The planet Jupiter showing two
of its moons, Io (visible in front
of the planet) and Europa at far
right. The moons, held by the
force of gravity, revolve around
Jupiter. Galileo was the first to
observe four of Jupiter's moons,
a momentous discovery that he
used to argue in favor of the
Copernican system.

CIRCULAR MOTION; GRAVITATION

direction of motion, or is zero. If the net force acts at an angle 1(

the direction of motion at any moment, then the object moves i
a curved path. An example of the latter is projectile motion, which w¢
have already discussed in Chapter 3. Another important case is that o
an object moving in a circle, such as a ball at the end of a string revoly
ing around one’s head, or the nearly circular motion of the Moon abou
the Earth.

In this chapter, we study the circular motion of an object, and ho
Newton’s laws of motion apply to it. We will also discuss how Newtot
conceived of another great law by applying the concepts of circula
motion to the motion of the Moon and the planets. This is the law of
universal gravitation, which was the capstone of Newton’s analysis of
the physical world.

3 n object moves in a straight line if the net force on it acts in th¢

Kinematics of Uniform Circular Motion

An object that moves in a circle at constant speed v is said to experience
uniform circular motion. The magnitude of the velocity remains constan
in this case, but the direction of the velocity is continuously changing a§
the object moves around the circle (Fig. 5-1). Since acceleration is de¢
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Wi us the rate of change of velocity, a change in direction of velocity
ilitutes an acceleration just as does a change in magnityde of velocity.
WK, an object revolving in a circle is continuously accelerating, even
e Lhe speed remains constant (v, = v, = v). We now investigate this
{uleration quantitatively.
Acceleration is defined as
v,— v, Av
At At’

jure Av is the change in velocity during the short time interval Az. We will
¢ntually consider the situation when At approaches zero and thus obtain
¢ Instantaneous acceleration. But for purposes of making a clear drawing,
It 5-2, we consider a nonzero time interval. During the time At, the particle
Il I'lp. 5-2a moves from point A to point B, covering a distance Al along
¢ arc which subtends an angle Af. The change in the velocity vector is
v, = Av, and is shown in Fig. 5-2b. If we let At be very small (ap-
juiching zero), then Al and A6 are also very small and v, will be almost
pilnliel to v; and Av will be essentially perpendicular to them. Thus Av
ints toward the center of the circle. Since a, by its definition above, is in
liu snme direction as Av, it too must point toward the center of the circle.
orefore, this acceleration is called centripetal acceleration (“center-
‘Wuking” acceleration) or radial acceleration (since it is directed along the
fitlius, toward the center of the circle), and we denote it by ag.

We next determine the magnitude of the centripetal (radial) accelera-
flon, ap. Because CA is perpendicular to v, and CB is perpendicular to v,,
il lollows that the angle Ag, defined as the angle between CA and CB, is
ilio the angle between v, and v,. Hence the vectors v,, v;, and Av in
}ip. 5-2b form a triangle that is geometrically similar’ to triangle ABC in
{lj. 5-2a. Taking A6 small (letting At be very small), we can write

M _ Al
v r-

Where we have set v = v, = v, because the magnitude of the velocity is
Aisumed not to change. This is an exact equality when At approaches zero,
{0y then the arc length Al equals the cord length AB. Since we want to find
{he instantaneous acceleration, for which At approaches zero, we write the
ihove expression as an equality and solve for Av:

Av="Y AL
r
Ib get the centripetal acceleration, ag, we divide Av by At:
g, =20 _vAlL
RoA raAe

ind since Al/At is the linear speed, v, of the object,

2
v
ag = ‘r‘ : é-1)

'Appendix A contains a review of geometry.

SECTION 5-1

—— v2

FIGURE 5-1 A small object
moving in a circle, showing how
the velocity changes. Note that at
each point, the instantaneous
velocity is in a direction tangent
to the circular path.

FIGURE 5-2 Determining the
change in velocity, Av, for a particle
moving in a circle. The length Al is the
distance along the arc, from A to B.

CENTRIPETAL
ACCELERATION

Kinematics of Uniform Circular Motion 113




FIGURE 5-3 For uniform
circular motion, a is always
perpendicular to v.
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Period and frequency

To summarize, an object moving in a circle of radius r with constant
speed v has an acceleration whose direction is toward the center of the cir«
cle and whose magnitude is ay = v*/r. It is not surprising that this accelers
ation depends on v and r. For the greater the speed v, the faster the
velocity changes direction; and the larger the radius, the less rapidly the
velocity changes direction.

The acceleration vector points toward the center of the circle. But the
velocity vector always points in the direction of motion, which is tangen«
tial to the circle. Thus the velocity and acceleration vectors are perpendice
ular to each other at every point in the path for uniform circular motioi
(see Fig. 5-3). This is another example that illustrates the error in thinkin
that acceleration and velocity are always in the same direction. For an obs«
ject falling vertically, a and v are indeed parallel. But in circular motion, &
and v are not parallel—nor are they in projectile motion (Section 3-5),
where the acceleration a = g is always downward but the velocity vectof
can have various directions (Figs. 3-18 and 3-20).

Circular motion is often described in terms of the frequency f as so
many revolutions per second. The period T of an object revolving in a circle

is the time required for one complete revolution. Period and frequency are
related by

T= ? (5-2)

For example, if an object revolves at a frequency of 3 rev/s, then each revs
olution takes ; s. For an object revolving in a circle at constant speed v, we
can write

v=27"
T

since in one revolution the object travels one circumference (=27r).

Acceleration of a revolving ball. A 150-g ball at the end
of a string is revolving uniformly in a horizontal circle of radius 0.600 m,
as in Fig. 5-1. The ball makes 2.00 revolutions in a second. What is it§
centripetal acceleration?

SOLUTION The centripetal acceleration is ay = v?/r. First, we deters
mine the speed of the ball v. If the ball makes two complete revolutions
per second, then the ball travels in a complete circle in 0.500 s, which is it
period T. The distance traveled in this time is the circumference of the
circle, 27rr, where r is the radius of the circle. Therefore, the ball has speed

_ 2ar _ 2(3.14)(0.600 m)

=7 (0.5005) = 7.54 m/s.
The centripetal acceleration is
v (7.54 m/s)? )
ag == 0.600m) 94.8 m/s”.
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th constant Moon’s centripetal acceleration. The Moon’s nearly cir-

 of the cir- Iilar orbit about the Earth has a radius of about 384,000 km and a period
his accelc;r i 0l 27.3 days. Determine the acceleration of the Moon toward the Earth.
faster the

OLUTION 1In orbit around the Earth, the Moon travels a distance

rapidly the g = ' ©
i, where r = 3.84 X 10°m is the radius of its circular path. The speed

cle. But the Wl the Moon in its orbit about the Earth is v = 27r/T. The period T in
1 is tangen- Seconds is T = (27.3d)(24.0h/d)(3600s/h) = 2.36 X 10°s. Therefore,
perpendic- v Q) [2(3.14)(3.84 X 10® m)]?

‘llgrﬂ’l‘:g;‘lzg T T T T (236 X 10°5)(3.84 X 10°m)

. For an ob- = 0.00272 m/s* = 2.72 X 107> m/s2.

ir motion, a

We can write this in terms of g = 9.80m/s? (the acceleration of gravity

sction 3-5), il the Earth’s surface) as’

ocity vector

8

c2mxi e ()

ancy f as so “ 73X 10 gm/s 9.80 m/s?

o circs =278 X 10~g.

quency are E
(5-2) Dynamics of Uniform Circular Motion

en each rev- * According to Newton’s second law (2F = ma), an object that is accelerating

-speed v, we fiust have a net force acting on it. An object moving in a circle, such as a
hall on the end of a string, must therefore have a force applied to it to keep
It moving in that circle. That is, a net force is necessary to give it centripetal
ficceleration. The magnitude of the required force can be calculated using
Newton’s second law for the radial component, Fy = mag, where ag is the

=2mr). gentripetal acceleration, ag = v?/r, and SFy is the total (or net) force in the

indial direction:

2

v
ill at the end SFy = mag = m—

dius 0.600 m,
l. What is its

[circular motion] (5-3)
Since ag, is directed toward the center of the circle at any moment, the net
force too must be directed toward the center of the circle. A net force is
tlearly necessary because otherwise, if no net force were exerted on the
ubject, it would not move in a circle but in a straight line, as Newton’s first
law tells us. To pull an object out of its “natural” straight-line path, a net
force to the side is necessary. For uniform circular motion, this sideways
force must act toward the circle’s center (see Fig. 5-4). The direction of
the net force is thus continually changing so that it is always directed
foward the center of the circle. This force is sometimes called a centripetal
(“aiming toward the center”) force. But be aware that “centripetal force”
does not indicate some new kind of force. The term merely describes the
direction of the net force: that the net force is directed toward the circle’s
center. The force must be applied by other objects. For example, when a

st, we deter-
e revolutions
s, which is its
srence of the
vall has speed

'Note: this acceleration @ = 2.78 X 107 g is not the acceleration of gravity for objects at the
Moon’s surface due to the Moon’s gravity. Rather it is the acceleration due to the Earth’s
pravity for any object (such as the Moon) that is 384,000 km from the Earth.

SECTION 5-2

Dynamics of Uniform Circular Motion

Force is needed to provide
centripetal acceleration

\\__—/

FIGURE 5-4 A force is
required to keep an object moving
in a circle. If the speed is constant,
the force is directed toward the
center of the circle.

Careful:
Centripetal force is not
a new kind of force
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There is no
centrifugal force

FIGURE 5-5 Swinging a ball
on the end of a string.

———
P -~

| exerted by
\ string

person swings a ball in a circle on the end of a string, the person pulls on
the string and the string exerts the force on the ball.

There is a common misconception that an object moving in a circle
has an outward force acting on it, a so-called centrifugal (“center-fleeing”)
force. This is incorrect: there is no outward force. Consider, for example, 4
person swinging a ball on the end of a string around her head (Fig. 5-5).If
you have ever done this yourself, you know that you feel a force pulling
outward on your hand. The misconception arises when this pull is inter
preted as an outward “centrifugal” force pulling on the ball that is transe
mitted along the string to your hand. This is not what is happening at all,
To keep the ball moving in a circle, you pull inwardly on the string, which
in turn exerts the force on the ball. The ball exerts an equal and opposite
force (Newton’s third law), and this is the force your hand feels (se¢
Fig. 5-5). The force on the ball is the one exerted inwardly on it by the string,
To see even more convincing evidence that a “centrifugal force” does not acl
on the ball, consider what happens when you let go of the string. If a cen
trifugal force were acting, the ball would fly outward, as shown in Fig. 5-6a,
But it doesn’t; the ball flies off tangentially (Fig. 5-6b), in the direction of the
velocity it had at the moment it was released, because the inward force ng
longer acts. Try it and see!

FIGURE 5-6 If centrifugal force existed, the ball would fly off as in (a)
when released. In fact, it flies off tangentially as in (b). For example, in (c) sparks
fly in straight lines tangentially from the edge of a rotating grinding wheel.

/ DOESN'T
/ HAPPEN
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{ XAMPLE 5-3 Force on revolving ball (horizontal). Esti-
| It the force a person must exert on a string attached to a 0.150-kg ball
{» make the ball revolve in a horizontal circle of radius 0.600 m, as in
| |ixample 5-1. The ball makes 2.00 revolutions per second.

feels (see SOLUTION First we draw the free-body diagram for the ball, Fig. 5-7,
the string, ‘which shows the two forces acting on the ball: the force of gravity, mg;
oes not act and the tension force F; that the string exerts (which occurs because
s If a cen- Ile person exerts that same force on the string). The ball’s weight
|’F1g. 5_6a. gomplicates matters and makes it impossible to revolve a ball with the
stion of the gord horizontal. But if the weight is small enough, we can ignore it.

