kx) is not constant but varies over this distance, becomin
greater the more the spring is stretched, as shown graphically in Fig. 6-1§
So let us use the average force, F. Since F, varies linearly—from zero
the unstretched position to kx when stretched to x—the average force |f
F =3[0 + kx] = jkx, where x here is the final amount stretched (showi|
as x; in Fig. 6-15 for clarity). The work done is then

W = Fox = (Gkx)(x) = Jkx?
Hence the elastic potential energy is proportional to the square of th¢
amount stretched':

elastic PE = } kx>. (6-9)

If a spring is compressed a distance x from its normal length, the force if
still F, = kx, and again the potential energy is given by this equation

"We can also obtain Eq. 6-9 using Section 6-2. The work done, and hence APE, equals the are
under the F vs. x graph of Fig. 6-15. This area is a triangle (colored in Fig. 6-15) of altitude &
and base x, and hence of area (for a triangle) equal to } (kx)(x) = jkx%.
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¥ v can be either the amount compressed or amount stretched from

ormal position.
In cach of the above examples of potential energy—from a brick held
height y, to a stretched or compressed spring—an object has the ca-
{ly or potential to do work even though it is not yet actually doing it.
ih these examples, we can also see that energy can be stored, for later
, In the form of potential energy (Fig. 613, for example, for a spring).

ulso worth noting that although there is a single universal formula for

Irunslational kinetic energy of an object, ;mv?, there is no single for-
ln for potential energy. Instead, the mathematical form of the potential

iy depends on the force involved.

I’otential energy belongs to a system, and not to a single object alone.
lential energy is associated with a force, and a force on one object is al-
yi exerted by some other object. Thus potential energy is a property of

wystem as a whole. For a particle raised to a height y above the
iih's surface, the potential energy change is mgy. The system here is

particle plus the Earth, and properties of both are involved: particle
) and Earth (g).

Conservative and Nonconservative Forces

¢ work done against gravity in moving an object from one point to
ulher does not depend on the path taken. For example, it takes the
¢ work (=mgy) to lift an object of mass m vertically a certain height
{i) carry it up an incline of the same vertical height, as in Fig. 64 (see
inple 6-2). Forces such as gravity, for which the work done does not
jund on the path taken but only on the initial and final positions, are
l¢d conservative forces. The elastic force of a spring (or other elastic
ferial) in which F = — kx, is also a conservative force. Friction, on the
o1 hand, is a nonconservative force since the work it does, for exam-
i, when a crate is moved across a floor from one point to another de-
I on whether the path taken is straight, or is curved or zigzag. As
ywh in Fig. 6-16, if a crate is pushed from point 1 to point 2 via the
jior semicircular path rather than in the straight path, more work is
fi¢ ngainst friction, since the distance is greater and, unlike the gravita-
jlul force, the friction force is always directed opposite to the direction of
{lon. (The cos 6 term in Eq. 6-1 is always cos 180° = —1 at all points on
path for the friction force.) Other forces that are nonconservative in-
tlo the force exerted by a person and tension in a rope (see Table 6-1).
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0 x X¢

FIGURE 6-15 Asa springis

stretched (or compressed), the force
increases linearly as x increases: graph
of F=kxvs.xfromx =0tox = x;.

TABLE 6-1 Conservative
and Nonconservative Forces

Conservative Nonconservative
Forces Forces
Gravitational Friction
Elastic Alir resistance
Electric Tension in cord
Motor or rocket
propulsion
Push or pull
by person

FIGURE 6-16 A crateis
pulled across the floor from
position 1 to position 2 via two
paths, one straight and one
curved. The friction force is
always in the direction exactly
opposed to the direction of
motion. Hence, for a constant
magnitude friction force,

W, = — Fd, so if d is greater
(as for the curved path), then
W is greater.
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PE can be defined only
| for a conservative force

WORK-ENERGY PRINCIPLE
(general form)

Because potential energy is energy associated with the position or co
figuration of bodies, potential energy can only make sense if it can be statel
uniquely for a,given point. This cannot be done with nonconservati
forces since the work done between two points depends not only on
two points but also on what path is taken (as in Fig. 6-16). Hence, potent|
energy can be defined only for a conservative force. Thus, although potel
tial energy is always associated with a force, not all forces have a potentij
energy—for example, there is no potential energy for friction.

We can now extend the work-energy principle (discussed earlier |
Section 6-3) to include potential energy. Suppose several forces act on i
object which can undergo translational motion. And suppose only some
these forces are conservative, and we can write a potential-energy functio
for these conservative forces. We write the total (net) work W, as a suil

of the work done by conservative forces, W, and the work done by noi
conservative forces, Wy:

Wier = We + Wy
Then, from the work-energy principle, Eq. 6-4, we have
W, = AKE
We + Wy = AkE
where AKE = KE, — KE;, and s0
Wie = AKE — W,..
Work done by a conservative force can be written in terms of potentiy
energy, as we saw in Eq. 6—7b for gravitational potential energy:
We = —APE.
We substitute this into the last equation above:
Wxe = AKE + APE. (6-10

Thus, the work Wy done by the nonconservative forces acting on an obje(
is equal to the total change in kinetic and potential energy.

It must be emphasized that all the forces acting on a body must be it
cluded in Eq. 6-10, either in the potential energy term on the right (if it is
conservative force), or in the work term, Wy, on the left (but not in both!)

Mechanical Energy and Its Conservation

If only conservative forces are acting on a system, we arrive at a partic
larly simple and beautiful relation involving energy.

When no nonconservative forces are present, then Wy = 0 in Eq. 6~
the general work-energy principle. Then we have '

conservative
or conservative !
(kE, — KE,;) + (PE, — PE;) = 0. forces only | (6-11b

We now define a quantity E, called the total mechanical energy of ou
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¢m, as the sum of the kinetic and potential energies at any moment

E = KE + PE.

’

W we can rewrite Eq. 6-11b as .
conservative

forces only

KE, + PE, = KE; T PE,; (6-12a)

conservative
forces only (6-12b)

lintions 6—12 express a useful and profound principle regarding the
il mechanical energy—namely, that it is a conserved quantity. The
il mechanical energy E remains constant as long as no nonconserva-
¢ lorces act: (KE + PE) at some initial point 1 is equal to the
| I pE) at any later point 2. To say it another way, consider
, -11a which tells us APE = — AKE; that is, if the kinetic energy KE
fenses, then the potential energy PE must decrease by an equivalent
vunt to compensate. Thus, the total, KE + PE, remains constant. This
{hlicd the principle of conservation of mechanical energy for conser-
{lve forces:

E, = E, = constant.

If only conservative forces are acting, the total mechanical energy of a
nystem neither increases nor decreases in any process. It stays constant—
It Is conserved.

now see the reason for the term “conservative force”—because for

il lorces, mechanical energy is conserved.

In the next Section we shall see the great usefulness of the conserva-
i) of mechanical energy principle in a variety of situations, and how it
llen easier to use than the kinematic equations or Newton’s laws.
flor that we will discuss how other forms of energy can be included in

| Jirunder conservation of energy law that includes energy associated

{h nonconservative forces.

Problem Solving Using
Conservation of Mechanical Energy

wimple example of the conservation of mechanical energy is a rock al-
¢d to fall from a height 4 under gravity (neglecting air resistance), as
uwn in Fig. 6-17. At the instant it is dropped, the rock, starting at rest,
tlnlly has only potential energy. As it falls, its potential energy decreases
viuse y decreases), but its kinetic energy increases to compensate, so
Il the sum of the two remains constant. At any point along the path, the
{hl mechanical energy is given by

E = KE + PE = ;? + mgy

jure y is the rock’s height above the ground at a given instant and v is its
vd at that point. If we let the subscript 1 represent the rock at one

SECTION 6-7

Total mechanical
energy defined

CONSERVATION OF
MECHANICAL ENERGY

CONSERVATION OF
MECHANICAL ENERGY

FIGURE 6-17 The rock’s
potential energy changes to
kinetic energy as it falls.
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SR

Conservation of energy
when only gravity acts

FIGURE 6-18, Energy buckets
(for Example 6-8). Kinetic energy is
red and potential energy is blue. The
total (KE + PE) is the same for the
three points shown. Note that the
speed at y = 0, just before the rock
hits, is V2(9.8 m/s?)(3.0m) = 7.7 m/s.

v=0 Qy=3.0m EE;]

0l
v=63m/s y=1.0m E]

T
v=7.7m/s lQl y=0 Ty H

point along its path (for example, the initial point), and 2 represent it
some other point, then we can write
total mechanical energy at point 1 = total mechanical energy at point

or (see also Eq. 6-12a)

Imv? + mgy, = ;mv} + mgy,. [grav. pE only] (6~
Just before the rock hits the ground, all of its initial potential energy wi
have been transformed into kinetic energy. We can see this fro
Eq. 6-13: initially (point 1), we set y, = k and v, = O (the rock star
from rest). Just before hitting the ground (point 2), we have y, = 0, so fro|
Eq. 6-13 we have

0 + mgh = 1mv} + 0,

or KE, = mv? = mgh = pE;; the original potential energy has beconj
kinetic energy.

