Acceleration at the start of a race.
Can you describe the force that
causes an athlete’s acceleration?
(Hint: note the force vector F.)
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MOTION AND FORCE:
DYNAMICS

b}
e have discussed how motion is described in terms of velocity
Wand acceleration. Now we deal with the question of why objects
move as they do: What makes an object at rest begin to move?
l What causes a body to accelerate or decelerate? What is involved when an
i ubject moves in a circle? We can answer in each case that a force is re-

{juired. In this chapter, we will investigate the connection between force
/il motion. Before we delve into this subject of dynamics, we first discuss FIGURE 4-1 Exertinga

i {he concept of force in a qualitative way. Em———— | =2
level to the

| 155 m high T

m top of the (=8 Force

1 velocity of - . .

Lgelcctiany Intuitively, we experience force as any kind of a push or a pull on an ob-

Ject. When you push a grocery cart or a stalled car (Fig. 4-1), you are ex-

orting a force on it. When a motor lifts an elevator, or a hammer hits a

finil, or the wind blows the leaves of a tree, a force is being exerted. We say

that an object falls because of the force of gravity. Forces do not always
jilve rise to motion. For example, you may push very hard on a heavy desk
E ind it may not move.
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FIGURE 4-2 A spring scale
used to measure a force.

Measuring force

Galileo vs. Aristotle

FIGURE 4-3 Photoof an
air table. Air issuing from many
tiny holes forms a thin air layer
between the table and a puck,
which, when given an initial
shove, will travel at constant
speed in a straight line (until it
hits a wall or another puck).

One way to measure the magnitude (or strength) of a force is to make !
use of a spring scale (Fig. 4-2). Normally, such a spring scale is used to find
the weight of an object; by weight we mean the force of gravity acting on the |
body (Section 4-6). The spring scale, once calibrated, can be used to measure
other kinds of forces as well, such as the pulling force shown in Fig. 4-2.

A force has direction as well as magnitude, and is indeed a vector that
follows the rules of vector addition discussed in Chapter 3. We can repre-
sent any force on a diagram by an arrow, just as we did with velocity. The

direction of the arrow is the direction of the push or pull, and its length is
drawn proportional to the magnitude of the force.

Newton’s First Law of Motion

What is the exact connection between force and motion? Aristotle
(384-322 B.C.) believed that a force was required to keep an object moving
along a horizontal plane. He would argue that to make a book move
across the table, you would have to exert a force on it continuously. To
Aristotle, the natural state of a body was at rest, and a force was believed
necessary to keep a body in motion. Furthermore, Aristotle argued, the
greater the force on the body, the greater its speed.

Some 2000 years later, Galileo questioned these Aristotelian views
and came to a radically different conclusion. Galileo maintained that it is
just as natural for an object to be in horizontal motion with a constant ve-
locity as it is for it to be at rest!

To understand Galileo’s idea, consider the following observations in-
volving motion along a horizontal plane. To push an object with a rough
surface along a tabletop at constant speed requires a certain amount of
force. To push an equally heavy object with a very smooth surface across
the table at the same speed will require less force. If a layer of oil or other
lubricant is placed between the surface of the object and the table, then al-
most no force is required to move the object. Notice that in each succes-
sive step, less force is required. As the next step, we can imagine a

situation in which the object does not rub against the table at all—or |

there is a perfect lubricant between the object and the table—and theo-
rize that once started, the object would move across the table at constant
speed with no force applied. A steel ball bearing rolling on a hard hori-
zontal surface approaches this situation. So does a puck on an air table
(Fig. 4-3), in which a thin layer of air reduces friction almost to zero.

78 CHAPTER4 Motion and Force: Dynamics
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It was Galileo’s genius to imagine such an idealized world—in this
0, one where there is no friction—and to see that it could produce a
ioiv useful view of the real world. It was this idealization that led him to
ils remarkable conclusion that if no force is applied to a moving object, it
Will continue to move with constant speed in a straight line. An object
Mlyws down only if a force is exerted on it. Galileo thus interpreted friction
W 1) force akin to ordinary pushes and pulls.
10 push an object across a table at constant speed requires a force
Hiom your hand only to balance out the force of friction (Fig. 4-4). When
llo object moves at constant speed, your pushing force is equal in magni-
Alidde to the friction force, but these two forces are in opposite directions,
) the net force on the object (the vector sum of the two forces) is zero.
Iiin is consistent with Galileo’s viewpoint, for the object moves with con-
Munt speed when no net force is exerted on it.