I'hen Fyp will act nearly horizontally (6 =~ 0 in Fig. 5-7) and provide
{he force necessary to give the ball its centripetal acceleration. We

ipply Newton’s second law to the radial direction, which now is hori-
sontal, so we call it x:

d force no

sin (a)
1 () sparks 2F, = ma,
heel. ot (recall from Example 5-1 that v = 7.54m/s),

1l g (7.54 m/s)?
Fro=m® = (0150 ke) " oo~

L"whcre we have rounded off because our estimate ignores the ball’s mass.

14N,

3

ONCEPTUAL EXAMPLE 5-4| Tetherball. The game of tetherball is
played with a ball tied to a pole with a string. When the ball is struck, it
whirls around the pole as shown in Fig. 5-8. In what direction is the ac-
celeration of the ball, and what causes the acceleration?

\\_§@/—_

RESPONSE The acceleration points horizontally toward the center of
the ball’s circular path (not toward the top of the pole). The force respon-
sible for the acceleration may not be obvious at first, since there seems to
he no force pointing directly horizontally. But it is the net force (the sum
ol mg and F; here) that must point in the direction of the acceleration.
I'he vertical component of the string tension balances the ball’s weight,
mg. The horizontal component of the string tension, Fr,, is the force that
produces the centripetal acceleration toward the center.

b —

FIGURE 5-7 Example 5-3.

Tension in cord acts to provide
the centripetal acceleration

FIGURE 5-8
Conceptual Example 5-4.

SECTION5-2  Dynamics of Uniform Circular Motion 17



A FIGURE 5-9 Example 5-5,
with free-body diagrams at the
two positions.

Gravity and cord tension together

provide centripetal acceleration

Gravity provides
centripetal acceleration

String tension and gravity
acting in opposite directions

provide centripetal acceleration

’

m Revolving ball (vertical circle). A 0.150-kg ball on the
end of a 1.10-m-long cord (negligible mass) is swung in a vertical circle. Des
termine the minimum speed the ball must have at the top of its arc so that

it continues moving in a circle. (b) Calculate the tension in the cord at the
bottom of the arc assuming the ball is moving at twice the speed of part (a),

SOLUTION The free-body diagram is shown in Fig. 5-9 for both situs
ations. (a) At the top (point A), two forces can act on the ball: mg, ity
weight; and Fp,, the tension force the cord exerts at point A. Both acl
downward, and their vector sum acts to give the ball its centripetal accel
eration ag. We apply Newton’s second law, for the vertical direction,
choosing downward as positive (toward the center):

SFg = mag

v

Fpp+mg=m—
r

From this equation we can see that the tension force Fp, at A will gel
larger if v, (ball’s speed at top of circle) is made larger, as expected. Bul
we are asked for the minimum speed to keep the ball moving in a circle,
The cord will remain taut as long as there is tension in it; but if the ten-
sion disappears (because v, is too small) the cord can go limp, and th¢
ball will fall out of its circular path. Thus, the minimum speed will occut
if Fy, = 0, for which we have
2
Va
mg = m R
r

We solve for v,:
vy = Vgr = V(9.80 m/s9)(1.10 m) = 3.28 m/s.

This is the minimum speed at the top of the circle if the ball is to continu¢
moving in a circular path. T
(b) At the bottom of the circle (see Fig. 5-9) the cord exerts its tensionir
force Frp upward whereas the force of gravity, mg, acts downward. So
Newton’s second law, this time choosing upward as positive (toward the|
center), gives

SFg = mag
Vg
Fg—mg=m i

The speed vy is given as twice what we found in (@), namely 6.56 m/s.
[Note that the speed changes here because gravity acts on the ball at all

118 CHAPTER 5

Circular Maotion; Gravitation




ball on the
i circle. De-
s arc so that
. cord at the
1 of part (a).

ir both situ-
ball: mg, its
A. Both act
ipetal accel-
1l direction,

it A will get
kpected. But
g in a circle.
1t if the ten-
mp, and the
:d will occur

s to continue

ts its tension
>wnward. So
(toward the

ely 6.56 m/s.
the ball at all

jJints along the path, but Eq. 5-3 still remains valid, SFp = mv?®/r.] We
hlve for Frp in the last equation:
2
vB ’
Fg=m - + mg

3 (6.56 m/s)?
| = (0150kg) P10

‘Nole that we could not simply set Frg equal to mv/r; the latter is equal

|0 the net force on the ball in the radial direction and so also includes
ytuvity. Indeed, the cord’s tension not only provides the centripetal accel-
gintion, but must be even larger than may to compensate for the down-
‘wird force of gravity.

+ (0.150 kg)(9.80 m/s?) = 7.34 N.

'ONCEPTUAL EXAMPLE 5-6| Ferris wheel. A rider on a Ferris wheel
fioves in a vertical circle of radius r at constant speed v (Fig. 5-10). Is the
finrmal force that the seat exerts on the rider at the top of the circle (a) less
{han, (b) more than, or (c) the same as, the force the seat exerts at the bot-
{om of the circle?

RESPONSE The free-body diagram is shown in Fig. 5-10 and is similar to
{hat for Example 5-5, with Fy, replacing F;. Because the acceleration points
fidially toward the center, Newton’s second law tells us that Fy < mg at
the top but Fy, > mg at the bottom. So the correct answer is (a).

A Car Rounding a Curve

An example of centripetal acceleration occurs when an automobile
founds a curve. In such a situation, you may feel that you are thrust out-
wird. But there is not some mysterious centrifugal force pulling on you.
What is happening is that you tend to move in a straight line, whereas the
gir has begun to follow a curved path. To make you go in the curved
Jith, the seat (friction) or the door of the car (direct contact) exerts a
}’m'ce on you (Fig. 5-11). The car itself must have an inward force exerted
on it if it is to move in a curve. On a flat road, this force is supplied by
fiiction between the tires and the pavement. (It is static friction as long

\/

Force on car
(sum of friction forces
acting on each tire)

e =

Tendency for

passenger to

go straight
-

Force on

FIGURE 5-10 Conceptual
Example 5-6.

W PHYSICS APPLIED

Driving on a curve

FIGURE 5-11 The road exerts
an inward force (friction against the
tires) on a car to make it move in a
circle; and the car exerts an inward
force on the passenger.

SECTION5-3 A Car Rounding a Curve 19




FIGURE 5-12 Racecar
heading down into a curve. From the
tire marks we can see that most cars
experienced a sufficient friction force
to give them the needed centripetal
acceleration for rounding the curve
safely. But, we can also see a few tire
tracks of cars on which there was not
sufficient force—and which followed
more nearly straight-line paths.

FIGURE 5-13 Forcesona
car rounding a curve on a flat road,
Example 5-7. (a) Front view,

(b) top view.

FG= mg

(a)

(b)

120 CHAPTER5

as the tires are not slipping.) If the friction force is not great enough
as under icy conditions, sufficient force cannot be applied and the ca
will skid out of a circular path into a more nearly straight path. S¢
Fig. 5-12.

Skidding on a curve. A 1000-kg car rounds a curv
on a flat road of radius 50 m at a speed of 50km/h (14 m/s). Will th
car make the turn, or will it skid, if: (a) the pavement is dry and the co
efficient of static friction is p, = 0.60; (b) the pavement is icy an
s = 0.25?

SOLUTION Figure 5-13 shows the free-body diagram for the car. Th
normal force, Fy, on the car is equal to the weight since the road is fla
and there is no vertical acceleration: |

Fy = mg = (1000 kg)(9.8 m/s?) = 9800 N.

In the horizontal direction the only force is friction, and we must coni
pare it to the force needed to produce the centripetal acceleration to s¢
if it is sufficient. The net horizontal force required to keep the car mov
ing in a circle around the curve is

v? (14 m/s)?
SFp =mag=m ;= (1000 kg) (50m)

Naturally we hope the maximum total friction force (the sum of the friction
forces acting on each of the four tires) will be at least this large. For (a)
u = 0.60, and the maximum friction force attainable (recall from Sec
tion 4-8 that F;, = uF)is

(Fi)max = MsFn = (0.60)(9800 N) = 5900 N.

Since a force of only 3900 N is needed, and that is, in fact, how much wil
be exerted by the road as a static friction force, the car can make the turij
fine. But in (b) the maximum friction force possible is

(Fi)max = MeFy = (0.25)(9800 N) = 2500 N.

= 3900 N.

The car will skid because the ground cannot exert sufficient forci
(3900 N is needed) to keep it moving in a curve of radius 50 m. |

The situation is worse if the wheels lock (stop rotating) when the brakc‘
are applied too hard. When the tires are rolling, the bottom of the tire is a
rest against the road at each instant, so static friction exists. But if the
wheels lock, the tires slide and the friction force, which is now kinetic fric
tion, is less. Moreover, when the road is wet or icy, locking of the wheelf
occurs with less force on the brake pedal since there is less road friction t(
keep the wheels turning rather than sliding. Antilock brakes (ABS) ar
designed to limit brake pressure just before the point where sliding woulj
occur, by means of delicate sensors and a fast computer.

The banking of curves can reduce the chance of skidding because thq{
normal force of the road (acting perpendicular to the road) will have a com|

Circular Maotion; Gravitation
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| BOLUTION We choose our x and y axes as horizontal and vertical so {

unt toward the center of the circle (Fig. 5-14), thus reducing the reliance ™» PHYSICS APPLIED
fiiction. For a given banking angle, 6, there will be one speed for which  Bunked curves

ftiction at all is required. This will be the case when the horizontal com-

flont of the normal force toward the center of the curve, Fysin 6 (see y

i, §-14), is just equal to the force required to give a vehicle its centripetal
s uleration—that is, when

v?
Fysing=m—-
r

| lio banking angle of a road, 6, is chosen so that this condition holds for a
\'ticular speed, called the “design speed.”

B\ [N N Banking angle. (a) For a car traveling with speed v
L wiound a curve of radius r, determine a formula for the angle at which a
{ond should be banked so that no friction is required. (b) What is this
“ungle for an expressway off-ramp curve of radius 50 m at a design speed

f 50 km/h?

| that ag, which is horizontal, is along the x axis. The components of Fy are
| i shown in Fig. 5-14. (a) For the horizontal direction, £2F; = mag gives FIGURE 5-14 Normal force
I mo? on a car rounding a banked curve,
Fysin= —— resolved into its horizontal and

r vertical components. Note that
the centripetal acceleration is
horizontal (and not parallel to the
sloping road).

fn the vertical direction, the forces are Fycos 6 upward (Fig. 5-14) and
Ihe weight of the car (mg) downward. Since there is no vertical motion,
{he y component of the acceleration is zero, so 2F, = ma, gives us

Fycos 8 — mg = 0.
‘Thus,
mg

cos 8

Fy

|Note in this case that Fy = mg since cos 6 < 1.] We substitute this relation  Horizonial component of normal

for Fy into the equation for the horizontal motion, force alone acts to provide
2 centripetal acceleration
. 'v . . . .
Fysin6=m— ( fncttor.z lS.dESlred to be zero—
. otherwise it too would contribute)
and obtain

’02

m .
g sm0=m—r-

cos 6
ot 5

v
mgtan0=m7

KO
,DZ
tan = —-
rg

"I'his is the formula for the banking angle 6.
(h) For r = 50m and v = 50km/h (or 14 m/s),

_ (4m/sy
tan 0 = 0 )98 m/s?)