D CVILYNCEN Falling rock. If the original height of the stone |
Fig. 6-17 is y; = h = 3.0 m, calculate the stone’s speed when it has fallg|
to 1.0 m above the ground.
SOLUTION Since v, = 0 (the moment of release), y, = 1.0m, an{
g = 9.8m/s? Eq. 6-13 gives

1 2 _ 1 2
smvy + mgy, = ;mv; + mgy,

0 + (m)(9.8 m/s?)(3.0 m) = 1 mv} + (m)(9.8 m/s?)(1.0 m).

The m’s cancel out, and solving for v3 (which we see doesn’t depend o
m), we find

v3 = 2[(9.8 m/s?)(3.0 m) — (9.8 m/s?)(1.0 m)] = 39.2 m?/s’,
and

v, = V392m/s = 6.3m/s.

A simple way to visualize energy conservation is with an “energ
bucket” as shown in Fig. 6-18. At each point in the fall of the stone, th
amount of kinetic energy and potential energy are shown as if they wer
two differently colored materials in the bucket. The total amount of mat¢
rial in the bucket (= total mechanical energy), remains constant.

Equation 6-13 can be applied to any object moving without frictiof
under the action of gravity. For example, Fig. 6—19 shows a roller-coaster cii
starting from rest at the top of a hill, and coasting without friction to th
bottom and up the hill on the other side." Initially, the car has only potentil
energy. As it coasts down the hill, it loses potential energy and gains in kinet|
energy, but the sum of the two remains constant. At the bottom of the hill
has its maximum kinetic energy, and as it climbs up the other side the kinctif
energy changes back to potential energy. When the car comes to rest agaill
all of its energy will be potential energy. Given that the potential energy
proportional to the vertical height, energy conservation tells us that (in th

'The forces on the car are: gravity, the normal force exerted by the road, and friction (he
assumed zero). The normal force acts perpendicular to the road, and so is always perpendiculi
to the motion and does no work. Thus W = 0 in Eq. 6-10 (so mechanical energy is co
served) and we can use Eq. 6-13 with the potential energy being only gravitational potent|
energy. We will see how to deal with friction, for which Wy # 0, in Section 6-9.
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esent it at hiee of friction) the car comes to rest at a height equal to its original

. If the two hills are the same height, the car will just barely reach the
0l the second hill when it stops. If the second hill is lower, than the first,
#ll of the car’s kinetic energy will be transformed to potential energy and
§ Ui can continue over the top and down the other side. If the second hill
jgher, the car will only reach a height on it equal to its original height on
& |lst hill. This is true (in the absence of friction) no matter how steep the
| 4, since potential energy depends only on the vertical height.

7 at point 2

N (6-13)

:nergy will
this from
rock starts
0, so from

WAL SGECR Roller-coaster speed using energy conservation. Assum-
i the height of the hill in Fig. 6-19 is 40 m, and the roller-coaster car
#i'ts from rest at the top, calculate (a) the speed of the roller-coaster car
(he bottom of the hill, and (b) at what height it will have half this
ped. Take y = 0 at the bottom of the hill.

as become MOLUTION (a) We use Eq.6-13 withv, = 0,y, = 40m, and y, = 0.Then
ymvi + mgy, = ymv} + mgy,
0 + (m)(9.8 m/s?)(40 m) = i mv} + 0.

e m’s cancel out and we find v, = V2(9.8 m/s%)(40 m) = 28 m/s.
1h) We use the same equation, but now v, = 14 m/s (half of 28 m/s) and

e stone in
t has fallen

1.0m, ang iN unknown:
2mvt + mgy, = ymv} + mgy,
)(1.0 m) 0 + (m)(9.8 m/s?)(40 m) = 5 (m)(14 m/s)? + (m)(9.8 m/s2)(y,).
d i3 e cancel the m’s and solve for y, and find y, = 30 m. That is, the car has
- depen | apeed of 14 m/s when it is 30 vertical meters above the lowest point, both
When descending the left-hand hill and when ascending the right-hand hill.
19.2 m?/s?, The mathematics of this Example is almost the same as that in Example

) K. But there is an nnportant difference between them. Example 6-8 could
Jive been solved using force and acceleration. But here, where the motion is
0l vertical, using F = ma would have been very difficult, whereas energy

an “energy Ahnservation readily gives us the answer.

ie stone, the

if they werd JONCEPTUAL EXAMPLE 6-10] Speeds on two water slides. Two
unt of mate-

ant. ‘Wiler slides at a Pool are shaped differently but start at the same heigl}t h
hout friction ‘Mg. .6—20). ’Iw.o riders, Pal}l anfl Kathleen, start from rest at thfe same time
coaster O i) different slides. ({1) Whlch rider, l?aul or Kathleen,' is traveling fa.st§r at
sction to the io bottom? (b) Which rider makes it to the bottom first? Ignore friction.

nly potential
1ns in kinetic
1 of the hill it
de the kinetic
to rest again,
itial energy i
s that (in the

RISPONSE (a) Each rider’s initial potential energy mgh gets trans-
H0imed to kinetic energy, so the speed v at the bottom is obtained from
Mo’ = mgh. The mass cancels in this equation and so the speed will be
lho same, regardless of the mass of the rider. Since they descend the
Mime vertical height, they will finish with the same speed.

1h) Note that Kathleen is consistently at a lower elevation than Paul for
e entire trip. This means she has converted her potential energy to ki-
¢lic energy earlier. Consequently, she is traveling faster than Paul for
Ahie whole trip, except toward the end where Paul finally gets up to the
e speed. Since she was going faster for the whole trip, and the dis-
Hince is roughly the same, Kathleen gets to the bottom first.

nd friction (here
1ys perpendiculul
al energy is con
tational potential
6-9.
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FIGURE 6-19 A roller-coaster
car moving without friction illustrates
the conservation of mechanical energy.

FIGURE 6-20
Conceptual Example 6-10.
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W PHYSICS APPLIED

Sport

FIGURE 6-21 Transformation
of energy during a pole vault.

FIGURE 6-22 By bending
their bodies, pole vaulters can keep
their center of mass so low that it
may even pass below the bar. By
changing their kinetic energy (of
running) into gravitational potential
energy (=mgy) in this way, vaulters
can cross over a higher bar than if
the change in potential energy were
accomplished without carefully
bending the body.

There are many interesting examples of the conservation of energy
sports, one of which is the pole vault illustrated in Fig. 6-21. We ofte
have to make approximations, but the sequence of events in broad outli
for this case is as follows. The kinetic energy of the running athlete |
transformed into elastic potential energy of the bending pole and, as il
athlete leaves the ground, into gravitational potential energy. When tl
vaulter reaches the top and the pole has straightened out again, the energl
has all been transformed into gravitational potential energy (if we ignofi
the vaulter’s low horizontal speed over the bar). The pole does not supp.
any energy, but it acts as a device to store energy and thus aid in the trang
formation of kinetic energy into gravitational potential energy, which
the net result. The energy required to pass over the bar depends on ho
high the center of mass' (cM) of the vaulter must be raised. By bendil
their bodies, pole vaulters keep their cM so low that it can actually puk
slightly beneath the bar (Fig. 6-22), thus enabling them to cross over
higher bar than would otherwise be possible.

2GR ATIEN ESTIMATE | Pole vault. Estimate the kinetic energ

and the speed required for a 70-kg pole vaulter to just pass over a bif
5.0 m high. Assume the vaulter’s center of mass is initially 0.90 m off th
ground and reaches its maximum height at the level of the bar itself,

SOLUTION We equate the total energy just before the vaulter places ()
end of the pole onto the ground (and the pole begins to bend and store p
tential energy) with the vaulter’s total energy when passing over the by
(we ignore the small amount of kinetic energy at this point). We choose tli
initial position of the vaulter’s center of mass to be y, = 0. The vaulter
body must then be raised to a height y, = 5.0m — 0.9m = 4.1 m. Thuj
using Eq. 6-13,

1mo} + 0 =0+ mgy,
and

KE; = 3 mv} = mgy,

= (70kg)(9.8 m/s?)(4.1 m) = 2.8 X 10°J.

The speed is (solving for v, in kg, = jmv?):

_ [xe,  [2(28007) 89m/
v = m 70 kg = 89 m/s.

This is an approximation because we have ignored such things as th
vaulter’s speed while crossing over the bar, mechanical energy trany
formed when the pole is planted in the ground, and work done by th
vaulter on the pole.