‘T'he difference between Aristotle’s view and Galileo’s is not simply
ile of right or wrong. Aristotle’s view was not really wrong, for our every-
Wiy experience indicates that moving objects do tend to come to a stop if
i1 continually pushed. The real difference lies in the fact that Aristotle’s
Wlew about the “natural state” of a body was essentially a final state-

ent—no further development was possible. Galileo’s analysis, on the
iiher hand, could be extended to explain a great many more phenomena,
4 it provided a quantitative theory allowing verifiable predictions. By
finking the creative leap of imagining the experimentally unattainable sit-
{lntion of no friction, and by interpreting friction as a force, Galileo was
Able to reach his conclusion that an object will continue moving with con-
st velocity if no force acts to change this motion.
Upon this foundation, Isaac Newton (Fig. 4-5) built his great theory
i)l motion. Newton’s analysis of motion is summarized in his famous
“lhrce laws of motion.” In his great work, the Principia (published in
{0K7), Newton readily acknowledged his debt to Galileo. In fact, Newton’s
fiest law of motion is very close to Galileo’s conclusions. It states that

Every body contihues in its state of rest or of uniform speed in a
straight line unless acted on by a nonzero net force.

I'he tendency of a body to maintain its state of rest or of uniform motion
I o straight line is called inertia. As a result, Newton’s first law is often
thlled the law of inertia.

[Newton’s first law does not hold in every reference frame. For exam-
ple, if your reference frame is fixed in an accelerating car, an object such as
il cup resting on the dashboard may begin to move toward you (it stayed at
fest as long as the car’s velocity remained constant). The cup accelerated
{oward you but neither you nor anything else exerted a force on it in that
tlirection. In such an accelerating reference frame, Newton’s first law does
fiot hold. Reference frames in which Newton’s first law does hold are called
Incrtial reference frames (the law of inertia is valid in them). For most pur-
hoses, we can usually assume that reference frames fixed on the Earth are
nertial frames. (This is not precisely true, due to the Earth’s rotation, but
{nually it is close enough.) Any reference frame that moves with constant
velocity (say, a car or an airplane) relative to an inertial frame is also an in-
ottial reference frame. Reference frames where the law of inertia does not

SECTION 4-2

Newton'’s First Law of Motion

Friction as a force

.
A-_{ﬁ ut, n
§

FIGURE 4-4 F represents
the force applied by the person
and F;, represents the force of
friction.

NEWTON'S FIRST LAW
OF MOTION

Inertia

FIGURE 4-5
(1642-1727).

Isaac Newton
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Mass as inertia

Mass vs. weight

FIGURE 4-6 The bobsled
accelerates because the team
exerts a force.
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hold, such as the accelerating reference frame discussed above, are called
noninertial reference frames. How can we be sure a reference frame is in-
ertial or not? By’checking to see if Newton’s first law holds. Thus Newton’s |
first law serves as the definition of inertial reference frames.]

EEE] mass

Newton’s second law, which we come to in the next section, makes use of |
the concept of mass. Newton used the term mass as a synonym for quanti-
ty of matter. This intuitive notion of the mass of a body is not very precise
because the concept “quantity of matter” is not very well defined. More |
precisely, we can say that mass is a measure of the inertia of a body. The
more mass a body has, the harder it is to change its state of motion. It is |
harder to start it moving from rest, or to stop it when it is moving, or to
change its motion sideways out of a straight-line path. A truck has much
more inertia than a baseball, and it is much harder to speed it up or slow |
it down. It therefore has much more mass. I

To quantify the concept of mass, we must define a standard. In SI :
units, the unit of mass is the kilogram (kg) as we discussed in Chapter 1,
Section 1-5.