0.40,
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(b)

FIGURE 5-15 The speed
of an object moving in a circle
changes if the force on it has a
tangential component, F, . Part
(a) shows the force F and its

| vector components; part (b)
shows the acceleration vector
and its vector components.

)
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* Nonuniform Circular Motion

Circular motion at constant speed occurs when the net force on an objc¢
is exerted toward the center of the circle. If the net force is not directe
toward the center but is at an angle, as shown in Fig. 5-15a, the force ha
two components. The component directed toward the center of the circlg,
Fg, gives rise to the centripetal acceleration, ag, and keeps the object mov
ing in a circle. The component tangent to the circle, F,,, acts to increasg
(or decrease) the speed, and thus gives rise to a component of the acceler
ation tangent to the circle, a,,,. When the speed of the object is changing,
tangential component of force is acting,

When you first start revolving a ball on the end of a string aroun
your head, you must give it tangential acceleration. You do this by pulling
on the string with your hand displaced from the center of the circle. In ath
letics, a hammer thrower accelerates the hammer tangentially in a similaf
way so that it reaches a high speed before release.

The tangential component of the acceleration, a,,,, is equal to the rat¢
of change of the magnitude of the velocity of the object:

Av,

At

The radial (centripetal) acceleration arises from the change in direction of
the velocity and, as we have seen (Eq. 5-1), is given by

Agan =

g =

The tangential acceleration always points in a direction tangent to the circle,
and is in the direction of motion (parallel to v) if the speed is increasing, ay
shown in Fig. 5-15b. If the speed is decreasing, a,,, points antiparallel to v,
In either case, a,,, and ay are always perpendicular to each other; and their
directions change continually as the object moves along its circular path,
The total vector acceleration, a, is the sum of these two:

a=a, + ag

Since ag and a,,, are always perpendicular to each other, the magnitude of
a at any moment is

= V42 2
a = Vag, + ax.

Two components of acceleration. A racing car starts from
rest in the pit area and accelerates at a uniform rate to a speed of 35m/s in
11's, moving on a circular track of radius 500 m. Assuming constant tangen-
tial acceleration, find (@) the tangential acceleration, and (b) the centripetal
acceleration when the speed is 30 m/s.

SOLUTION (a) a,,, is constant, of magnitude
. _Av _ (35m/s — 0m/s)
At 11s

v* (30 m/s)?
L T

=32 m/s%

= 1.8 m/s%

Circular Motion; Gravitation
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-5 Centrifugation

AMulul device that very nicely illuminates the dynamic aspects of circular
Wllon is the centrifuge, or the very high speed ultracentrifuge. These
Wices are used to sediment materials quickly or to separate materials with
Wiy different characteristics. Test tubes or other containers are held in
W centrifuge rotor, which is accelerated to very high rotational speeds:
I'ig. 5-16, where one test tube is shown in two different positions as
! 1otor turns. The small green dot represents a small particle, perhaps a
jeromolecule, in a fluid-filled test tube. When the tube is at position A
(| the rotor is turning, the particle has a tendency to move in a straight
40 In the direction of the dashed arrow. But the fluid, resisting the motion
I (e particles, exerts a centripetal force that keeps the particles moving
tly in a circle. Usually, the resistance of the fluid (which could be a liquid,
W i, or a gel, depending on the application) does not quite equal mv?/r,
il the particles eventually reach the bottom of the tube. If the particles
¢ #cdimenting in a semi-rigid medium like a gel, and the rotation is
lpped before the particles reach the bottom of the tube, the particles
il be separated according to their size or other factors that influence
Hiolr mobility. If the particles reach the bottom of the tube, then the bottom
{ the tube exerts a force that keeps the particles moving in a circle. In
i1, the bottom of the tube must exert a force on the whole tube of fluid,
Juping it moving in a circle. If the tube is not strong enough to exert this
Wiee, it will break.

T'he kinds of materials placed in a centrifuge are those that do not
Mediment or separate quickly under the action of gravity. The purpose of a
WWirifuge is to provide an “effective gravity” much larger than normal

Blivity because of the high rotational speeds, so that the particles move
Hwn the tube more rapidly.

PR8N Tall Ultracentrifuge. An ultracentrifuge rotor rotates at
0,000 rpm (revolutions per minute). The top of a 4.00-cm long test tube
(Flg. 5-16) is 6.00cm from the rotation axis and is perpendicular to it.
I'he bottom of the tube is 10.00 cm, from the axis of rotation. (a) Calcu-
lute the centripetal acceleration, in “g’s,” at the top and the bottom of the
{ube. (b) If the contents of the tube have a total mass of 12.0 g, what
foree must the bottom of the tube withstand?

NOLUTION We can calculate the centripetal acceleration from

ll ity = v/r. (a) At the top of the tube, a particle revolves in a circle of
| tlrcumference 2arr, which is a distance

il
27r = 2(3.14)(0.0600 m) = 0.377 m per revolution.

It makes 5.00 X 10* such revolutions each minute, or, dividing by 60s/min,
H33rev/s; so the time to make one revolution, the period T, is

T =1/(833 rev/s) = 1.20 X 1073 s/rev.
The speed of the particle is then

_ 2ar _ ( 0.377 m/rev
T 1.20 X 1073 s/rev

) = 3.14 X 10> m/s.

W PHYSICS APPLIED
Centrifuge

Force exerted
by liquid

FIGURE 5-16 Rotating test
tube in a centrifuge (top view).
Tube is shown at two positions.
At A, the green dot represents a
macromolecule or other particle
being sedimented. It would tend to
go along the dashed line heading
toward the bottom of the tube
but the fluid resists this motion by
exerting a force on the particle as
shown at point B.
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[ FIGURE 5-17 Anywhere on
Earth, whether in Alaska, Peru, or
Australia, the force of gravity acts
downward toward the center.

Newton’s apple

The centripetal acceleration is
v* _ (314 X 10> m/s)’
‘r 0.0600 m

which, dividing by g = 9.80m/s? is 1.67 X 10° g’s.
At the bottom of the tube (r = 0.1000 m), the speed is

2ar 27 (0.1000 m)
T 120 X 107 3s/rev

ag =

= 1.64 X 10°m/s?,

v= =523 X 10°m/s.

Then
ag = v¥/r = (523 X 10’ m/s)*/(0.1000 m) = 2.74 X 10° m/s*
=279 X 10° g’s. j

(b) Since the acceleration varies with distance from the axis, we estimal(
the force using the average acceleration

(1.64 X 10°m/s® + 2.74 X 10° m/s%)
2
=219 X 10° m/s%.

a=

Then
F = ma = (0.0120 kg)(2.19 X 10° m/s%) = 2.63 X 10* N.

which is equivalent to the weight of a 2680-kg mass [since m = F/g =
(2.63 X 10*N)/9.80m/s? = 2.68 X 10°kg], or almost 3 tons!

mNewton’s Law of Universal Gravitation

Besides developing the three laws of motion, Sir Isaac Newton also exani

ined the motion of the planets and the Moon. In particular, he wondered
about the nature of the force that must act to keep the Moon in its nearly
circular orbit around the Earth.

Newton was also thinking about the problem of gravity. Sinc¢
falling bodies accelerate, Newton had concluded that they must have |
force exerted on them, a force we call the force of gravity. Whenever i
body has a force exerted on it, that force is exerted by some other body:
But what exerts the force of gravity? Every object on the surface of the
Earth feels the force of gravity, and no matter where the object is, the
force is directed toward the center of the Earth, Fig. 5-17. Newton con®
cluded that it must be the Earth itself that exerts the gravitational forc
on objects at its surface.

According to an early account, Newton was sitting in his garden and
noticed an apple drop from a tree. He is said to have been struck with
sudden inspiration: if gravity acts at the tops of trees, and even at the tops
of mountains, then perhaps it acts all the way to the Moon! Whether thig
story is true or not, it does seem to capture something of Newton’s reas
soning and inspiration. With this idea that it is terrestrial gravity that hold§}
the Moon in its orbit, Newton developed his great theory of gravitation,
[But there was controversy at the time. Many thinkers had trouble accepts

124 CHAPTERS5 Circular Motion; Gravitation




the idea of a force “acting at a distance.” Typical forces act through
Wict—your hand pushes a cart and pulls a wagon, a bat hits a ball, and
On. But gravity acts without contact, said Newton: the Earth exerts a
¢ on a falling apple and on the Moon, even though there is no contact,
(|l the two objects may even be very far apart.]
Necwton set about determining the magnitude of the gravitational force
i the Earth exerts on the Moon as compared to the gravitational force
objects at the Earth’s surface. At the surface of the Earth, the force of
Wity accelerates objects at 9.80 m/s”. But what is the centripetal accelera-
) of the Moon? Since the Moon moves with nearly uniform circular motion,
)0 icceleration can be calculated from ai = v2/r. We already performed
X 10° m/s* i calculation in Example 5-2 and found that az = 0.00272 m/s% In terms
the acceleration of gravity at the Earth’s surface, g, this is equivalent to
1 The Moon’s
ap =~ 3600 g acceleration

toward Earth

hint is, the acceleration of the Moon toward the Earth is about 3; as
font as the acceleration of objects at the Earth’s surface. The Moon is
1,000 km from the Earth, which is about 60 times the Earth’s radius of
380 km. That is, the Moon is 60 times farther from the Earth’s center than
Jo objects at the Earth’s surface. But 60 X 60 = 60 = 3600. Again that
fiimber 3600! Newton concluded that the gravitational force exerted by
iho Earth on any object decreases with the square of its distance, r, from
tho FEarth’s center:

we estimate

force of gravity « —rla

| he Moon, being 60 Earth radii away, feels a gravitational force only
ition ‘ |' i ™ s times as strong as it would if it were at the Earth’s surface. Any

ihject placed 384,000 km from the Earth would experience the same Moon
1 also exam- 3&;&;((;;;;3&(/)112 due to the Earth’s gravity as the Moon experiences: Gravitational
ie wondered | I/ Sa; force exerted on

in its nearly Newton realized that the force of gravity on an object depends not Moon by Earth

ihly on distance but also on the object’s mass. In fact, it is directly propor-
avity. Since llonal to its mass, as we have seen. According to Newton’s third law, when
must have a |h¢ Earth exerts its gravitational force on any body, such as the Moon, that
Whenever a Oiher body exerts an equal and opposite force on the Earth (Fig. 5-18). g, Gravitational force
other body. lucause of this symmetry, Newton reasoned, the magnitude of the force of exerted on Earth
irface of the Jruvity must be proportional to both the masses. Thus by the Moon

bject is, the
Newton con- F x
itional force

mgmg FIGURE 5-18 The
2 gravitational force one body
exerts on a second body is
Where my is the mass of the Earth, my the mass of the other body, and r  directed toward the first body,

s garden and fhe distance from the Earth’s center to the center of the other body. and is equal and opposite to the
truck with a Newton went a step further in his analysis of gravity. In his examina- force exerted by the second body
n at the tops llon of the orbits of the planets, he concluded that the force required to ©n the first.