"The center of mass (cM) of a body is that point at which the entire mass of the body can
considered as concentrated, for purposes of describing its translational motion. (This is dis:
cussed in Chapter 7.) In Eq. 6-13, y is the position of the cM.
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A unother example of the conservation of mechanical energy, let us
ltler a mass m connected to a spring whose own mass can be neglected
hose stiffness constant is k. The mass m has speed v at any moment
[ lie potential energy of the system is ;kx2, where x is the displacement
\0 spring from its unstretched length. If neither friction nor any other
In ncting, the conservation-of-energy principle tells us that

v} + Lkx? = Lo} + Lkad [elastic PE only]  (6-14)
010 the subscripts 1 and 2 refer to the velocity and displacement at two
funt points.

RN PE Toy dart gun. A dart of mass 0.100kg is pressed
lnst the spring of a toy dart gun as shown in Fig. 6-23. The spring
s/l spring constant k = 250 N/m) is compressed 6.0 cm and released.
Ihe dart detaches from the spring when the latter reaches its normal
fith (x = 0), what speed does the dart acquire?

I.UTION In the horizontal direction, the only force on the dart

ineti
metic encrey ¢plecting friction) is the force exerted by the spring. Vertically, gravity

59(()) ::ro?f ltjl‘::: tounterbalanced by the normal force exerted on the dart by the gun
ar itself. ifvel. (After the dart leaves the barrel it will follow a projectile’s path

(ler gravity.) We use Eq. 6-14 with point 1 being at the maximum
ter places the ipression of the spring, so v; = 0 (dart not yet released) and
and store po- 0.060 m. Point 2 we choose to be the instant the dart flies off the
over the bar il of the spring (Fig. 6-23b), so x, = 0 and we want to find v,. Thus

ve choose thy
The vaulter'y
4.1 m. Thus,

| 0~14 can be written

0+ 3k} =1mi +0.
hon
v} = kx?/m = (250 N/m)(0.060 m)?%(0.100 kg) = 9.0 m?/s>

) 1, \/’v—% = 3.0m/s.

I
|

10° . E——— ©=9

()
things as the
energy trans-
- done by the R
v2
(b)

! the body can hg
ion. (This is dis-

Conservation of energy
when PE is elastic

FIGURE 6-23 Example
6-12. (a) A dart is pushed
against a spring, compressing it
6.0 cm. The dart is then released,
and in (b) it leaves the spring at
high velocity (v,).
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FIGURE 6-24
Example 6-13.

Conservation of energy:
gravity and elastic PE

= pPROBLEM SOLVING

Alternate Solution

164

Two kinds of PE. A ball of mass m = 2.60 kg, start}
from rest, falls a vertical distance » = 55.0 cm before striking a vertig
coiled spring, which it compresses (see Fig. 6-24) an amol

Y = 15.0cm. Determine the spring constant of the spring. Assume |

spring has negligible mass. Measure all distances from the point whe
the ball first touches the uncompressed spring (y = 0 at this point).

SOLUTION Since the motion is vertical, we use y instead of x (y po
tive upward). We divide this solution into two parts. (See also alterni|
solution below.)
Part 1: Let us first consider the energy changes of the ball as it falls frof
a height y, = h = 0.55m, Fig. 6-24a, to y, = 0, just as it touches |
spring, Fig. 6-24b. Our system is the ball acted on by gravity (up to h
the spring doesn’t do anything) so

Ymot + mgy, = ;mv} + mgy,

0+ mgh=1m? +0

and v, = V2 gh = V2(9.80 m/s2)(0.550 m) = 3.28 m/s.

Part 2: Let’s see what happens as the ball compresses the spring, |
6-24b to c. Now there are two conservative forces on the ball—gravil
and the spring force. So our energy equation becomes

E (ball touches spring) = E (spring compressed)
S mu} + mgy, + sky; = §mo} + mgys + 3 Ky3.
We take point 2 to be the instant when the ball just touches the spring, §
y, = 0 and v, = 3.28 m/s. Point 3 we take to be when the ball comes to r¢
and the spring is fully compressed, so v, =0 and y; = ~Y = —0.150
(given). Putting these into the above energy equation we get

lm2 +0+0=0—mgY + kY2

We know m, v,, and Y, so we can solve for k:

2
k=13 [3mv? + mgY]

m
=32 [v + 2gY]

_ (2.60kg)
(0.150 m)?
Alternate solution: Instead of dividing the solution into two parts,

can do it all at once. After all, we get to choose what two points are usg
on the left and right of the energy equation. Let us write the ener,

[(3.28 m/s)* + 2(9.80 m/s2)(0.150 m)] = 1580 N/




_. tintion for points 1 and 3 (Fig. 6-24). Point 1 is the initial point just be-
ilv the ball starts to fall (Fig. 6-24a),so v; = 0, y;, = h = 0.550 m; and
Sint 3 is when the spring is fully compressed (Fig. 6-24c), so v, = 0,
Y = —0.150 m. The forces on the ball in this process are gravity
il (at least part of the time) the spring. So conservation of energy tells us

2} + mgy, + k(O = 3mv} + mgy; + 1 k¥

0 +mgh + 0 = 0-mgY +;kY?

I_lwrc we have set y = 0 for the spring at point 1 because it is not acting
il 15 not compressed or stretched at this point. We solve for k:
. 2mg(h+Y) _ 2(2.60kg)(9.80 m/s?)(0.550 m + 0.150 m)
y? (0.150 m)?

it ns in our first method of solution.

o

) kg, starting
1g a vertical
an amoun|
Assume th¢
point where
point).

WAL SCEEN Bungee jump. Dave jumps off a bridge with a bungee
i (a heavy stretchable cord) tied around his ankle (Fig. 6-25). He falls
Il |5 meters before the bungee cord begins to stretch. Dave’s mass is
Jkp and we assume the cord obeys Hooke’s law, F = —kx, with

~ 50N/m. If we neglect air resistance, estimate how far below the bridge
Hive will fall before coming to a stop. Ignore the mass of the cord (not
iilistic, however).

of x (y posis
Iso alternatd

it falls from
touches the
1 (up to her¢

DLUTION We first recognize that this problem is too hard to solve with
liv kinematic equations of Chapter 2. Those equations assumed a constant
‘eleration. But here the force the cord exerts on Dave gets stronger the
lther he drops. But we can treat it readily using conservation of energy.
e starts out with gravitational potential energy. The gravitational poten-
lil cnergy is tranformed into both kinetic energy and elastic potential
llurgy. Assuming no frictional forces act on our system, the original total
flurpy must be the same as the total energy at the end. If we define our
)nrdinate system such that y = 0 at the lowest point in Dave’s dive, and
Al the stretch of the,cord at this point be represented by Ay, then the
Wil fall is (see Fig. 6-25)

h=15m + Ay.

‘Unservation of energy then gives:

> spring, Fig,
ball—gravity

the spring, 50
comes to res
7= —0.150m KE, + PE; = KE, + PE,

0 + mg(15m + Ay) = 0 + 3k(Ay)%
) solve for Ay, we rewrite this in standard quadratic form
V' o+ bx + ¢ = 0):

2mg 2mg
2 _

(&y) X X
Lning the quadratic formula, Ay = (—b + Vb? — 4ac)/2a, with a = 1,
h - (-2mg/k) = —29m, and ¢ = —2mg(15m)/k = —440m?, we get
Vo solutions:
Ay=40m and Ay = -11m.

Ilic negative solution is nonphysical, so the distance that Dave drops in
I lall is:

Ay — (15m) = 0.

= 1580 N/m

two parts, we
ioints are use(
ite the energ

h=15m+ 40m = 55 m.

= 1580 N/m

W PHYSICS APPLIED

Bungee jumping
(a)'()e‘ (b)] o]
1S m
Lo [ _
Ay="?
|
y=0 | S : L@-

FIGURE 6-25 Example 6-14.
(a) Bungee jumper about to jump.
(b) Bungee cord at its unstretched
length. (c) Maximum stretch of cord.
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FIGURE 6-26 Potential
energy of a bent bow about to be
transformed into kinetic energy
of an arrow.

]

| Work is done when

‘ energy is.transferred
]

Other Forms of Energy;
Energy Transformations and
the Law of Conservation of Energy

Besides the kinetic energy and potential energy of ordinary objects, oth
forms of energy can be defined as well. These include electric energy,

clear energy, thermal energy, and the chemical energy stored in food
fuels. With the advent of the atomic theory, these other forms of ener
have come to be considered as kinetic or potential energy at the atomic
molecular level. For example, according to the atomic theory, thermal ¢

ergy is interpreted as the kinetic energy of rapidly moving molecules

when an object is heated, the molecules that make up the object mo

faster. On the other hand, the energy stored in food and fuel such as gas(
line can be regarded as potential energy stored by virtue of the relati

positions of the atoms within a molecule due to electric forces betwet
the atoms (referred to as chemical bonds). For the energy in chemid
bonds to be used to do work, it must be released, usually through chemic
reactions. This is analogous to a compressed spring which, when release

can do work. Enzymes in our bodies allow the release of energy stored |
food molecules. The violent spark of a spark plug in an automobile allo®
the mixture of gas and air to react chemically, releasing the stored ener

which can then do work against the piston to propel the car forward. El
tric, magnetic, and nuclear energy also can be considered examples of k
netic and potential (or stored) energy. We will deal with these other fori

of energy in detail in later chapters.