The terms mass and weight are often confused with one another, but it
is important to distinguish between them. Mass is a property of a body it-
self (it is a measure of a body’s inertia, or its “quantity of matter”). Weight, |
on the other hand, is a force, the force of gravity acting on a body. To see
the difference, suppose we take an object to the Moon. The object will |
weigh only about one sixth as much as it did on Earth, since the force of |
gravity is weaker, but its mass will be the same. It will have the same
amount of matter and it will have just as much inertia—for in the absence
of friction, it will be just as hard to start it moving or to stop it once it is |
moving. (More on weight in Section 4-6.)

Newton’s Second Law of Motion

Newton’s first law states that if no net force is acting on a body, it re- |
mains at rest, or if moving, it continues moving with constant speed in a
straight line. But what happens if a net force is exerted on a body? New-
ton perceived that the velocity will change (Fig. 4-6). A net force exert-
ed on an object may make its speed increase. Or, if the net force is in a
direction opposite to the motion, it will reduce the speed. If the net force |
acts sideways on a moving object, the direction of the velocity changes
(and the magnitude may as well). Since a change in speed or velocity is |
an acceleration (Chapter 2, Section 2-4), we can say that a net force
gives rise to acceleration. |
What precisely is the relationship between acceleration and force?
Everyday experience can answer this question. Consider the force re-
quired to push a cart whose friction is minimal. (If there is friction, consid-
er the net force, which is the force you exert minus the force of friction.)
Now if you push with a gentle but constant force for a certain period of
time, you will make the cart accelerate from rest up to some speed, say
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Jkm/h. If you push with twice the force, you will find that the cart will
foich 3km/h in half the time. That is, the acceleration will be twice as
gicat. If you double the force, the acceleration doubles. If you triple the
lorce, the acceleration is tripled, and so on. Thus, the acceleration of a
hody is directly proportional to the net applied force. But the acceleration
tlepends on the mass of the object as well. If you push an empty grocery
¢t with the same force as you push one that is filled with groceries, you
will find that the latter accelerates more slowly. The greater the mass, the
luws the acceleration for the same net force. The mathematical relation, as
Ncewton argued, is that the acceleration of a body is inversely proportional
(0 its mass. These relationships are found to hold in general and can be
simmarized as follows:

The acceleration of an object is directly proportional to the net force

acting on it and is inversely proportional to its mass. The direction of

the acceleration is in the direction of the net force acting on the object.
‘I'his is Newton’s second law of motion. As an equation, it can be written

>F
m

3

where a stands for acceleration, m for the mass, and ZF for the net force.
I'he symbol 2 (Greek “sigma”) stands for “sum of”; F stands for force, so
LI means the vector sum of all forces acting on the body, which we define
i the net force.

We rearrange this equation to obtain the familiar statement of Newton’s
necond law:

3F = ma. @4-1)

Newton’s second law relates the description of motion to the cause of mo-
lion, force. It is one of the most fundamental relationships in physics. From
Newton’s second law we can make a more precise definition of force as an
(ition capable of accelerating an object.

Every force F is a vector, with magnitude and direction. Equation 4-1
I8 o vector equation valid in any inertial reference frame. It can be written
in component form in rectangular coordinates as

2F, = ma,.

1 the motion is all along a line (one dimensional), we can leave out the
subscripts and simply write ZF = ma.

In SI units, with the mass in kilograms, the unit of force is called the
newton (N). One newton, then, is the force required to impart an acceler-
mtion of 1 m/s? to a mass of 1kg, Thus 1N = 1kg-m/s?.

In cgs units, the unit of mass is the gram (g) as mentioned earlier.” The
unit of force is the dyne, which is defined as the net force needed to im-
part an acceleration of 1 cm/s? to a mass of 1g Thus 1 dyne = 1g-cm/s%
Il is easy to show that 1 dyne = 1075N.

In the British system, the unit of force is the pound (abbreviated Ib),
where 1 1b = 4.45 N. The unit of mass is the slug, which is defined as that

2F, = ma,, 2F, = ma,,

"lic careful not to confuse g for gram with g for the acceleration due to gravity. The latter is
wlways italicized (or bold face as a vector).