Whether this hold the different planets in their orbits around the Sun seems to diminish

ewton’s rea- )% the inverse square of their distance from the Sun. This led him to be-

ty that holds lieve that it is also the gravitational force that acts between the Sun and

[ gravitation. guch of the planets to keep them in their orbits. And if gravity acts be-

»uble accept- Iween these objects, why not between all objects? Thus he proposed his
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_ (narrow beam)

FIGURE 5-19 Schematic
diagram of Cavendish’s apparatus.
Two spheres are attached to a light
horizontal rod, which is suspended
at its center by a thin fiber. When a
third sphere labeled A is brought
close to one of the suspended spheres,
the gravitational force causes the
latter to move, and this twists the
fiber slightly. The tiny movement is
magnified by the use of a narrow
light beam directed at a mirror
mounted on the fiber. The beam
reflects onto a scale. Previous
determination of how large a force
will twist the fiber a given amount
then allows one to determine the
magnitude of the gravitational force
between two objects.

famous law of universal gravitation, which we can state as follows:

Every particle in the universe attracts every other particle with a forc
that is proportional to the product of their masses and inversel
proportional to the square of the distance between them. This fore
acts along the line joining the two particles.

The magnitude of the gravitational force can be written as

mym
F=G 17742

7 (5-4)

where m, and m, are the masses of the two particles, r is the distance betweeiy
them, and G is a universal constant which must be measured experimentally
and has the same numerical value for all objects.

The value of G must be very small, since we are not aware of any forcd
of attraction between ordinary-sized objects, such as between two baseballs,
The force between two ordinary objects was first measured, over 100 years
after Newton’s publication of his law, by Henry Cavendish in 1798.To detecl
and measure the incredibly small force, he used an apparatus like thal
shown in Fig. 5-19. Cavendish confirmed Newton’s hypothesis that two
bodies attract one another, and that Eq. 5-4 accurately describes this forc,
In addition, because he could measure F, m,, m,, and r accurately, he way
able to determine the value of the constant G as well. The accepted value
today is

G = 6.67 X 107" N-m?/kg’.

[Strictly speaking, Eq. 5-4 gives the magnitude of the gravitational
force that one particle exerts on a second particle that is a distance r away,
For an extended object (that is, not a point), we must consider how to
measure the distance r. You might think that r would be the distance
between the centers of the objects. This is often true and often a good
approximation even when not quite true, but to do a calculation correctly,
each extended body must be considered as a collection of tiny particles.
The total force is the sum of the forces due to all the particles. The sum
over all these particles is often best done using integral calculus, which
Newton himself invented. Newton showed that for two uniform spheres,
Eq. 5-4 gives the correct force where r is the distance between their centers,
Also, when extended bodies are small compared to the distance between
them (as for the Earth—Sun system), little inaccuracy results from consider- |
ing them as point particles.]

EXAMPLE 5-11 Can you attract another person gravita-
tionally? A 50-kg person and a 75-kg person are sitting on a bench so
that their centers are about 50 cm apart. Estimate the magnitude of the
gravitational force each exerts on the other.

SOLUTION We use Eq. 5-4, which gives
- (6.67 x 1071 N-m?/kg?)(50 kg)(75 kg)
= (0.50 m)?

which is unnoticeably small unless very delicate instruments are used.

=1.0 X 107¢N,
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vs:

DRI JUSETEPE Spacecraft at 2R;. What is the force of gravity acting
1 0 2000-kg spacecraft when it orbits two Earth radii from the Earth’s cen-
o (that is, a distance r; = 6380 km above the Earth’s surface, (Fig. 5-20)?
e mass of the Earth is Mg = 5.98 X 10*kg.

SOLUTION We could plug all the numbers into Eq. 5-4, but there is
‘i simpler approach. The spacecraft is twice as far from the Earth’s cen-
{0or as when at the surface of the Earth. Therefore, since the force of
rivity decreases as the square of the distance (and % = }), the force of
lﬁl'uvity on it will be only one fourth its weight at the Earth’s surface:

Fg = L mg = 1(2000 kg)(9.80 m/s?) = 4900 N.

ith a force
. inversely
This force

5-4)

ce between
erimentally

WRTNY NN EN Force on the moon. Find the net force on the Moon
{my = 7.35 X 102 kg) due to the gravitational attraction of both the
larth (mg = 5.98 X 10*kg) and the Sun (mg = 1.99 X 10¥kg), assum-
| Ing they are at right angles to each other (Fig. 5-21).

»f any force
o baseballs.
:r 100 years
18. To detect
1s like that
sis that two
:s this force.
tely, he was
epted value

| NOLUTION We must add the two forces vectorially. First we calculate
{heir magnitudes. The Earth is 3.84 X 10°km = 3.84 X 10®m from the
Muoon, so Fy (the force on the Moon due to the Earth) is

_ (667 % 107" N-m?/kg?)(7.35 X 10?2 kg)(5.98 X 10% kg)
ME (3.84 x 10® m)?

=1.99 X 10 N.

I'he Sun is 1.50 X 10®km from the Earth and the Moon, so Fy (the
ance r away. furce on the Moon due to the Sun) is

ider how to (6.67 X 107 N-m?/kg?)(7.35 X 102 kg)(1.99 X 10*° kg)
‘he distance Fys = (1.50 X 10" m)z

ften a good "
on correctly, = 4.34 X 10’ N.

ny particles.

rravitational

Since the two forces act at right angles in the case we are considering

les. The sum (Ilg. 5-21), the total.force is

culus, which 5 3 20 20
»rm sphered) F="V(1.99)? + (4.34)2 X 10®N = 4.77 X 10®N
their centers.

which acts at an angle § = tan™! (1.99/4.34) = 24.6°.
nce between o =

om consider- , . o s .
'he law of universal gravitation should not be confused with New-

1on's second law of motion, XF = ma. The former describes a particular
furce, gravity, and how its strength varies with the distance and masses in-
yilved. Newton’s second law, on the other hand, relates the net force on a
Budy (i.e., the vector sum of all the different forces acting on the body
‘Whatever their sources) to the mass and acceleration of that body.

arson gravita-
n a bench so
nitude of the
sEvA Gravity Near the Earth’s Surface;
Geophysical Applications

0 X 107°N, : . . ‘ L
When Eq. 5-4 is applied to the gravitational force between the Earth and

4 object at its surface, m; becomes the mass of the Earth mg, m, be-

s are used. tomes the mass of the object, m, and r becomes the distance of the object

FIGURE 5-20 Example 5-12.

FIGURE 5-21 Orientation of
Sun (8S), Earth (E), and Moon (M)
for Example 5-13 (not to scale).

F
Moon guopME () Earth
Fums
€ ) sm
l""—a,,
Careful:

Distinction between
Newton’s second law
and the law of gravity
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ginterms of G

from the Earth’s center,’ which is the radius of the Earth rg. This force of
gravity due to the Earth is the weight of the object, which we have been
writing as mg. Thus,

mmg
mg=G——
rg
Hence
m
g=G— (5-5)
re

Thus, the acceleration of gravity at the surface of the Earth, g, is deter-
mined by mg and rg. (Be careful not to confuse G with g; they are very dif-
ferent quantities, but are related by Eq. 5-5)

Until G was measured, the mass of the Earth was not known. Bul
once G was measured, Eq. 5-5 could be used to calculate the Earth'y
mass, and Cavendish was the first to do so. Since g = 9.80m/ s? and the ra-
dius of the Earth is rg = 6.38 X 10% m, then, from Eq. 5-5, we obtain

r2 ' 21(6.38 X 106 m)?

_ 8 _ (9.80 m/s )(_6 38 X 10°m) _ 598X 10%kg
G 6.67 x 10~ N-m?/kg’

for the mass of the Earth.

When dealing with the weight of objects at the surface of the Earth, we
can continue to use simply mg. If we wish to calculate the force of gravity
on an object some distance from the Earth, or the force due to some other
heavenly body, such as that exerted by the Moon or a planet, we can calcus
late the effective value of g from Eq. 5-5, replacing rg (and mg) by the ap:
propriate distance (and mass), or we can use Eq. 5-4 directly.

mg

EXAMPLE 5-14 Gravity on Everest. Estimate the effec
tive value of g on the top of Mt. Everest, 8348 m (29,028 ft) above the
Earth’s surface. That is, what is the acceleration due to gravity of objects
allowed to fall freely at this altitude?

SOLUTION Let us call the acceleration of gravity at the given point

g'. We use Eq. 5-5, with rg replaced by r = 6380km + 8.8km =

6389 km = 6.389 X 10°m:
e mg (667 107! N-m?/kg?)(5.98 X 10* kg)

£ e (6.389 X 10° m)®

which is a reduction of about 3 parts in a thousand (0.3%). Note that wd

ignored the mass accumulated under the mountain top, and we hav{

used 1N/kg = 1m/s?

=977 m/st

Note that Eq. 5-5 does not give precise values for g at different location|
because the earth is not a perfect sphere. The Earth not only has moun
tains and valleys, and bulges at the equator, but its mass is not distribute(

That the distance is measured from the Earth’s center does not imply that the force of gravit
somehow emanates from that one point. Rather, all parts of the Earth attract gravitationall
but the net effect is a force acting toward the Earth’s center.
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JBURE 5-23 Artificial satellites

uciscly uniformly (see Table 2—-1). The Earth’s rotation also has an effect
the value of g.
‘The value of g can vary locally on the Earth’s surface because of the
nence of irregularities and rocks of different densities. Such variations in
known as “gravity anomalies,” are very small—on the order of 1 part per
" or 107 in the value of g. But they can be measured (“gravimeters” today
Il detect variations in g to 1 part in 10%). Geophysicists use such measure-
#nls as part of their investigations into the structure of the Earth’s crust,
Il in mineral and oil exploration. Mineral deposits, for example, often
Ve a greater density than surrounding material. Because of the greater
A% in a given volume, g can have a slightly greater value on top of such a
posit than at its flanks. “Salt domes,” under which petroleum is often
Mind, have a lower than average density and searches for a slight reduc-
Il in the value of g in certain locales have led to the discovery of oil.

Satellites and “Weightlessness”

flilicial satellites circling the Earth are now commonplace (Fig. 5-22). A
fellite is put into orbit by accelerating it to a sufficiently high tangential
ped with the use of rockets, as shown in Fig. 5-23. If the speed is too high,

i wpacecraft will not be confined by the Earth’s gravity and will escape,

vur to return. If the speed is too low, it will return to Earth. Satellites are
Willy put into circular (or nearly circular) orbits, because they require the
I8l tlukeoff speed. It is sometimes asked: “What keeps a satellite up?” The
wer is: its high speed. If a satellite stopped moving, it would, of course,
Il dircctly to Earth. But at the very high speed a satellite has, it would
Hckly fly out into space (Fig. 5-24) if it weren’t for the gravitational force
[ Ihe Earth pulling it into orbit. In fact, a satellite is falling (accelerating
Iwird Earth), but its high tangential speed keeps it from hitting Earth.
For satellites that move in a circle (at least approximately), the accel-
Wllon is v%/r. The force that gives a satellite this acceleration is the force
f pravity, and since a satellite may be at a considerable distance from the
Mh, we must use Eq. 5-4 for the force acting on it. When we apply

FIGURE 5-24 A moving
satellite “falls” out of a straight-
line path toward the Earth.

jhched at different speeds.