Energy can be transformed from one form to another, and we have |
ready encountered several examples of this. A stone held high in the air i
potential energy; as it falls, it loses potential energy, since its height above i}
ground decreases. At the same time, it gains in kinetic energy, since its velo
ity is increasing. Potential energy is being transformed into kinetic energy.

Often the transformation of energy involves a transfer of energy fro
one body to another. The potential energy stored in the spring of I
6-13b is transformed into Kinetic energy of the ball, Fig. 6-13c. The kincl
energy of a running pole vaulter is transformed into elastic potential end|
gy of the bending pole which in turn is transformed into the increasing p
tential energy of the rising athlete, Fig. 6-21. Water at the top of a dam e
potential energy, which is transformed into kinetic energy as the wall
falls. At the base of the dam, the kinetic energy of the water can be tran
ferred to turbine blades and further transformed into electric energy, i
we shall see in a later chapter. The potential energy stored in a bent bg
can be transformed into kinetic energy of the arrow (Fig. 6-26).

In each of these examples, the transfer of energy is accompanied |i
the performance of work. The spring of Fig. 6-13 does work on the ba
Water does work on turbine blades. A bow does work on an arrow. Thi
observation gives us a further insight into the relation between work ai
energy: work is done when energy is transferred from one object to anothci
A person throwing a ball or pushing a grocery cart provides another exampl

*If the objects are at different temperatures, heat can flow between them instead, or in ad
tion. See Chapters 14 and 15.
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work done is a manifestation of energy being transferred from the
on (ultimately derived from the chemical energy of food) to the ball
. ,

(One of the great results of physics is that whenever energy is trans-
ud or transformed, it is found that no energy is gained or lost in the
UONS.

1'his is the law of conservation of energy, one of the most important
fieiples in physics; it can be stated as:

——————

yjects, other
energy, nu-
in food and
s of energy
1e atomic of
thermal en:
nolecules—
sbject move
uch as gasos
the relative
ces betweell
in chemical
1gh chemical
1en released,
rgy stored il
10bile allowy
tored energy
yrward. Elecs
amples of ki
s other formy

The total energy is neither increased nor decreased in any process. | ; sy oF
lincrgy can be transformed from one form to another, and transferred | ~ONSERVATION OF
from one body to another, but the total amount remains constant. ENERGY

hive already discussed the conservation of energy for mechanical sys-
% involving conservative forces, and we saw how it could be derived
4 Newton’s laws and thus is equivalent to them. But in its full general-
| the validity of the law of conservation of energy, encompassing all
W of energy including those associated with nonconservative forces
! lriction, rests on experimental observation. Even though Newton’s
44 nre found to fail in the submicroscopic world of the atom, the law of
inorvation of energy has been found to hold in every experimental situ-
I so far tested.

I'he law of conservation of energy is so wide-ranging that it plays an
portant role in other areas of physics (as we will see throughout this
k). as well as in other sciences. We discuss another example of its use-
lous in the next Section.

d we have ale
in the air hay

ght above the V) Energy Conservation with

iince its velov: Dissipative Forces: Solving Problems
etic energy.
f energy fronl o applications of energy conservation in Section 6-7, we neglected

spring of Fig
3c. The kinetit
yotential enets
increasing po:
» of a dam haj

{lon, a nonconservative force, but in many situations it cannot be
iicd. In a real situation, the roller-coaster car in Fig. 6-19, for example,
Il not in fact reach the same height on the second hill as it had on the
| hill because of friction. In this, and in other natural processes, the
hanical energy (sum of the kinetic and potential energies) does not
. ilin constant but decreases. Because frictional forces reduce the total
r can be trans: vhanical energy, they are called dissipative forces. Historically, the Dissipative forces
tric energy, 4t Mence of dissipative forces hindered the formulation of a comprehen-
in a bent bow # conservation of energy law until well into the nineteenth century.
Wis not until then that heat, which is always produced when there is
llon (try rubbing your hands together), was interpreted as a form of
rk on the ball Igy. Quantitative studies by nineteenth-century scientists (discussed in
an arrow. Thit pters 14 and 15) demonstrated that if heat is considered as energy
veen work and )perly called thermal enmergy), then the total energy is conserved in
y process. For example, if the roller-coaster car in Fig. 6-19 is subject
Iflctional forces, then the initial total energy of the car will be equal
Ihe kinetic plus potential energy of the car at any subsequent point
M\ its path plus the amount of thermal energy produced in the process.

instead, or in add| 0 .
o thermal energy produced by a constant friction force Fj, is equal to
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the work done by this force. We now apply the general form of the wot
energy principle, Eq. 6-10:

Wxc = AKE + APE.

We can write Wyc = — Fyd, where d is the distance over which the fol
acts. (F and d are in opposite directions, hence the minus sign.) Thus, wit
KE = imv? and PE = mgy, we have

1 1 2
—Fyd = 3mv; — ;mv} + mgy, — mgy,

or

Conservation of energy

1.2 12 gravity and
with gravity and friction 2mu; + mgy, = 3mv; + mgy, + Fid [friction acting

(6-1

where d is the distance along the path traveled by the object in going frof
point 1 to point 2. Equation 6-15 can be seen to be Eq. 6-13 modified
include friction. It can be interpreted in a simple way: the initial mechanig
energy of the car (point 1) equals the (reduced) final mechanical energy
the car plus the energy transformed by friction into thermal energy.

m Friction on the roller coaster. The roller-coaster car |
Example 6-9 is found to reach a vertical height of only 25m on the sd
ond hill before coming to a stop (Fig. 6-27). It traveled a total distancc |

400 m. Estimate the average friction force (assume constant) on the cij
whose mass is 1000 kg.

SOLUTION We use conservation of energy, here in the form of I
6-15, taking point 1 to be the instant when the car started coasting aif
point 2 to be the instant it stopped. Then v, = 0, y, = 40m, v, =1

FIGURE 6-27 Example 6-15. y, = 25m, and d = 400 m. Thus
Because of friction, a roller coaster

car does not reach the original height | 0+ (1000kg)(9.8 m/s?)(40 m) = 0+ (1000 kg)(98 m/s2)(25 m) + F,(400 i
on the second hill. We solve this for Fj, to find F;, = 370N.

j— 40 m——|

Another example of the transformation of kinetic energy into therm
energy occurs when an object, such as the rock of Fig. 6-17, strikes u
ground. Mechanical energy is not conserved at this encounter, but i
total energy is. Kinetic energy is transformed into thermal energy (anl
probably some sound energy) and both the rock and the ground will
slightly warmer as a result of their collision. A more apparent examplc
this transformation of kinetic energy into thermal energy can be observ(
by vigorously striking a nail several times with a hammer, and then genl
touching the nail with your finger to see how hot it is.

- When other forms of energy are involved, such as chemical or el¢
l trical energy, the total amount of energy is always found to be co
' served. Hence the law of conservation of energy is believed to

I | universally valid.
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* the work:

PROBLEM SOLVING Conservation of Energy

NWaw a picture.

Jotcrmine the system for which energy will be
)nserved: the object or objects and the forces
ling.

Alk yourself what quantity you are looking for,

h the forc¢
Thus, witl

6. If no friction or other nonconservative forces act,
then apply conservation of mechanical energy:

KE; + PE; = KE, + PE,,

7. Solve for the unknown quantity.

8. If friction or other nonconservative forces are
present, then an additional term (Wy) will be
needed:

4 decide what are the initial (point 1) and
{ihnl (point 2) locations.

1 { the body under investigation changes its height
ng (6-15) turing the problem, then choose a y = 0 level Wye = AKE + APE.

OF gravitational potential energy. This may be 10 4 '
_going fron {hosen for convenience; the lowest point in the To be sure which sign to give Wy, or on W_hmh
modified (0 problem is often a good choice. side .o.f the equation to put it, use your intu-
- mechanicul |l springs are involved, choose the unstretched 1t10(;1. I dtf)talhmechamc;l 1 energy increased
al energy of Wpring position to be x (or y) = 0. e S sdscCaliL e process
aergy.