NEWTON’S SECOND LAW
OF MOTION

Net force

NEWTON'S SECOND LAW
OF MOTION

Force defined

Unit of force;
the newton
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= PROBLEM SOLVING

Use a consistent set of units

TABLE 4-1
Units for Mass and Force
Force
(including
System Mass weight)
SI kilogram (kg) newton (N)
(=kg'm/s?)
cgs gram (g) dyne
(=g-cm/s?)
British  slug pound (1b)

FIGURE 4-7 Example 4-2.

mass which will undergo an acceleration of 1 ft/s?> when a force of 11b i
applied to it. Thus 11b = 1 slug-ft/s%. Table 4—1 summarizes the units in|
the different systems. ]

It is very important that only one set of units be used in a given calcus
lation or problem, with the SI being preferred. If the force is given in, say,!
newtons, and the mass in grams, then before attempting to solve for the
acceleration in SI units, the mass must be changed to kilograms. For ex-
ample, if the force is given as 2.0N along the x axis and the mass is 500 B
we change the latter to 0.50 kg, and the acceleration will then automatical-
ly come out in m/s> when Newton’s second law is used:

. _2F _ 20N _ 20 kgm
* m  050kg 050 kg

= 4.0m/s%

CNI Sl ESTIMATE | Force to accelerate a fast car. Estimate
the net force needed to accelerate a 1000-kg car at lg.

SOLUTION The car’s acceleration is a = 1g = (9.8 m/s?) ~ Sm/s’,
We use Newton’s second law to get the net force needed to achieve this
acceleration:

SF = ma = (1000 kg)(5 m/s2) = 5000 N.

(If you are used to the British units, to get an idea what a S000N force iy,
you can divide by 4.45N/Ib and get a force of about 10001b.)

NSNS A Force to stop a car.  What net force is required to bring
a 1500-kg car to rest from a speed of 100 km/h within a distance of 55 m’

SOLUTION We use Newton’s second law, SF = ma, but first we mus|
determine the acceleration a, which we assume is constant. We assume
the motion is along the + x axis (Fig. 4-7). We are given the initial veloc-
ity vy = 100km/h = 28m/s, the final velocity v = 0, and the distance
traveled x — x, = 55m. From Eq. 2-10c, we have

v? = 0} + 2a(x — x;)
SO

v _0-(28m/s? _ 5
2As5m) 7.1 m/s°

¢= 2(x — x)
The net force required is then
2F = ma = (1500 kg)(—7.1 m/s?) = —1.1 X 10*N.

The force must be exerted in the direction opposite to the initial velocity,
which is what the negative sign tells us.

%, = 100 km/h v=0

'ﬁ‘ S F———

x=0
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Newton’s Third Law of Motion

ewton’s second law of motion describes quantitatively how forces affect
\ulion. But where, we may ask, do forces come from? Observations sug-
Jlent that a force applied to any object is always applied by another object.

‘A horse pulls a wagon, a person pushes a grocery cart, a hammer pushes

1 0 nail, a magnet attracts a paper clip. In each of these examples, a force
Iy excrted on one body, and that force is exerted by another body. For ex-

~imple, the force exerted on the nail is exerted by the hammer.

But Newton realized that things are not so one-sided. True, the hammer
¢xerts a force on the nail (Fig. 4-8). But the nail evidently exerts a force back
un the hammer as well, for the hammer’s speed is rapidly reduced to zero
{ipon contact. Only a strong force could cause such a rapid change of veloci-
{y of the hammer. Thus, said Newton, the two bodies must be treated on an
¢()ual basis. The hammer exerts a force on the nail, and the nail exerts a force
hick on the hammer. This is the essence of Newton’s third law of motion:

Whenever one object exerts a force on a second object, the second
cxerts an equal and opposite force on the first.

I'his law is sometimes paraphrased as “to every action there is an equal
i opposite reaction.” This is perfectly valid. But to avoid confusion, it is
yury important to remember that the “action” force and the “reaction”
force are acting on different objects.

As evidence for the validity of Newton’s third law, look at your hand
when you push against a grocery cart or against the edge of a desk, Fig. 4-9.
Your hand’s shape is distorted, clear evidence that a force is being exerted on
. You can see the edge of the desk pressing into your hand. You can even
fvel the desk exerting a force on your hand; it hurts! The harder you push
ipainst the desk, the harder the desk pushes back on your hand. (Note that
you only feel forces exerted on you, not forces you exert on something else.)