{00 km/h
hcular

30,000 km/h
elliptical

Without

SECTION 5-8

Some
geophysics

W PHYSICS APPLIED

Geology—mineral
and oil exploration

W PHYSICS APPLIED
Artificial Earth satellites

FIGURE 5-22 A satellite
circling the Earth.
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Newton’s second law, 2F; = mag, we find

‘mmg v?
G 2 =m (5-6
r r

where m is the mass of the satellite. This equation relates the distance 0
the satellite from the Earth’s center, r, to its speed, v. Note that only on¢
force—gravity—is acting on the satellite, and that r is the sum of th¢
Earth’s radius r plus the satellite’s height h above the Earth: r = rg + A

™ PHYSICS APPLIED DGV TAEN Geosynchronous satellite. A geosynchronous satellit¢
Geosynchronous | 18 one that stays above the same point on the equator of the Earth

satellites | Such satellites are used for such purposes as cable TV transmission, fo
weather forecasting, and as communication relays. Determine (a) th¢

height above the Earth’s surface such a satellite must orbit and (b) sucl
a satellite’s speed.

SOLUTION (a) The only force on the satellite is gravity, so we apply

Eq. 5-6 assuming the satellite moves in a circle:
mg, Mg v?
= mg, —

r2 Sat r

G

| l This equation seems to have two unknowns, r and v. But we know that
| must be such that the satellite revolves around the Earth with the sam¢

period that the Earth rotates on its axis, namely once in 24 hours. Thuf
‘ the speed of the satellite must be

T

where T = 1 day = (24 h)(3600s/h) = 86,400 s. We put this into the firs
equation above and obtain (after canceling mg,, on both sides):

mg  (27r)?
» F O
We solve for r:
s GmgT? (667 x 107" N-m?/kg?)(5.98 X 10%* kg)(86,400 s)*
T e T 4n?
= 7.54 X 102 m?,

and, taking the cube root, r = 4.23 X 10" m, or 42,300 km from the Earth'
center. We subtract the Earth’s radius of 6380 km to find that the satellit
must orbit about 36,000 km (about 6 r;) above the Earth’s surface.

(b) We solve Eq. 5-6 for v:

\/GmE [(6.67 x 10711 N-m?/kg?)(5.98 X 10% k)
V= =

27r
v =

= 3070 m/4
r N (423 X 107 m) 4
: We get the same result if we use v = 27r/T.
|
.‘l . People and other objects in a satellite circling the Earth are said to ex
1 Apparent weight
|

and weighilessness  PETIENCE apparent weightlessness. Before tackling the case of a satellite, how
& ever, let us first look at the simpler case of a falling elevator. In Fig, 5-25a, w
see an elevator at rest with a bag hanging from a spring scale. The scale readin
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(5-6)

istance of
: only one
mm of the

rg + h. FIGURE 5-25 (a)An
is satellite object in an elevator at rest
the Earth. exerts a force on a spring scale
ission. for equal to its weight. (b) In an

’ ) . elevator accelerating upward at
ne (a) l 18, the object’s apparent weight
id (b) such “ i l| * ok 5 g(up)i { a=g(down) is 1} times larger. (c) In a freely
( | falling elevator, the object

> we apply (b) (© experiences “weightlessness.”

Wilicates the downward force exerted on it by the bag. This force, exerted on
lio scale, is equal and opposite to the force exerted by the scale upward on the
g, We call this force w. (Similarly, if you were standing on a scale in an eleva-
A1, the normal force the scale exerts on you would be its reading.) Since the

<now that v Allis, m, is not accelerating, we apply =F = ma to the bag and obtain
th the same |

hours. Thus | w— mg =0,

Where mg is the weight of the bag. Thus, w = mg, and since the scale indi-
“Hiles the force w exerted on it by the bag, it registers a force equal to the
Wwulpht of the bag as we expect. If, now, the elevator has an acceleration, a,

{hen applying =F = ma to the bag, we have
into the first

:S):

w — mg = ma.
Sulving for w, we have
w = mg + ma.

Vo have chosen the positive direction up. Thus, if the acceleration a is up,
£)(86,400 s)! i I positive; and the scale, which measures w, will read more than mg. We
: ’ Al w the apparent weight of the bag, which here is greater than its actual

Wulght (mg). If the elevator accelerates downward, a will be negative and
i, the apparent weight, will be less than mg.
For example if the elevator’s acceleration is ;g upward then we find

m the Eartl}’s ;= mg + m(3g) = 3mg. That is, the scale reads 1} times the actual
it the satellite Welght (Fig. 5- 25b) The apparent weight of the bag is 13 times its real
irface. Woight. The same is true of the person: her apparent weight (equal to the

jormal force exerted on her by the elevator floor) is 15 times her real

Woight. We can say that she is experiencing 13 g’s, just as astronauts expe-
- = 3070 m/s. lunce so many g’s at a rocket’s launch.

If, instead, the elevator’s acceleration is —3g (downward), then w =

Wy — ;mg = ymg. That is, the scale reads one half the actual weight. If the

lovator is in free fall (for example, if the cables break), then a = —g and

are said to ex- W = mg — mg = 0. The scale reads zero! (See Fig. 5-25c.) The bag seems

i satellite, how- Woightless. If the person in the elevator let go of a pencil, say, it would not fall

. Fig. 5-25a, we 1o the floor. True, the pencil would be falling with acceleration g. But so

1e scale reading Wwould the floor of the elevator and the person. The pencil would hover right
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FIGURE 5-26 The
astronaut seems not to know
which end is up. Note edge of
Earth on the right. (Turn photo
upside down for another view.)

in front of the person. This phenomenon is called apparent weightlessness be
cause, in fact, gravity is still acting on the object and its weight is still mg. The
objects seem weightless only because the elevator is in free fall.

The “weightlessness” experienced by people in a satellite orbit close tg
the Earth (Fig. 5-26) is the same apparent weightlessness experienced in |
freely falling elevator. It may seem strange, at first, to think of a satellite u
freely falling. But a satellite is indeed falling toward the Earth, as wat
shown in Fig. 5-24. The force of gravity causes it to “fall” out of its naturg
straight-line path. The acceleration of the satellite must be the acceleration
due to gravity at that point, since the only force acting on it is gravity. (We
used this to obtain Eq. 5-6.) Thus, although the force of gravity acts ol
objects within the satellite, the objects experience an apparent weightlesy
ness because they, and the satellite, are accelerating as in free fall.

Figure 5-27 shows some examples of “free fall,” or apparent weight
lessness, experienced by people on Earth for brief moments.

A completely different situation occurs when a spacecraft is out if}
space far from the Earth, the Moon, and other attracting bodies. The forc¢
of gravity due to the Earth and other heavenly bodies will then be quil¢
small because of the distances involved, and persons in such a spacecrall
will experience real weightlessness. '

The effects on human beings of weightlessness (whether real or apparen|
makes no difference) are interesting. In ordinary circumstances, for example,
people can become quite tired holding out their arms horizontally. But for
person experiencing weightlessness, no effort is needed. The arms will jus|
“float” there, since there is no sensation of weight. This effect has many appli:
cations in athletics (Fig. 5-27). During a jump or a dive, while on a trampoling,
and even between strides while running, a person is experiencing apparen|
weightlessness or free fall, although only for a short time. During these bricf
periods, limbs can be moved much more easily, since only inertia needs to b¢
overcome. The loss of control because of lack of contact with the ground i§
compensated for by the increased mobility. Prolonged weightlessness in space,
however, can have harmful effects on health. Red blood cells diminish i)
number, blood collects in the thorax, bones lose calcium and become brittle,
and muscles lose their tone. These effects are being carefully studied.

FIGURE 5-27 Experiencing weightlessness on Earth.
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I Kepler’s work resulted in part from the many years he spent examin-
§l data collected by Tycho Brahe (1546-1601) on the positions of the
incts in their motion through the heavens, Among Kepler’s writings were
foe findings that we now refer to as Kepler’s laws of Planetary motion.
fiese are summarized as follows, with additional explanation in Fig. 5-28:

Kepler’s first law: The path of each planet about the Sun is an ellipse
(Fig. 5-28a) with the Sun at one focus,

Kepler’s second law: Each planet moves so
(rom the Sun to the planet sweeps out eq
time (Fig. 5-28b).

Kepler’s third law: The ratio of the s
nceded for one revolution about the
about the Sun is equal to the ratio of
from the Sun. That is, if T, and T,
planets, and r, and r, represent their

- o

We can rewrite this as

that an imaginary line drawn
ual areas in equal periods of

quares of the periods (the time
Sun) of any two planets revolving
the cubes of their mean distances
represent the periods for any two
mean distances from the Sun, then

real or apparent
ces, for example,
»ntally. But for a
1e arms will just
- has many appli-
on a trampoline,
iencing apparent

uring these brief 3

r r;
ertia needs to be = 72
ith the ground is T 5
lessness in space, mcaning that r*/T? should be the same for each planet. (Present-day
cells diminish in data are given in Table 5-1; see the last column.)
1 become brittle,

studied.

Planetary Data Applied to Kepler's Third Law

Mean distance from Period, T r3/7?
Sun, r (10° km) (Earth years) (10% km?/yr?)

57.9 0.241 3.34

108.2 0.615 335
149.6 1.0 335
2279 1.88 335
7783 11.86 3.35

1427 295 334
2870 84.0 335
4497 165 3.34
5900 248 333

*SECTION 5-9

Kepler's Laws and Newton’s Synthesis

(b)

FIGURE 5-28 (a) Kepler’s
first law. An ellipse is a closed
curve such that the sum of the
distances from any point P on the
curve to two fixed points (called
the foci, F, and F,) remains
constant. That is, the sum of the
distances F,P + F,P is the same
for all points on the curve. A circle
is a special case of an ellipse in
which the two foci coincide, at the
center of the circle. (b) Kepler’s
second law. The two shaded regions
have equal areas. The planet moves
from point 1 to point 2 in the same
time as it takes to move from point
3 to point 4. Planets move fastest in
that part of their orbit where they
are closest to the Sun.
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consistent with all three of Kepler’s laws. He thus used Kepler’s laws
evidence for his law of universal gravitation, Eq. 5-4.
Derivation of Kepler’s third law is the easiest to derive, and we do it here for the spe
Keplers third law  cial case of a circular orbit. (Most of the planetary orbits are fairly close 1
a circle, which is a special case of an ellipse.) First, we write down Newton's
second law of motion, 2F = ma. Then for F we substitute the law of uni
versal gravitation, Eq. 5-4, and for a the centripetal acceleration, v%/r:

2F =ma
m; Mg v}
G——=m—
ry n

Here m, is the mass of a particular planet, r, its mean distance from th (
Sun, and v, its average speed in orbit. Then M, in Eq. 5-4 is taken to b
1 M, the mass of the Sun, since it is the gravitational attraction of the Suif
that keeps each planet in its orbit. Now the period T; of the planet is the

. time required for one complete orbit, a distance equal to 27r,, the circun
ference of a circle. Thus,

27,

v = .

1 T]
| We substitute this formula for v, into the equation above:
) m; Mg An’r

G— =m—5

ri i
We rearrange to get

T?  47? 51

il . -Tn

7 GMq

We derived this for planet 1 (say, Mars). The same derivation would apply
for a second planet (say, Saturn):

) T% 4772
22 ,
r3  GM;
where T, and r, are the period and orbit radius, respectively, for the se

ond planet. Since the right sides of the two previous equations are equal
we have T2/r; = T3/r or, rearranging,

Ti\img(i
iz 1) o

which is Kepler’s third law.