"'oblem solving is not a process that can be done by following a set of
4. 'I'he box above is thus not a prescription, but is a summary of steps
lulp you get started in solving problems involving energy.

oaster car il
1 0n the sec
!l distance o

i} Power

) on the cal \lnpe power is defined as the rate at which work is done (= work done  Power defined
Ilud by the time to do it), or as the rate at which energy is transformed.
s

form of 2o | work  energy transformed

coasting an( P = average power = = &y - (6-16) Average power

0m, v, =l time time

» power of a horse refers to how much work it can do per unit time. The
i rating of an engine refers to how much chemical or electrical energy
i e transformed intg mechanical energy per unit time. In SI units, power
Alensured in joules per second, and this unit is given a special name, the
1 (W):1W = 1J/s. We are most familiar with the watt for measuring the
10 it which an electric lightbulb or heater changes electric energy into
Il or heat energy, but it is used for other types of energy transformations
well. In the British system, the unit of power is the foot-pound per second
‘|h/s). For practical purposes, a larger unit is often used, the horsepower.
j0 horsepower’ (hp) is defined as 550 ft-1b/s, which equals 746 W.
It is very important to see the distinction between energy and power. To
§) make this distinction consider the following example. A person is limited
{he work he or she can do, not only by the total energy required, but also
how fast this energy is transformed: that is, by power. For example, a per-
may be able to walk a long distance or climb many flights of stairs before
Ing to stop because so much energy has been expended. On the other
il 0 person who runs very quickly upstairs may fall exhausted after only a
iht or two. He or she is limited in this case by power, the rate at which his
Jior body can transform chemical energy into mechanical energy.

) + F(400 m);

Power units: the watt

» into thermul
7, strikes th
mter, but the
| energy (and
round will b
nt example of
n be observed
1d then gently

Power and energy
distinguished

mical or elec
id to be con:
zslieved to bt

0 unit was first chosen by James Watt (1736-1819), who needed a way to specify the
ot of his newly developed steam engines. He found by experiment that a good horse can
k nll day at an average rate of about 360 ft-1b/s. So as not to be accused of exaggeration
{lio sale of his steam engines, he multiplied this by 1; when he defined the hp.
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Stair-climbing power. A 70-kg jogger runs up a lof

flight of stairs in 4.0 s. The vertical height of the stairs is 4.5 m. (a) E¢
mate the jogger’s power output in watts and horsepower. () How mu¢
energy did this require?

SOLUTION (a) The work done is against gravity, and equi
W = mgy. Then the average power output was

W mgy (70 kg)(9.8 m/s*)(4.5 m)
t ot 405

Since there are 746 W in 1 hp, the jogger is doing work at a rate of ju
over 1 hp. It is worth noting that a human cannot do work at this ri
for very long. _ '

(b) The energy required is E = Pt (Eq. 6-16). Since P = 770 W = 770)
then E = (7701 /s)(4.0s) = 31001J. [Note that the person had to transforf
more energy than this. The total energy transformed by a person or
engine always includes some thermal energy (recall how hot you get ru
ning up stairs).]

P= =770 W.

CONCEPTUAL EXAMPLE 6-17 | Energy of a powerful laser. T}
Nova laser at Lawrence Livermore National Lab has ten beams, each (
which has a power output greater than that of all the power plants in (|
United States. Where does this power come from?

RESPONSE Power companies do not really sell power. They sell energ)
When you get your bill at the end of each month, you are charged ({
kilowatt-hours. A kilowatt is a unit of energy per time (power), so mulf
plying this by time will yield energy. Power stations are rated by pow
output, or how quickly they can deliver the energy. The Nova laser bu

energy during the course of an afternoon and stores it. It then dumps tl

energy into the laser beams in a very short time interval, on the order (
1ns (107%s). The energy delivered to the target is not so great, on
order of 10°J or what you get eating a doughnut. But it is delivered in §
short a time that the power is extremely high, on the order of 10™ W.

Automobiles do work to overcome the force of friction (and air resij
ance), to climb hills, and to accelerate. A car is limited by the rate it can
work, which is why automobile engines are rated in horsepower. A car necd
power most when it is climbing hills and when accelerating. In the n¢
Example, we will calculate how much power is needed in these situations f(
a car of reasonable size. Even when a car travels on a level road at consta
speed, it needs some power just to do work to overcome the retarding forc
of internal friction and air resistance. These forces depend on the conditiol
and speed of the car, but are typically in the range 400N to 1000 N.

It is often convenient to write the power in terms of the net force
applied to an object and its speed v. This is readily done since P = W|
and W = Fd where d is the distance traveled. Then

P=—=—=Fv (6-1

where v = d/t is the average speed of the object.
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ns up a lon QN CEEEN Power needs of a car. Calculate the power required
sm. (a) Esti ') 1400-kg car under the following circumstances: (a) the car climbs a
) How mucl " hill (a fairly steep hill) at a steady 80 km/h; and (b) the car acceler-
ilong a level road from 90 to 110km/h in 6.0s to pass another car.

lime the retarding force on the car is Fy = 700N throughout. See
)l (-28. (Be careful not to confuse Fy, which is due to air resistance
il fviction that retards the motion, with the force F needed to acceler-
(he car, which is the frictional force exerted by the road on the

ow. % ~the reaction to the motor-driven tires pushing against the road.)
a rate of jus .UTION (a) To move at a steady speed up the hill, the car must exert
< at this ral¢ litce equal to the sum of the retarding force, 700 N, and the component of
AVily parallel to the hill, mg sin 10° = (1400 kg)(9.80 m/s?)(0.174) = 2400 N.
W = 7701/s liee v = 80km/h = 22m/s and is parallel to F, then (Eq. 6-17):
to transforn P=Fv
person or il
. you get ruis = (2400 N + 700 N)(22 m/s) = 6.80 X 10*W
= 91 hp.

laser. Th ) 'I'he car accelerates from 25.0m/s to 30.6 m/s (90 to 110 km/ h). Thus the
sams, each (| I must exert a force that overcomes the 700N retarding force plus that
' plants in the jiired to give it the acceleration a, = (30.6m/s — 25.0m/s)/6.0s =

) m/s’. We apply Newton’s second law with x being the direction of
fotion:

ma, = 2F, = F ~ Fg.
rer), so multl

ted by powel hien the force required, F, is

F= max + FR
1 the order ol = (1400 kg)(0.93 m/s*) + 700 N

great, on th¢
elivered in s = 1300 N + 700 N = 2000 N.

14 ) 3
oLIOK e P = Fu, the required power increases with speed and the motor

jlist be able to provide a maximum power output of

rate it can dg P = (2000 N)(30.6 m/s)

1. A car needf "
g. In the nex| =612 X10°W

situations fof _
ad at constan| 82 bp.
starding forc I vun taking into account the fact that only 60 to 80 percent of the en-
the conditiong le's power output reaches the wheels, it is clear from these calculations
00 N. lint an engine of 100 to 150 hp is quite adequate from a practical point
1e net force [ [ view.

Fy
mg sin 10°

FIGURE 6-28 Example 6-18:
calculation of power needed for a
car (a) to climb a hill, (b) to pass

another car.
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LSUMMARY

’

Work is done on an object by a force when the ob-
ject moves through a distance, d. If the direction of
a constant force F makes an angle 6 with the direc-
tion of motion, the work done by this force is

W = Fd cos 6.

Energy can be defined as the ability to do
work. In SI units, work and energy are measured
in joules (1J = 1 N-m).

Kinetic energy (kE) is energy of motion. A body
of mass m and speed v has translational kinetic
energy

KE = 3 mv?.
Potential energy (PE) is energy associated with
forces that depend on the position or configuration
of bodies. Gravitational potential energy is

PEgrav = mgy,

where y is the height of the object of mass m above
an arbitrary reference point. Elastic potential energy
is equal to 3kx” for a stretched or compressed spring,
where x is the displacement from the unstretched
position. Other potential energies include chemical,
electrical, and nuclear energy. The change in poten-

L QUESTIONS

==

tial energy when an object changes position is e\
to the external work needed to take the object fi¢
one position to the other.

The work-energy principle states that the /
work done on a body (by the net force) equals t
change in kinetic energy of that body:

W, = AKE = i} — S,

The law of conservation of energy states (|
energy can be transformed from one type
another, but the total energy remains constant. If
valid even when friction is present, since the h|
generated can be considered a form of energy. |
the absence of friction and other nonconservatl
forces, the total mechanical energy is conserved:

KE + PE = constant.
When nonconservative forces act, then
Wye = AKE + APE,

where Wy is the work done by nonconservali
forces.

Power is defined as the rate at which work |
done, or the rate at which energy is transformed. Tl§
SI unit of power is the watt (1W = 1]/s).

1. In what ways is the word “work” as used in everyday
language the same as defined in physics? In what
ways is it different?

. Can a centripetal force ever do work on an object?
Explain.

. Can the normal force on an object ever do work?
Explain.

. A woman swimming upstream is not moving with re-
spect to the shore. Is she doing any work? If she stops
swimming and merely floats, is work done on her?

. Is the work done by kinetic friction forces always nega-
tive? [Hint: Consider what happens to the dishes when
pulling a tablecloth from under your mom’s best china.]