Force exerted
on hand
by desk

Force exerted on |
desk by hand

FIGURE 4-9 If your hand
pushes against the edge of a desk
(the force vector is shown in red),
the desk pushes back against your
hand (this force vector is shown
in a different color, purple, to
remind us that this force acts on
a different object).

FIGURE 4-8 Multiflash photo
ol a hammer striking a nail. In
iccordance with Newton’s third law,
the hammer exerts a force on the nail,
und the nail exerts a force back on the
hammer. The latter force decelerates
the hammer and brings it to rest.

SECTION 4-5

A force is exerted on an object
and is exerted by another object

NEWTON’S THIRD LAW
OF MOTION

Action and reaction
act on different objects

Newton’s Third Law of Motion 83




W PHYSICS APPLIED

How does a rocket accelerate?

How we can walk

FIGURE 4-10 When an ice- FIGURE 4-11 - The launch of a
skater pushes against the railing, rocket. Newton’s third law.

the railing pushes back and this

force causes her to move away.

As another demonstration of Newton’s third law, consider the ice-
skater in Fig. 4-10. Since there is very little friction between her skates
and the ice, she will move freely if a force is exerted on her. She pushes
against the railing; and then she starts moving backward. Clearly, there|
had to be a force exerted on her to make her move. The force she exerts.
on the railing cannot make her move, for that force acts on the railing,
Something had to exert a force on her to make her start moving, and that
force could only have been exerted by the railing. The force with which
the railing pushes on her is, by Newton’s third law, equal and opposite to
the force she exerts on the railing.

When a person throws a package out of a boat (initially at rest), the
boat starts moving in the opposite direction. The person exerts a force
on the package. The package exerts an equal and opposite force back
on the person, and this force propels the person (and the boat) back-
ward slightly. Rocket propulsion also is explained using Newton’s third
law (Fig. 4-11). A common misconception is that rockets accelerate be-
cause the gases rushing out the back of the engine push against the
ground or the atmosphere. Not true. What happens, instead, is that a
rocket exerts a strong force on the gases, expelling them; and the gases
exert an equal and opposite force on the rocket. It is this latter force
that propels the rocket forward. Thus, a space vehicle is maneuvered in
empty space by firing its rockets in the direction opposite to that in
which it needs to accelerate.

Consider how we walk. A person begins walking by pushing with the
foot against the ground. The ground then exerts an equal and opposite
force back on the person (Fig. 4-12) and it is this force, on the person, that
moves the person forward. (If you doubt this, try walking on very smooth
slippery ice.) In a similar way, a bird flies forward by exerting a force on
the air, but it is the air pushing back on the bird’s wings that propels the
bird forward.

CHAPTER4  Motion and Force: Dynamics
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'CONCEPTUAL EXAMPLE 4-3| What exerts the force on a car? What

makes a car go forward? ,

RESPONSE A common answer is that the engine makes the car move
lorward. But it is not so simple. The engine makes the wheels go around.
BBut what good is that if they are on slick ice or mud? They just spin. A car
moves forward due to the friction force exerted by the ground on the tires,
ind this force is the reaction to the force exerted on the ground by the tires.

We tend to associate forces with active bodies such as humans, animals,
vngines, or a moving object like a hammer. It is often difficult to see how
{in inanimate object at rest, such as a wall or a desk, can exert a force. The
uxplanation lies in the fact that every material, no matter how hard, is elas-
lic, at least to some degree. No one can deny that a stretched rubber band
tin exert a force on a wad of paper and send it flying across the room.
{)ther materials may not stretch as easily as rubber, but they do stretch
when a force is applied to them. And just as a stretched rubber band exerts
it lorce, so does a stretched (or compressed) wall, desk, or car fender.

From the examples discussed above, it is clear that it is quite impor-
lhnt to remember on what object a given force is exerted and by what ob-
Ject that force is exerted. The point is that a force influences the motion of
in object only when it is applied on that object. A force exerted by a body
toes not influence that body; it only influences the other body on which it
In exerted. Thus, to avoid confusion, the two prepositions on and by must
nlways be used—and used with care.