The derivations of Eqs. 5-7a and b (Kepler’s third law) are genert
enough to be applied to other systems. For example, we could determine th
mass of the Earth from Eq. 5-7a using the period of the Moon about th
Earth and the Moon’s distance from the Earth, or the mass of Jupiter from th

‘ period and distance of one of its moons (this is indeed how masses are dete ‘

‘[ ‘ mined; see the Problems). We can also use Eqs. 5~7a and b to compare objecil
Careful:  that orbit other attracting centers, such as the Moon and a weather satellit

A common error using  orbiting Earth. But be careful not to use Eq. 5-7 to compare, say, the Moon!'

| Kepler's third law  orbit to the orbit of Mars because they depend on different attracting centers

In the following examples, we assume the orbits are circles, although |
is not quite true in general.
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ROV REI(H Where is Mars? Mars’ period (its “year”) was first
iblcd by Kepler to be about 684 days (Earth-days), which is

H7d/365d) = 1.88yr. Determine the distance of Mars from the Sun
Iing the Earth as a reference.

OLUTION The period of the Earth is Tz = 1yr, and the distance of

Hurth from the Sun is rgg = 1.50 X 10" m. From Kepler’s third law
(1. 5-7b):

Tms _ (ﬁ)% = (1'88 yr)z/s =152
Ty lyr

Tgs
N0 Mars is 1.52 the Earth’s distance from the Sun, or 2.28 X 10! m.

R RTAVN The Sun's mass determined. Determine the mass of
[ {ic Sun given the Earth’s distance from the Sun as res = 1.5 X 10" m.

[ WOLUTION We can use Eq. 5-7a and solve for My:

_Arirds 47*%(1.5 X 10" m)?
ST OGTE (667 X 107 N-m*/kg?)(3.16 x 10’ s)*
| =20 X 10¥kg

Where we used the fact that

Ty = 1yr = (365; d)(24 h/d)(3600 s/h) = 3.16 X 10" s.

i wm

[ XAMPLE 5-18 Geosynchronous satellite, simplified. A
Mtosynchronous satellite of the Earth (as mentioned in Example 5-15) is
‘e that stays above the same point on the equator of the Earth. Estimate

{ic height above the Earth’s surface needed for a geosynchronous weath-

01 satellite. (This is to be a “lunchtime” calculation done on a napkin, with-

(Ul calculator, as compared to our earlier calculation in Example 5-15.)

NOLUTION To use Kepler’s third law we must compare the satellite to
some other object that orbits Earth. The simplest choice is the Moon be-
Chuse we know its period and distance. The Moon’s period is about

m ™ 27d and its distance from the earth about rye = 380,000 km. The
period of the weather satellite needs to be Ty, = 1d so that it stays
Whove the same place on the Earth. Hence,

T \3 1d Vs 1V rye

Tsat = ’ME(?M") = rME(2_7—d> 75 rME(§> 9
(How nice the Moon’s approximate period turns out to be a perfect
tibe.) A geosynchronous satellite must be  the distance to the Moon,

Which is 42,000 km from the center of the Earth or 36,000 km above the
Ilnrth’s surface. This is about 6 Earth radii high.

Accurate measurements on the orbits of the planets indicated that they

Wil not precisely follow Kepler’s laws. For example, slight deviations from
Jlorfcctly elliptical orbits were observed. Newton was aware that this was to be
Wkpected from the law of universal gravitation (“every body in the universe
Aliracts every other body...”) because each planet exerts a gravitational
bice on the other planets. Since the mass of the Sun is much greater than

*SECTION5-9  Kepler's Laws and Newton's Synthesis
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Perturbations and
discovery of planets

W PHYSICS APPLIED

Planets around
other stars

Newton's
synthesis

Causality

FIGURE 5-29 Oursolar
system (a), compared to recently
discovered planets orbitting

(b) the star 51 Pegasi, and

(c) the star 47 Ursae Majoris.
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that of any planet, the force on one planet due to any other planet will b
small in comparison to the force on it due to the Sun. (The derivation of pei
fectly elliptical orbits ignores the forces due to other planets.) But because o
this small force, each planetary orbit should depart from a perfect ellips¢
especially when a second planet is fairly close to it. Such deviations, o
perturbations, as they are called, from perfect ellipses are indeed observed,
In fact, Newton’s recognition of perturbations in the orbit of Saturn was a hin
that helped him formulate the law of universal gravitation, that all bodi¢
attract gravitationally. Observation of other perturbations later led to the dix
covery of Neptune and Pluto. Deviations in the orbit of Uranus, for exampl
could not be accounted for by perturbations due to the other known planet
Careful calculation in the nineteenth century indicated that these deviation
could be accounted for if there were another planet farther out in the sola
system. The position of this planet was predicted from the deviations in th
orbit of Uranus, and telescopes focused on that region of the sky quickl
found it; the new planet was called Neptune. Similar but much smaller pe
turbations of Neptune’s orbit led to the discovery of Pluto in 1930.

More recently, in 1996, planets revolving about distant stars (Fig. 5-2Y
were inferred from the regular “wobble” of each star due to the gravitation|
attraction of the revolving planet.

The development by Newton of the law of universal gravitation an
the three laws of motion was a major intellectual achievement. For will
these laws, Newton was able to describe the motion of objects on Eart
and in the heavens. The motions of heavenly bodies and bodies on Eart
were seen to follow the same laws (something not previously recognize
generally, although Galileo and Descartes had argued in its favor). For th
reason (and also because Newton integrated the results of earlier workeri
into his system), we sometimes speak of Newton’s “synthesis.”

Newton’s work was so encompassing that it constituted a theory of th
universe, and influenced philosophy and other fields. The laws formulate
by Newton are referred to as causal laws. By causality we mean the ide
that one occurrence can cause another. We have repeatedly observed, {0
example, that when a rock strikes a window, the window almost immed|
ately breaks. We infer that the rock caused the window to break. This ide
of “cause and effect” took on more forceful meaning with Newton’s law
For the motion—or rather the acceleration—of any object was seen to b
caused by the net force acting on it. As a result, the universe came to b
pictured by many scientists and philosophers as a big machine whose parl

& é‘&f&i}? é’é% Jupiter
Sun J & i‘ - o ® ® 0
(@)
51 » Planet
Pegasit ?0.6 Jupiter's mass)
(b)
47 Planet
Ursae ©
Majoris (3.5 Jupiter's mass)
©
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V¢ in a predetermined way—according to natural laws. However, this
W'ministic view of the universe had to be modified by scientists in the
hticth century, as we shall see in Chapters 27 and 28. -

B Types of Forces in Nature

m was a h.if“ ! have already discussed that Newton’s law of universal gravitation,
at all bodlgs 3| § 4, describes how a particular type of force—gravity—depends on the
:d to the dis- fince between, and masses of, the objects involved. Newton’s second law,
for example, ' na, on the other hand, tells how a body will accelerate due to any type
own planets, lorce. But what are the types of forces that occur in nature besides gravity?
€ deviations In the twentieth century, physicists came to recognize four different
- In the solar liidumental forces in nature: (1) the gravitational force; (2) the electro-
ations R, the Mpnctic force (we shall see later that electric and magnetic forces are
sky quickly limntely related); (3) the strong nuclear force; and (4) the weak nuclear
smaller per- Jee. In this chapter, we discussed the gravitational force in detail. The
30. lire of the electromagnetic force will be discussed in detail in Chapters 16
s (Fig. 5-29) i 1), The strong and weak nuclear forces, which are discussed in Chapters 30
gravitational

3 12, operate at the level of the atomic nucleus, and although they manifest
fitinsclves in such phenomena as radioactivity and nuclear energy, they are
Blich less obvious in our daily lives.

P’hysicists have been working on theories that would unify these four
lces—that is, to consider some or all of these forces as different manifes-
Mions of the same basic force. So far, the electromagnetic and weak nuclear
Mives have been theoretically united to form electroweak theory, in which

vitation and
:nt. For with
cts on Earth
ies on Earth
y recognized

vc?r). For this M clectromagnetic and weak forces are seen as two different manifesta- Electroweak and GUT
tlier workers Ui of a single electroweak force. Attempts to further unify the forces, such

’ W In grand unified theories (GUT), are hot research topics today.

theory of the But where do everyday forces fit into this scheme? Ordinary forces,

s formulated ‘ther than gravity, such as pushes, pulls, and other contact forces like the Fvervd

ean the idea Bormal force and friction, are today considered to be due to the electro- _¢/Y4® forees

»bserved, for are gravity

ipnctic force acting at the atomic level. For example, the force your fingers

. di - ] ) and electromagnetic
10st Immed- SN0t on a pencil is the result of electrical repulsion between the outer

ak. This idea #loctrons of the atoms of your finger and those of the pencil.

swton’s laws,

as seen to be * PROBLEM SOLVING Uniform Circular Motion and Gravity

> came to be
: whose parts

|, Draw a free-body diagram, showing all the forces 3. Choose a coordinate system, and positive and

acting on the object under consideration. If more negative directions, and apply Newton’s second
than one object is involved, draw a separate free- law to the radial direction:
Jupiter body diagram for each. Be sure you can identify
(%) the source of each force (tension in a cord, v?

d - 2FR =mag =m—
IZarth’s gravity, friction, normal force, and so on), & S r

s0 you don’t put in something that isn’t there.

Determine which of these forces, or which of
their components, act to provide the centripetal
(radial) acceleration—that is, all the forces or
components that act radially, toward or away
Irom the center of the circular path. The sum of
| these forces (or components) provides the cen-

(ripetal acceleration, ag = v*/r.

4. For the gravitational force, use Newton’s law of
universal gravitation (if the object is close to the
Earth’s surface, you can simply use mg); be sure
to use the correct value for 7. Remember that for
large objects, such as the Earth or Moon, r is
measured from the center of the sphere, not from
the surface.

2
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L SUMMARY

An object moving in a circle of radius r with constant
speed v is said to be in umiform circular motion. It
has a centripetal acceleration a, that is directed radi-
ally toward the center of the circle (also called radial
acceleration), whose magnitude is

,v2

r

ag =

The direction of the velocity vector and that of the
acceleration ay are continually changing in direction,
but are perpendicular to each other at each moment.

A force is needed to keep a particle revolving
in a circle, and the direction of this force is toward
the center of the circle. This force may be due to
gravity, to tension in a cord, to a component of the
normal force, or other type of force.

. QUESTIONS

Newton’s law of universal gravitation state
that every particle in the universe attracts ever
other particle with a force proportional to th
product of their masses and inversely proportioni
to the square of the distance between them:

mym,

F=G
2

The direction of this force is along the line joinin
the two particles. It is this gravitational force tha
keeps the Moon revolving around the Earth, an
the planets revolving around the Sun.

Satellites revolving around the Earth are acte
on by gravity, but “stay up” because of their hig|
tangential speed.

1. It is sometimes said that water is removed from
clothes in a spin dryer by centrifugal force throwing
the water outward. Is this correct?

2. Will the acceleration of a car be the same when it trav-
els around a sharp curve at 60 km/h as when it travels
around a gentle curve at the same speed? Explain.

3. Suppose a car moves at constant speed along a
mountain road. At what places does it exert the
greatest and least forces on the road: (a) at the top
of a hill, (b) at a dip between two hills, (c) on a level
stretch near the bottom of a hill?

4. Describe ,all the forces acting on a child riding a
horse on a merry-go-round. Which of these forces
provides the centripetal acceleration of the child?

5. A bucket of water can be whirled in a vertical circle
without the water spilling out, even at the top of the
circle when the bucket is upside down. Explain.

6. Does an apple exert a gravitational force on the

Earth? If so, how large a force? Consider an apple

(a) attached to a tree, and (b) falling.

If the Earth’s mass were double what it is, in what

ways would the Moon’s orbit be different?

8. Describe how careful measurements of the variation
in g in the vicinity of an ore deposit might be used to
estimate the amount of ore present.