. Why is it tiring to push hard against a solid wall even
though no work is done?

. You have two springs that are identical except that
spring 1 is stiffer than spring 2 (k, > k,). On which
spring is more work done (a) if they are stretched

using the same force, (b) if they are stretched the
same distance?
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8. Can kinetic energy ever be negative? Explain.

9, A hand exerts a constant horizontal force on a blo
that is free to slide on a frictionless surface, as sho
below (Fig. 6-29). The block starts from rest at po)
A, and by the time it has traveled a distance d
point B it is traveling with speed vg. When the blot!
has traveled another distance d to point C, will
speed be greater than, less than, or equal to 21
Explain your reasoning.

1

A B

FIGURE 6-29 Question9.

10. By approximately how much does your gravitationf
potential energy change when you jump as high §
you can? .
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FIGURE 6-30 Question 11.

Duscribe precisely what is “wrong” physically in the
fimous Escher drawing shown in Fig. 6-30.

In ¥ig. 6-31, water balloons are tossed from the roof

I n building, all with the same speed but with differ-
Uil launch angles. Which one has the highest speed

i impact?
e -7~ ~
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FIGURE 6-31 Question 12.

A pendulum is launched from a point that is a height &
ihuve its lowest point in 2 different ways (Fig. 6-32).
During both launches, the bob is given an initial speed
0l 3.0m/s. On the first launch, the initial velocity of
{le bob is directed upward along the trajectory, and on
{he second launch it is directed downward along the
{rijectory. Which launch will cause the pendulum to
awing the largest angle from the equilibrium position?

FIGURE 6-32
Question 13.

14.

15.

16.

17.

18.

: v
(Second launch)

A coil spring of mass m rests upright on a table. If you
compress the spring by pressing down with your hand
and then release it, can the spring actually leave the
table? Explain, using the law of conservation of energy.

In a well-known lecture demonstration, a bowling ball
is hung from the ceiling by a steel wire (Fig. 6-33).
The lecturer pulls the ball back and stands against the
side wall of the lecture hall with the ball against his
nose. To avoid injury the lecturer is supposed to re-
lease the ball, but not push it. Why?

FIGURE 6-33 Question 15.

What happens to the gravitational potential energy
when water at the top of a waterfall falls to the pool
below?

Describe the energy transformations when a child
hops around on a pogo stick.

Describe the energy transformations that take place
when a skier starts skiing down a hill, but after a
time is brought to rest by striking a snowdrift.

. A hill has a height 4. A child on a sled (total mass m)

slides down starting from rest at the top. Does the ve-
locity at the bottom depend on the angle of the hill if
(a) it is icy and there is no friction, and (b) there is
friction (deep snow)?

. Seasoned hikers prefer to step over a fallen log in

their path rather than stepping on top and jumping
down on the other side. Explain.

Questions 173
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21.

22.

23.

25.

27.

(a) Where does the kinetic energy come from when a
car accelerates uniformly starting from rest? (b) How
is the increase in kinetic energy related to the friction
force the road exerts on the tires? ’
Two identical arrows, one with twice the speed of
the other, are fired into a bale of hay. Assuming the
hay exerts a constant frictional force on the arrows,
the faster arrow will penetrate how much farther
than the slower arrow? Explain.

Analyze the motion of a simple swinging pendulum
in terms of energy, () ignoring friction, and (b) taking
it into account. Explain why a grandfather clock has
to be wound up.

. When a “superball” is dropped, can it rebound to a

height greater than its original height?

Suppose you lift a suitcase from the floor to a table.
Does the work you do on the suitcase depend on
(a) whether you lift it straight up or along a more
complicated path, (b) the time it takes, (c) the height
of the table, and (d) the weight of the suitcase?

. Repeat the previous question for the power needed

rather than the work.

Why is it easier to climb a mountain via a zigzag trail
rather than to climb straight up?

J_PROBLEMS

28. Recall from Chapter 4, Example 4-12, that you (

use a pulley and ropes to decrease the force needcd
raise a heavy load (see Fig. 6-34). But for every nt
the load is raised, how much rope must be pulled
Account for this, using energy concepts.

FIGURE 6-34 Question 28.

SECTION 6-1

1.

2.
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(I) A 75.0-kg firefighter climbs a flight of stairs
10.0 m high. How much work is required?

(I) A 900-N crate rests on the floor. How much work
is required to move it at constant speed (a) 6.0m
along the floor against a friction force of 180N, and
(b) 6.0 m vertically?

. (I) How much work did the movers do (horizontally)

pushing a 150-kg crate 12.3 m across a rough floor
without acceleration, if the effective coefficient of
friction was 0.70?7

. (I) A car does 7.0 X 10*J of work in traveling 2.8 km

at constant speed. What was the average retarding
force (from all sources) acting on the car?

. (I) How high will a 0.325-kg rock go if thrown straight

up by someone who does 115 J of work on it? Neglect
air resistance.

. (I) A hammerhead with a mass of 2.0kg is allowed

to fall onto a nail from a height of 0.40 m. What is
the maximum amount of work it could do on the
nail? Why do people not just “let it fall” but add
their own force to the hammer as it falls?

. (II) What is the minimum work needed to push a

1000-kg car 300 m up a 17.5° incline? (a) Ignore fric-
tion. (b) Assume the effective coefficient of friction
is 0.25.

CHAPTER6 Work and Energy

FIGURE 6-35
Problem 10.

8. (II) A grocery cart with mass of 18kg is pushed
constant speed along an aisle by a force F = 12
The applied force acts at a 20° angle to the horiz
tal. Find the work done by each of the forces on |
cart if the aisle is 15 m long.

9. (II) Eight books, each 4.6 cm thick with mass 1.8
lie flat on a table. How much work is required to st
them one on top of another?

10. (II) A 280-kg piano slides 4.3 m down a 30° incl

and is kept from accelerating by a man who is pul
ing back on it parallel to the incline (Fig. 6-35). I}
effective coefficient of kinetic friction is 0.40. Cal¢
late: (a) the force exerted by the man, (b) the w(
done by the man on the piano, (c) the work done
the friction force, (d) the work done by the force
gravity, and (e) the net work done on the piano.




-12, that you cui

I1) () Find the force required to give a helicopter
ie force needed

)l mass M an acceleration of 0.10 g upward. (b) Find
lie work done by this force as the helicopter moves
tlistance & upward.

CI'ION 6-2

{I1) In Fig. 6-6a, assume the distance axis is linear
i that d, = 10.0m and d = 35.0 m. Estimate the
Work done by this force in moving a 2.80-kg object
iom d, to dj.

(11) The x component of the force on an object varies
#% shown in Fig. 6-36. Determine the work done by

Ihlx force to move the object (a) from x = 0.0 to
\ = 10.0m, and (b) from x = 0.0 to x = 15.0m.

I, (N)

)4
X (m) 10U

FIGURE 6-36

ion 28.
Problem 13.

, (11) A spring has k = 88 N/m. Use a graph to deter-
fiine the work needed to stretch it from x = 3.8 cm
f ¢ = 5.8 cm, where x is the displacement from its
\instretched length.,

, (I11) The x component of force exerted on a particle
Increases linearly from zero at x = 0, to 240N at
V= 30m. It remains constant at 240N from
\ = 3.0m to x = 8.0 m, and then decreases linearly to
/ero at x = 11.0m2 Determine the work done to
Move the particle from x = 0 to x = 11.0m graphi-
tinlly by determining the area under the F, vs.x graph.

) (11T) A 1300-kg space vehicle falls from a vertical

height of 2500 km above the Earth’s surface. Use

14). 5-4 to estimate how much work is done by the

furce of gravity in bringing the vehicle to the Earth’s

surface. (First construct an F vs. r graph, where r is

(he distance from the Earth’s center; then determine

the work graphically.)

HCTION 6-3

) (1) At room temperature, an oxygen molecule, with
mass of 5.31 X 10~* kg, typically has a KE of about
0,21 X 107%! J. How fast is it moving?

i (1) (a) If the KE of an arrow is doubled, by what factor
has its speed increased? (b) If its speed is doubled, by
what factor does its KE increase?

(1) How much work is required to stop an electron

(m = 9.11 X 107 kg) which is moving with a speed
ol 1.90 X 10m/s?

(8 kg is pushed
a force F = 12N
rle to the horizoi
* the forces on tl

¢ with mass 1.8k
is required to stad

lown a 30° inclin
man who is pusli
te (Fig. 6-35). Tl
tion is 0.40. Calcy
man, (b) the wor
the work done Iy
ne by the force
on the piano.

20.

21.

22.

23.

24.

25.

26.

27.

(I) How much work must be done to stop a 1000-kg
car traveling at 110 km/h?