9. When will your apparent weight be the greatest, as
measured by a scale in a moving elevator: when the ele-
vator (a) accelerates downward, (b) accelerates upward,

(c) is in free fall, (d) moves upward at constant speed?
In which case would your weight be the least? When
would it be the same as when you are on the ground?

10. The Earth is not completely spherical but bulges

outward at the equator. Why?
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11. An antenna loosens and becomes detached from
satellite in a circular orbit around the Earth. Describy
the antenna’s motion subsequently. If it will land of
Earth, describe where; if not, describe how it could b
made to land on Earth.

12. Astronauts who spend long periods in outer spac
could be adversely affected by weightlessness. On
way to simulate gravity is to shape the spaceship lik
a cylindrical shell that rotates, with the astronaul
walking on the inside surface (Fig. 5-30). Explaiil
how this simulates gravity. Consider (a) how objects
fall, (b) the force we feel on our feet, and (c) an

other aspects of gravity you can think of.

FIGURE 5-30

Question 12 and Problem 41.




ation states
iracts every
»mal to the
sroportional
hem:

line joining
il force that
: Earth, and

th are acted
f their high

ached from a
arth. Describe
t will land on
ow it could be

n outer space
tlessness. One
spaceship like
he astronauts
-30). Explain
1) how objects
t, and (c) any
of.

Problem 41.

Which pulls harder gravitationally, the Earth on the
Moon, or the Moon on the Earth? Which accelerates
More?
Hlow many “accelerators” do you have in your car?
I'here are at least three controls in the car which can
e used to cause the car to accelerate. What are
fhey? What accelerations do they produce?
A child on a sled comes flying over the crest of a
smnll hill, as shown in Fig. 5-31. His sled does not
lunve the ground (he does not achieve “air”), but he
luels the normal force between his chest and the sled
tleercase as he goes over the hill. Explain this de-
Urcase using Newton’s second law.
I'cople sometimes ask, “What keeps a satellite up in its
orbit around the Earth?” How would you respond?

i Iixplain how a runner experiences “free fall” or
"npparent weightlessness” between steps.

PROBLEMS

FIGURE 5-31 Question 15.

18. The Earth moves faster in its orbit around the Sun

in winter than in summer. Is it closer to the Sun in
summer or in winter? Does this affect the seasons?
Explain. [Note: This is not much of a factor in ex-
plaining the seasons—the main factor is the tilt of
the Earth’s axis relative to the plane of its orbit.]

FCTIONS 5-1 TO 5-3

I, (1) A jet plane traveling 1800 km/h (500 m/s) pulls
out of a dive by moving in an arc of radius 6.00 km.
What is the plane’s acceleration in g’s?

(1) A child on a merry-go-round is moving with a
speed of 1.35m/s when 1.20m from the center of
{he merry-go-round. Calculate (@) the centripetal ac-
celeration of the child, and (b) the net horizontal
lorce exerted on thexchild (mass = 25.0 kg).

A, (1) Calculate the centripetal acceleration of the Earth in
Its orbit around the Sun and the net force exerted on
(he Earth. What exerts this force on the Earth? Assume
thit the Earth’s orbit is a circle of radius 1.50 X 10! m.
(1) A horizontal force of 280 N is exerted on a 2.0-kg
iscus as it is rotated uniformly in a horizontal circle

(nt arms length) of radius 1.00 m. Calculate the
#peed of the discus.

i

5. (I) A flat puck (mass M) is rotated in a circle on a

frictionless air hockey tabletop, and is held in this
orbit by a light cord which is connected to a dangling
mass (mass m) through the central hole as shown in
Fig. 5-32. Show that the speed of the puck is given by

_ |mgR
"\ M

6. (IT) A 0.40-kg ball, attached to the end of a horizontal

cord, is rotated in a circle of radius 1.3 m on a friction-
less horizontal surface. If the cord will break when the
tension in it exceeds 60 N, what is the maximum speed
the ball can have? How would your answer be affected
if there were friction?

7. (II) What is the maximum speed with which a

1050-kg car can round a turn of radius 70 m on a
flat road if the coefficient of friction between tires
and road is 0.80? Is this result independent of the
mass of the car?

IGURE 5-32 Problem 5.

e .
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FIGURE 5-33 Problem 8.

8. (II) A ball on the end of a string is cleverly revolved
at a uniform rate in a vertical circle of radius 85.0 cm,
as shown in Fig. 5-33. If its speed is 4.15m/s and its
mass is 0.300kg, calculate the tension in the string
when the ball is (a) at the top of its path, and (b) at
the bottom of its path.

. (IT) How large must the coefficient of friction be be-
tween the tires and the road if a car is to round a
level curve of radius 85 m at a speed of 95 km/h?

. (IT) A device for training astronauts and jet fighter
pilots is designed to rotate the trainee in a horizontal
circle of radius 10.0 m. If the force felt by the trainee
is 7.75 times her own weight, how fast is she rotat-
ing? Express your answer in both m/s and rev/s.

. (II) A coin js placed 11.0 cm from the axis of a rotating
turntable of variable speed. When the speed of the
turntable is slowly increased, the coin remains fixed
on the turntable until a rate of 36 rpm is reached, at
which point the coin slides off. What is the coeffi-
cient of static friction between the coin and the
turntable?

. (I1) At what minimum speed must a roller coaster be
traveling when upside down at the top of a circle
(Fig. 5-34) if the passengers are not to fall out?
Assume a radius of curvature of 8.6 m.

FIGURE 5-34 Problem 12.

13. (II) A 1000-kg sports car moving at 20 m/s crossf

the rounded top of a hill (radius = 100 m). Detcr
mine (a) the normal force on the car, (b) the normif
force on the 70-kg driver, and (c) the car speed i
which the normal force equals zero.

. (I) How many revolutions per minute would §

15-m-diameter Ferris wheel need to make for ‘the
passengers to feel “weightless” at the topmost poilil
of the trip?

. (II) Use dimensional analysis (see Appendix B) t

check the form for the centripetal acceleratio
— 2
ag = v/r.

. (If) Two masses, m; and m,, connected to each othy|

and to a central post by cords, as shown in Fig. 5-35, 10/
tate about the post at a frequency f (revolutions per sc¢:
ond) on a frictionless horizontal surface at distances 7y
and r,, respectively, from the post. Derive an algebrai¢
expression for the tension in each segment of the cord,

. (II) A 1200-kg car rounds a curve of radius 70

banked at an angle of 12°. If the car is traveling 4
90 km/h, will a friction force be required? If so, ho
much and in what direction?

FIGURE 5-35 Problem I
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FIGURE 5-36

Problem 18.

(I1) In a “Rotor-ride” at a carnival, people pay money
10 be rotated in a vertical cylindrically walled “room.”
{Sce Fig. 5-36.) If the room radius is 5.0 m, and the
jolation frequency is 0.50 revolutions per second
when the floor drops out, what is the minimum coeffi-
tlent of static friction so that the people will not slip
town? People describe this ride by saying they were
heing “pressed against the wall.” Is this true? Is there
really an outward force pressing them against the
wall? If so, what is its source? If not, what is the proper
Uescription of their situation (besides “scary”)? [Hint:
lirst draw the free-body diagram for a person.]

(111) Redo Example 5-3, precisely this time, by not ig-
noring the weight of the ball. In particular, find the
magnitude of Fr, and the angle it makes with the hori-
rontal. [Hint: Set the horizontal component of F;
cyual to mag; also, since there is no vertical motion,
what can you say about the vertical component of F;?)
(1) If a curve with a radius of 80m is perfectly
banked for a car traveling 70 km/h, what must be
the coefficient of static friction for a car not to skid
when traveling at 90 km/h?

(111) A pilot performs an evasive maneuver by diving
vertically at 310 m/s.,If he can withstand an accelera-
tion of 9.0 g’s without blacking out, at what altitude

must he begin to pull out of the dive to avoid crash-
ing into the sea?

BICTION 5-4
111, (I) Determine the tangential and centripetal compo-

)y,

* 14,

nents of the net force exerted on the car (by the
ground) in Example 5-9 when its speed is 30 m/s.
‘The car’s mass is 1000 kg.

(IT) A car at the Indianapolis-500 accelerates uni-
{ormly from the pit area, going from rest to 320 km/h
in a semicircular arc with a radius of 200 m. Deter-
mine the tangential and radial acceleration of the car
when it is halfway through the turn, assuming con-
stant tangential acceleration. If the curve were flat,
what would the coefficient of static friction have to
be between the tires and the roadbed to provide this
acceleration with no slipping or skidding?

(IIT) A particle revolves in a horizontal circle of ra-
dius 2.70 m. At a particular instant, its acceleration is
1.05 m/s?, in a direction that makes an angle of 32.0°
to its direction of motion. Determine its speed (a) at
this moment, and (b) 2.00 s later, assuming constant
tangential acceleration.

25,

26.

27.

29.

30.

31.

32.

33.

34,

35.

36.

SECTIONS 5-6 AND 5-7
(I) Calculate the force of gravity on a spacecraft

12,800 km (2 earth radii) above the Earth’s surface if
its mass is 1400 kg.

(I) Calculate the acceleration due to gravity on the
Moon. The Moon’s radius is about 1,74 X 10°m and
its mass is 7.35 X 10%kg.

(I) A hypothetical planet has a radius 2.5 times that
of Earth, but has the same mass. What is the acceler-
ation due to gravity near its surface?

. (I) A hypothetical planet has a mass 2.5 times that of

Earth, but the same radius. What is g near its surface?
(I) At the surface of a certain planet, the gravitation-
al acceleration g has a magnitude of 12.0m/s%. A
2.10-kg brass ball is transported to this planet. What
is (a) the mass of the brass ball on the Earth and on
the planet, and (b) the weight of the brass ball on
the Earth and on the planet?

(II) You are explaining to friends why astronauts
feel weightless orbiting in the space shuttle, and they
respond that they thought gravity was just a lot
weaker up there. Convince them and yourself that it
isn’t so by calculating how much weaker gravity is
300 km above the Earth’s surface.

(IT) An exotic finish to massive stars is that of a neu-
tron star, which might have as much as five times the
mass of our Sun packed into a sphere about 10 km in
radius! Estimate the surface gravity on this monster.
(II) What is the distance from the Earth’s center to a
point outside the Earth where the gravitational ac-
celeration due to the Earth is 5 of its value at the
Earth’s surface?

(II) A typical white dwarf star, which once was an av-
erage star like our Sun but is now in the last stage of
its evolution, is the size of our Moon but has the mass
of our Sun. What is the surface gravity on this star?
(IT) Calculate the effective value of g, the accelera-
tion of gravity, at (a) 3200 m, and (b) 3200 km, above
the Earth’s surface.

(IT) Four 7.5-kg spheres are located at the corners of
a square of side 0.60 m. Calculate the magnitude and
direction of the gravitational force on one sphere
due to the other three.

(IT) Every few hundred years most of the planets line
up on the same side of the Sun. Calculate the total
force on the Earth due to Venus, Jupiter, and Saturn,
assuming all four planets are in a line, Fig. 5-37. The
masses are respectively My, = 0.815 Mg, M; = 318 M,
M; = 95.1 Mg, and their mean distances from the Sun
are 108, 150, 778, and 1430 million km.

& & &
40%‘5& \QQ'¢' cj‘b‘&
Sun, - Qo L
FIGURE 5-37 Problem 36 (not to scale).
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37. (II) Given that the acceleration of gravity at the sur-
face of Mars is 0.38 of what it is on Earth, and that
Mars’ radius is 3400 km, determine the mass of Mars.,

38. (IIf) Determine the mass of the Sun using the
known value for the period of the Earth and its dis-
tance from the Sun. [Note: Compare your answer to
that obtained using Kepler’s laws, Example 5-17.]

SECTION 5-8

39. (I) Calculate the velocity of a satellite moving in a
stable circular orbit about the Earth at a height of
3600 km.

(II) A 17.0-kg monkey hangs from a cord suspended
from the ceiling of an elevator. The cord can with-
stand a tension of 220N and breaks as the elevator
accelerates. What was the elevator’s minimum accel-
eration {magnitude and direction)?

(IT) At what rate must the cylindrical spaceship of
Fig. 5-30 rotate (see Question 12), if occupants are
to experience simulated gravity of }g? Assume the
spaceship’s diameter is 32 m, and give your answer
as the time needed for one revolution.

(II) Determine the time it takes for a satellite to
orbit the Earth in a circular “near-Earth” orbit. The
definition of “near-Earth” orbit is one which is at a
height above the surface of the Earth which is small
compared to the radius of the Earth, so that you may
take the acceleration due to gravity as essentially the
same as that on the surface. Does your result depend
on the mass of the satellite?

(II) During an Apollo lunar landing mission, the
command module continued to orbit the Moon at an
altitude of about 100 km. How long did it take to go
around the Moon once?

. (II) What will a spring scale read for the weight of a
58-kg woman in an elevator that moves (a) with con-
stant upward speed of 6.0m/s, (b) with constant
downward speed of 6.0 m/s, (¢) with upward acceler-
ation of 0.33g, (d) with downward acceleration
0.33 g, and (e) in free fall?

(I1) The rings of Saturn are composed of chunks of
ice that orbit the planet. The inner radius of the rings
is 73,000 km, while the outer radius is 170,000 km.
Find the period of an orbiting chunk of ice at the
inner radius and the period of a chunk at the outer
radius. Compare your numbers with Saturn’s mean
rotation period of 10 hours and 39 minutes. The mass
of Saturn is 5.69 X 10*kg.

. (II) A Ferris wheel, 24.0m in diameter, rotates once
every 12.5s (see Fig. 5-10). What is the fractional
change in a person’s apparent weight () at the top, and
(b) at the bottom, as compared to her weight at rest?
(II) What is the apparent weight of a 70-kg astronaut
4200 km from the center of the Earth’s Moon in a
space vehicle (a) moving at constant velocity, and
(b) accelerating toward the Moon at 2.9 m/s2?
State “direction” in each case.
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43.

45.

47.

48.

49.

50.

*SECTION 5-9

*51.

*52.

*53.

*54.

* 55.

*56.

(II) Describe a general procedure to determine th
mass of a planet from observations on the orbit
one of its satellites.

(IT) Suppose that a binary star system consists of W
stars of equal mass. They are observed to be separil
ed by 360 million km and to take 5.0 Earth years |
orbit about a point midway between them. What |
the mass of each?

(I11) (a) Show that if a satellite orbits very near li
surface of a planet with period T, the density (masy
volume) of the planet is p = 37/GT?. (b) Estimate th
density of the Earth, given that a satellite near the sul
face orbits with a period of about 90 minutes.

(I) Use Kepler’s laws and the period of the Moo
(27.4 d) to determine the period of an artificial satc|
lite orbiting very near the Earth’s surface.

(I) The asteroid Icarus, though only a few hundre
meters across, orbits the Sun like the other planets
Its period is about 410 d. What is its mean distan
from the Sun?
(I) Neptune is an average distance of 4.5 X 10%kn
from the Sun. Estimate the length of the Neptuniu
year given that the Earth is 1.50 X 10® km from th
Sun on the average.
(I) Determine the mass of the Earth from th
known period and distance of the Moon.

—— D —

Halley's comet - \

FIGURE 5-38 -
Problem 55.

-

(II) Halley’s comet orbits the Sun roughly once
every 76 years. It comes very close to the surface of
the Sun on its closest approach (Fig. 5-38). Roughly
how far out from the Sun is it at its farthest? Is it still
“in” the Solar System? What planet’s orbit is nearest
when it is out there? [Hint: The “mean distance” ii)
Kepler’s third law is } the sum of the nearest and far®
thest distance from the Sun.]

(IT) The Sun rotates about the center of the Milky Way
Galaxy (Fig. 5-39) at a distance of about 30,000 light
years from the center (1ly = 9.5 X 10> m). If it takey
about 200 million years to make one rotation, estimat¢
the mass of our galaxy. Assume that the mass distribu:
tion of our galaxy is concentrated mostly in a central
uniform sphere. If all the stars had about the mass of
our Sun (2 X 10¥ kg), how many stars would there b¢
in our galaxy? Sun

k——. 30,000ly—— |

FIGURE 5-39 Edge-on view of our
galaxy. Problem 56.
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"1, (I1) Table 5-2 gives the mean distance, period, and
Mass for the four largest moons of Jupiter (those dis-
vovered by Galileo in 1609). (a) Determine the mass
of Jupiter using the data for Io. (b) Determine the
muss of Jupiter using data for each of the other three
inoons. Are the results consistent?

4, (I1) Determine the mean distance from Jupiter for
~ uich of Jupiter’s moons, using the distance of Io and
the periods given in Table 5-2. Compare to the values
In the Table.

, (1) The asteroid belt between Mars and Jupiter con-
Hisls of many fragments (which some space scientists
think came from a planet that once orbited the Sun
hut was destroyed). (a) If the center of mass of the
anteroid belt is about 3 times farther from the Sun
ihan the Earth is, how long would it have taken this
hypothetical planet to orbit the Sun? (b) Can we use
this data to deduce the mass of this planet?

f the Moon
tificial satel-

a
v

ew hundred
her planets.
:an distance

5 %X 10°km
> Neptunian

‘m from the

h from the

GENERAL PROBLEMS

FIGURE 5-40 Problem 61.

*60. (III) (a) Use Kepler’s second law to show that the
ratio of the speeds of a planet at its nearest and far-
thest points from the Sun is equal to the inverse
ratio of the near and far distances: vy/vg = dp/dy.
(b) Given that the Earth’s distance from the Sun
varies from 1.47 to 1.52 X 10! m, determine the
minimum and maximum velocities of the Earth in its
orbit around the Sun.

*61. (III) A science fiction tale describes an artificial
“planet” in the form of a band completely encircling
a sun, the inhabitants living on the inside surface
(Fig. 5-40) (where it is always noon). Imagine the
sun is exactly like our own, that the distance to the
band is the same as the Earth-Sun distance (to
make the climate temperate), and that the ring ro-
tates quickly enough to produce an apparent gravity
of one g as on Earth. What will be the period of rev-
olution, this planet’s year, in Earth days?

ughly once
e surface of
18). Roughly
2st? Is it still
’it is nearest
distance” in
rest and far-

), How far above the Earth’s surface will the accelera-
fion of gravity be half what it is on the surface?

#). ‘Ihrzan plans to cross a gorge by swinging in an arc
from a hanging vine (Fig. 5-41). If his arms are capable
ol cxerting a force of 1400 N on the rope, what is the
maximum speed he can tolerate at the lowest point of
hiy swing? His mass is 80 kg and the vine is 4.8 m long.
I it possible to whirl a bucket of water fast enough
in a vertical circle so the water won’t fall out? If so,
what is the minimum speed?

On an ice rink two skaters of equal mass grab hands
und spin in a mutual circle once every three seconds.

e Milky Way
: 30,000 light
2). If it takes
ion, estimate
1ass distribu-

In a centrg If we assume their arms are each 0.80 m long, how
the mass of . : .
hard are they pulling on one another, assuming their
»uld there be il
Sun individual masses are 60.0 kg?

liccause the Earth rotates once per day, the effective
iicceleration of gravity at the equator is slightly less
than it would be if the Earth didn’t rotate. Estimate
the magnitude of this effect. What fraction of g is this?

f our

FIGURE 5-41

Problem 63.
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FIGURE 5-42 Problem 68.

67. At what distance from the Earth will a spacecraft
traveling directly from the Earth to the Moon expe-
rience zero net force because the Earth and Moon
pull with equal and opposite forces?

68. A projected space station consists of a circular tube
that is set rotating about its center (like a tubular bi-
cycle tire) (Fig. 5-42). The circle formed by the tube
has a diameter of about 1.1 km. (a) On which wall
inside the tube will people be able to walk? (b) What
must be the rotation speed (revolutions per day) if
an effect equal to gravity at the surface of the Earth
(1.0 g) is to be felt?

69. You know your mass is 60 kg, but when you stand on
a bathroom scale in an elevator, it says your mass is
80 kg. What is the acceleration of the elevator, and in
which direction?

70. A jet pilot takes his aircraft in a vertical loop (Fig. 5-43).
(a) If the jet is moving at a speed of 1500 km/h at the
lowest point of the loop, determine the minimum
radius of the circle so that the centripetal acceleration
at the lowest point does not exceed 6.0 g’s. (b) Calcu-
late also the 80-kg pilot’s effective weight (the force
with which the seat pushes up on him) at the bottom
of the circle, and (c) at the top of the circle (assume
the same speed).

71. Derive a formula for the mass of a planet in terms of
its radius, r, the acceleration due to gravity at its sur-
face, gp, and the gravitational constant, G.

=

Do

FIGURE 5-43 Problem 70.
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72.

73.

74.

75.

76.

7.

. Astronomers using the Hubble Space Telescope hav¢

el e

FIGURE 5-44 Problem 72.

A plumb bob is deflected from the vertical by
angle 6 due to a massive mountain nearby (Fig. 5-44
(a) Find an approximate formula for 6 in terms of (|
mass of the mountain, M,,, the distance to its cenl¢
Dy, and the radius and mass of the Earth. (b) Mak¢
rough estimate of the mass of Mt. Everest, assumin
has the shape, say, of an equilateral pyramid (or cong
4000 m high above its base, and then (c) estimate ||
angle 6 of the pendulum bob if it is Skm from Il
center of Mt. Everest.

A curve of radius 60 m is banked for a design spc¢
of 100 km/h. If the coefficient of static friction is (.
(wet pavement), at what range of speeds can a i
safely make the curve?

How long would a day be if the Earth were rotatii
so fast that objects at the equator were apparentlf
weightless?

Two equal-mass stars maintain a constant distan¢
apart of 8.0 X 10'°m and rotate about a point mi
way between them at a rate of one revolution evci}
12.6 yr. (a) Why don’t the two stars crash into o
another due to the gravitational force betwedl
them? (b) What must be the mass of each star?

A train traveling at a constant speed rounds a cuty
of radius 275 m. A chandelier suspended from tli
ceiling swings out to an angle of 17.5° throughoil
the turn. What is the speed of the train?

The planet Jupiter is about 320 times as massive as tll
Earth. Thus, it has been claimed that a person would b
crushed by the force of gravity on Jupiter since peoplg
can’t survive more than a few g’s. Calculate the numbj
of g’s a person would experience if she could stand o
the equator of Jupiter. Use the following astronomic
data for Jupiter: mass = 1.9 X 10% kg, equatorill
radius = 7.1 X 10*km, rotation period 9 hr 55 mil)
Take the centripetal acceleration into account.

recently deduced the presence of an extremely massiv
core in the distant galaxy M87, so dense that it coul
well be a black hole (from which no light escapes). The
did this by measuring the speed of gas clouds orbitin
the core to be 780m/s at a distance of 60 light-yeat
(5.7 X 10m) from the core. Deduce the mass of th¢
core, and compare it to the mass of our Sun.