(IT) An automobile is traveling along a highway at
90 km/h. If it travels instead at 100 km/h, what is the
percent increase in the automobile’s kinetic energy?
(IT) An 80-g arrow is fired from a bow whose string
exerts an average force of 95 N on the arrow over a
distance of 80 cm. What is the speed of the arrow as
it leaves the bow?

(II) A baseball (m = 140 g) traveling 35 m/s moves
a fielder’s glove backward 25cm when the ball is
caught. What was the average force exerted by the
ball on the glove? ’
(IT) If the speed of a car is increased by 50%, by
what factor will its minimum braking distance be
increased, assuming all else is the same? Ignore the
driver’s reaction time.

(IT) At an accident scene on a level road, investigators
measure a car’s skid mark to be 88 m long, It was a
rainy day and the coefficient of friction was estimated
to be 0.42. Use these data to determine the speed of
the car when the driver slammed on (and locked) the
brakes. (Why does the car’s mass not matter?)

(II) A softball having a mass of 0.25 kg is pitched at
95 km/h. By the time it reaches the plate, it may have
slowed by 10 percent. Neglecting gravity, estimate the
average force of air resistance during a pitch, if the dis-
tance between the plate and the pitcher is about 15 m.
(III) One car has twice the mass of a second car,
but only half as much kinetic energy. When both
cars increase their speed by 5.0 m/s, they then have
the same kinetic energy. What were the original
speeds of the two cars?

. (IIT) A 220-kg load is lifted 21.0m vertically with an

acceleration a = 0.150 g by a single cable. Determine
(a) the tension in the cable, (b) the net work done on
the load, (c) the work done by the cable on the load,
(d) the work done by gravity on the load, and (e) the
final speed of the load assuming it started from rest.

SECTIONS 6-4 AND 6-5

29,

30.

31.

32.

(I) A spring has a spring constant, k, of 440 N/m. How
much must this spring be stretched to store 25J of
potential energy?

(I) A 6.0-kg monkey swings from one branch to an-
other 1.2m higher. What is the change in potential
energy?

(I) By how much does the gravitational potential
energy of a 64-kg pole vaulter change if his center
of mass rises about 4.0 m during the jump?

(II) In starting an exercise, a 1.60-m tall person lifts a
2.10-kg book on the ground so it is 2.20 m above the
ground. What is the potential energy of the book rel-
ative to (a) the ground, and (b) the top of the per-
son’s head? (c) How is the work done by the person
related to the answers in parts (a) and (b)?

Problems 175




33. (II) A 55-kg hiker starts at an elevation of 1600 m and
climbs to the top of a 3100-m peak. (@) What is the
hiker’s change in potential energy? (b) What is the-
minimum work required of the hiker? (c) Can the
actual work done be more than this? Explain why.

34. (11) (a) A spring of spring constant k is initially com-
pressed a distance x, from its unstretched length.
What is the change in potential energy if it is then
compressed to an amount x from its unstretched
length? (b) Suppose the spring is then stretched a
distance x, from the unstretched length. What is the
change in potential energy as compared to when it is
compressed by an amount x,?

SECTIONS 6-6 AND 6-7

35. (I) Jane, looking for Tarzan, is running at top speed
(5.6 m/s) and grabs a vine hanging vertically from a
tall tree in the jungle. How high can she swing up-
ward? Does the length of the vine (or rope) affect
your answer?

36. (I) A novice skier, starting from rest, slides down a
frictionless 35.0° incline whose vertical height is 125 m.
How fast is she going when she reaches the bottom?

37. (I) A sled is initially given a shove up a frictionless 25.0°
incline. Tt reaches a maximum vertical height 1.35m
higher than where it started. What was its initial speed?

38. (II) In the high jump, the kinetic energy of an athlete is
transformed into gravitational potential energy without
the aid of a pole. With what minimum speed must the
athlete leave the ground in order to lift his center of

mass 2.10 m and cross the bar with a speed of 0.70 m/s?
39. (IT) A 75-kg trampoline artist jumps vertically upward
from the top of a platform with a speed of 5.0 m/s.
(@) How fast is he going as he lands on the trampoline,
3.0 m beldw (Fig. 6-37)? (b) If the trampoline behaves
like a spring of spring constant 5.2 X 10*N/m, how
far does he depress it?

FIGURE 6-37 Problem 39.
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40. (II) A roller coaster, shown in Fig. 6-38, is pulled U
to point A where it and its screaming occupants i
released from rest. Assuming no friction, calculi
the speed at points B, C, D.

2 .
1 AN s

XA XKD XKD XX XX X DU XS
DDA AR AN IXIXUAXDLAD

FIGURE 6-38 Problems 40 and 53.

41. (I) A projectile is fired at an upward angle of 45(F
from the top of a 265-m cliff with a speed of 185m/
What will be its speed when it strikes the groul
below? (Use conservation of energy.)

42. (II) A 60-kg bungee jumper jumps from a bridgé
She is tied to a 12-m-long bungee cord and fally
total of 31 m. (a) Calculate the spring constant k (
the bungee cord. (b) Calculate the maximum accel
eration experienced by the jumper.

43. (II) A vertical spring (ignore its mass), whose sprilj
constant is 900 N/m, is attached to a table and |
compressed 0.150 m. (a) What speed can it give 10
0.300-kg ball when released? (b) How high above it
original position (spring compressed) will the buf

fly?

44. (1) A small mass m slides without friction along (!
looped apparatus shown in Fig. 6-39. If the object |
to remain on the track, even at the top of the circl
(whose radius is r), from what minimum height
must it be released?

FIGURE 6-39 Problems 44 and 79.
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PIGURE 6-40 Problems 45, 55, 56, and 78.
(I1) A mass m is attached to the end of a spring
{(vonstant k), Fig. 6—40. The mass is given an initial
(llsplacement x,, after which it oscillates back and
(orth. Write a formula for the total mechanical energy
(lgnore friction and mass of the spring) in terms of
Josition x and speed v.

ngle of 45 ) (I1I) An engineer is designing a spring to be placed

1 of 185 m/s iil the bottom of an elevator shaft. If the elevator

the ground ¢nble should happen to break at a height A above

{he top of the spring, calculate the value that the

ym a bridge. #ring constant k should have so that passengers un-

1 and falls & tlergo an acceleration of no more than 5.0¢ when

:onstant k of Mrought to rest. Let M be the total mass of the eleva-
dimum accel- {or and passengers.

(I11) What should be the spring constant k of a

whose spring #pring designed to bring a 1200-kg car to rest from

table and i it speed of 100 km/h so that the occupants undergo
n it give to i ~ it maximum acceleration of 5.0g?
1igh above it (111) A cyclist intends to cycle up a 7.50° hill whose

will the ball vertical height is 120 m. Assuming the mass of bicycle

plus person is 75.0 kg, (a) calculate how much work
must be done against gravity. (b) If each complete
Ievolution of the pedals moves the bike 5.10 m along
it4 path, calculate the average force that must be ex-
vrted on the pedals tangent to their circular path. Ne-
plect work done by friction and other losses. The
pedals turn in a circle of diameter 36.0 cm.

ion along the
f the object iy
» of the circle
wm height )

ILCTIONS 6-8 AND 6-9

i, (1) Two railroad cars, each of mass 6500 kg and travel-
ing 95 km/h, collide head-on and come to rest. How
| much thermal energy is produced in this collision?

I, (I} A 17-kg child descends a slide 3.5m high and
reaches the bottom with a speed of 2.5m/s. How
much thermal energy due to friction was generated
in this process?

§, (11) A ski starts from rest and slides down a 20° in-
¢line 100 m long. (a) If the coefficient of friction is
(1,090, what is the ski’s speed at the base of the in-
cline? (b) If the snow is level at the foot of the incline
und has the same coefficient of friction, how far will
the ski travel along the level? Use energy methods.

and 79.

52. (IT) A 90-kg crate, starting from rest, is pulled across
a floor with a constant horizontal force of 350 N. For
the first 15m the floor is frictionless, and for the
fiext 15 m the coefficient of friction is 0.30. What is
the final speed of the crate?

53. (II) Suppose the roller coaster in Fig. 6-38 passes point
A with a speed of 1.70 m/s. If the average force of fric-
tion is equal to one fifth of its weight, with what speed
will it reach point B? The distance traveled is 45.0 m.

54. (IT) A skier traveling 12.0 m/s reaches the foot of a
steady upward 18° incline and glides 12.2 m up along
this slope before coming to rest. What was the aver-
age coefficient of friction?

55. (III) A 0.520-kg wood block is firmly attached to a
very light horizontal spring (k = 180 N/m) as shown
in Fig. 6-40. It is noted that the block-spring system,
when compressed 5.0 cm and released, stretches out
2.3 cm beyond the equilibrium position before stop-
ping and turning back. What is the coefficient of
kinetic friction between the block and the table?

56. (III) A 180-g wood block is firmly attached to a very
light horizontal spring, Fig. 6-40. The block can
slide along a table where the coefficient of friction
is 0.30. A force of 20 N compresses the spring 18 cm.
If the spring is released from this position, how far
beyond its equilibrium position will it stretch on its
first swing?

§7. (III) In early test flights for the space shuttle using a
“glider” (mass of 1000kg including pilot), it was
noted that after a horizontal launch at 500 km/h at a
height of 3500 m, the glider eventually landed at a
speed of 200 km/h. (a) What would its landing speed
have been in the absence of air resistance? (b) What
was the average force of air resistance exerted on it
if it came in at a constant glide of 10° to the Earth?

SECTION 6-10

58. (I) How long will it take a 1750-W motor to lift a
285-kg piano to a sixth-story window 16.0 m above?

59. (I) If a car generates 18 hp when traveling at a steady
90 km/h, what must be the average force exerted on
the car due to friction and air resistance?

60. (I) (a) Show that a British horsepower (550 ft-1b/s)
is equal to 746 W. (b) What is the horsepower rating
of a 100-W lightbulb?

61. (II) Electric energy units are often expressed in the
form of “kilowatt-hours.” (a) Show that one kilo-
watt-hour (kWh) is equal to 3.6 X 10°J. (b) If the
typical family of four in the United States uses elec-
tric energy at an average rate of 500 W, how many
kWh would their electric bill be for one month, and
(c) how many joules would this be? (d) At a cost of
$0.12 per kWh, what would their monthly bill be in
dollars? Does the monthly bill depend on the rate at
which they use the electric energy?

Problems 17




62.

63.

64.

65.

66.

(IT) A driver notices that her 1000-kg car slows down
from 90 km/h to 70 km/h in about 6.0s on the level
when it is in neutral. Approximately what power
(watts and hp) is needed to keep the car traveling at’
a constant 80 km/h?

(II) How much work can a 3.0-hp motor do in 1.0 h?
(II) A shot-putter accelerates a 7.3-kg shot from rest
to 14 m/s. If this motion takes 2.0s, what average
power was developed?

(I) A pump is to lift 8.00 kg of water per minute
through a height of 3.50 m. What output rating (watts)
should the pump motor have?

(II) During a workout, the football players at State U
ran up the stadium stairs in 61 s. The stairs are 140m
long and inclined at an angle of 30°. If a typical player
has a mass of 105 kg, estimate the average power out-
put on the way up. Ignore friction and air resistance.

B GENERAL PROBLEMS

67. (II) How fast must a cyclist climb a 6.0° hill to mainty
a power output of 0.25 hp? Neglect work done by i
tion and assume the mass of cyclist plus bicycle is 70K

68. (II) A 1000-kg car has a maximum power output (
120 hp. How steep a hill can it climb at a constant spu¢
of 70 km/h if the frictional forces add up to 600 N?

69. (IT) Squaw Valley ski area in California claims that [
lifts can move 47,000 people per hour. If the averif
lift carries people about 200 m (vertically) high¢
estimate the maximum total power needed.

70. (III) A bicyclist coasts down a 7.0° hill at a stei
speed of 5.0 m/s. Assuming a total mass of 75k
(bicycle plus rider), what must be the cyclist’s pow
output to climb the same hill at the same speed?

71.

72.

73.

74.

75.
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A paratrooper fell 370 m after jumping from an air-
craft without his parachute opening. He landed in a
snowbank, creating a crater 1.1 m deep, but survived
with only minor injuries. Assuming the paratrooper’s
mass was 80 kg and his terminal velocity was 30 m/s,
estimate: (a) the work done by the snow in bringing
him to rest; (b) the average force exerted on him by
the snow to stop him; and (c) the work done on him
by air resistance as he fell.

Designers of today’s cars have built “5 mi/h (8 km/h)
bumpers” that are designed to elastically compress and
rebound without any physical damage at speeds below
8km/h. If the material of the bumpers permanently
deforms after a compression of 1.5 cm, but remains like
an elastic Spring up to that point, what must the effec-
tive spring constant of the bumper material be, assum-
ing the car has a mass of 1400kg and is tested by
ramming into a solid wall?

In a certain library the first shelf is 10.0 cm off the
ground, and the remaining 4 shelves are each spaced
30.0 cm above the previous one. If the average book
has a mass of 1.5 kg with a height of 20 cm, and an
average shelf holds 25 books, how much work is
required to fill this bookshelf from scratch, assuming
the books are all laying flat on the floor to start?

In a film of Jesse Owens’s famous long jump in the 1936
Olympics, it is observed that his center of mass rose
1.1 m from launch point to the top of the arc. What min-
imum speed did he need at launch if he was also noted
to be traveling at 6.5 m/s at the top of the arc?

A 0.20-kg pinecone falls from a branch 18 m above the
ground. (a) With what speed would it hit the ground if
air resistance could be ignored? (b) If it actually hits
the ground with a speed of 10.0 m/s, what was the
average force of air resistance exerted on it?

CHAPTER6 Work and Energy
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FIGURE 6-41 Problem 76.

76. A ball is attached to a horizontal cord of length £
whose other end is fixed, Fig. 6-41. (a) If the ball is 1¢
leased, what will be its speed at the lowest point of |f
path? (b) A peg is located a distance / directly belo
the point of attachment of the cord. If A = 0.80
what will be the speed of the ball when it reaches |
top of its circular path about the peg?

77. A 65-kg hiker climbs to the top of a 3900-m-hif
mountain. The climb is made in 5.0h starting at §
elevation of 2200 m. Caiculate (@) the work do
against gravity, (b) the average power output in wal
and in horsepower, and (c) assuming the body is 159
efficient, what rate of energy input was required.

78. A mass m is attached to the end of a spring (col
stant k) as shown in Fig. 6—40. The mass is given i
initial displacement x, from equilibrium, and an inl
tial speed v, Ignoring friction and the mass of t
spring, use energy methods to find (a) its maximul
speed, and (b) its maximum stretch from equilibriut
in terms of the given quantities.




to maintail e small mass m sliding without friction along the

lone by fric: joped apparatus shown in Fig. 6-39 is to remain on
ycle is 70 kg, Jiu track at all times, even at the very top of the
:r output of wop of radius r. (¢) Calculate, in terms of the given
nstant speci {ihntities, the minimum release height A (as in
» 600 N? foblcm 44). Next, if the actual release height is 2k,
aims that ity \ilculate (b) the normal force exerted by the track
the averagg | the bottom of the loop, (c) the normal force exert-
illy) higher, ¢il by the track at the top of the loop, and (d) the
fed. finrmal force exerted by the track after the block
at a steady uxits the loop onto the flat section.
1ss of 75ky A clevator cable breaks when a 900-kg elevator is
zlist’s power 1} m above a huge spring (k = 4.0 X 10°N/m) at the
e speed? lioitom of the shaft. Calculate (a) the work done by
Jrivity on the elevator before it hits the spring, (b) the
Apeed of the elevator just before striking the spring, and
{¢) the amount the spring compresses (note that work
| tlone by both the spring and gravity in this part).
Witer flows over a dam at the rate of 550 kg/s and
R fulls vertically 80 m before striking the turbine blades.

{‘ilculate: (a) the speed of the water just before strik-
Iy the turbine blades (neglect air resistance), and
() the rate at which mechanical energy is transferred
{0 the turbine blades, assuming 60% efficiency.

A Dbicyclist of mass 75 kg (including the bicycle) can
gonst down a 4.0° hill at a steady speed of 10km/h.
Pumping hard, the cyclist can descend the hill at a
#peed of 30km/h. Using the same power, at what
fpeed can the cyclist climb the same hill? Assume
the force of friction is proportional to the square of
{he speed v; that is, F, = bv?, where b is a constant.

Show that on a roller coaster with a circular vertical
loop (Fig. 6-42), the difference in your apparent
weight at the top of the loop and the bottom of the
fbop is 6 g’s—that is, six times your weight. Ignore
friction. Show also that as long as your speed is
ihove the minimum needed, this answer doesn’t de-
jlond on the size of the loop or how fast you go
{lough it.
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FIGURE 6-42 Problem 83.

84.

85.

If you stand on a bathroom scale, the spring inside
the scale compresses 0.50 mm, and it tells you your
weight is 700 N. Now if you jump on the scale from a
height of 1.0 m, what does the scale read at its peak?
A 75-kg student runs at 5.0m/s, grabs a rope, and
swings out over a lake (Fig. 6—43). He releases the
rope when his velocity is zero. () What is the angle 6
when he releases the rope? (b) What is the tension in
the rope just before he releases it? (c) What is the
maximum tension in the rope?

FIGURE 6-43 Problem 85.

. In the rope climb, a 70-kg athlete climbs a vertical

distance of 5.0m in 9.0s. What minimum power output
was used to accomplish this feat?
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