One way to keep clear which force acts on which object is to use double
nubscripts. For example the force exerted on the Person by the Ground in
1, 4-13 can be labeled Fp;. And the force exerted on the ground by the per-
#on is Fgp, as shown in Fig. 4-13. Note that we have used different colors for
the force vectors when they act on different objects. By Newton’s third law

@-2)

I, and Fpg have the'same magnitude, and the minus sign reminds us that
these two forces are in opposite directions.

Fop = —Fpg.

lHorizontal Horizontal
lorce exerted force exerted
on the ground on the

by person's b person's foot
lvot —p- by the ground

FIGURE 4-12 We can walk
lorward because, when one foot pushes
backward against the ground, the

ground pushes forward on that foot. which body it is exerted.

SECTION 4-5

Inanimate objects can
exert a force

" PROBLEM SOLVING

For each force, be clear on which
object it acts, and by which object it
is exerted. F = ma applies only

to forces acting on a body.

NEWTON’S THIRD LAW
OF MOTION

FIGURE 4-13 Newton’s third
law. Subscripts on forces remind us
on which body a force acts and by
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FIGURE 4-14 Seventy- Force onsled  Force on
year-old Michelangelo has . ' 1 exerted by assistant ’
selected a fine block of marble assistant exerted pis

for his next sculpture. Shown bysled f -
here is his assistant pulling it Fso,  Fas
on a sled away from the quarry.
Forces on the assistant are shown
as red (magenta) arrows. Forces
on the sled are purple arrows.
Forces acting on the ground are
orange arrows. Action-reaction
forces that are equal and

i e i =
opposite are labeled by the N - Friction S E&cg ‘ |
same subscripts but reversed ; force on ground » assistant
exerted exerted exerted

(such as Fg, and F,g) and are sled exerted ;
of different colors because they by ground by sled by assistant by ground

act on different objects.

CONCEPTUAL EXAMPLE 4-4| Third law clarification. Michelangelo’s
assistant has been assigned the task of moving a block of marble using 4
sled (Fig. 4-14). He says to his boss, "When I exert a forward force on
the sled, the sled exerts an equal and opposite force backward. So how
can I ever start it moving? No matter how hard I pull, the backward re-
| action force always equals my forward force, so the net force must be
zero. I'll never be able to move this load.” Is this a case of a little knowl-
edge being dangerous? Explain.

RESPONSE Yes. Although it is true that the action and reaction forces
are equal in magnitude, the assistant has forgotten that they are exerted on
w PROBLEM SOLVING different objects. The forward (“action”) force is exerted by the assistant
A study of Newton’s | OD the sled (Fig. 4-14), whereas the backward “reaction” force is exerted
second and third laws | by the sled on the assistant. To determine if the assistant moves or not, we
must consider only the forces on the assistant and then apply ZF = ma,
where SF is the net force on the assistant, a is the acceleration of the assist-
ant, and m is the assistant’s mass. There are two forces on the assistant
that affect his forward motion and he seems to have forgotten one of them.
The two forces on the assistant are shown as bright red (magenta) arrows
in Fig. 4-14; they are (1) the horizontal force F,; exerted on the assistant by
the ground (the harder he pushes backward against the ground, the harder
the ground pushes forward on him—Newton’s third law), and (2) the force
F,s exerted on the assistant by the sled, pulling backward on him. When
the ground pushes forward on the assistant harder than the sled pulls
backward, the assistant accelerates forward (Newton’s second law). The
sled, on the other hand, accelerates forward when the force on it exerted
| by the assistant is greater than the frictional force acting backward (that
is, when F, has greater magnitude than Fy; in Fig. 4-14).

, Using double subscripts to clarify Newton’s third law can become
! ) cumbersome, and we won’t usually use them in this way. Nevertheless, if
there is any confusion in your mind about a given force, go ahead and use
| them to identify on what object and by what object the force is exerted.

86 CHAPTER4 Motion and Force: Dynamics
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Weight—the Force of Gravity; and
the Normal Force '

{lnlileo claimed that objects dropped near the surface of the Earth will all fall
Wwith the same acceleration, g, if air resistance can be neglected. The force that
Jilves rise to this acceleration is called the force of gravity. We now apply New-
{on’s second law to the gravitational force; and for the acceleration, a, we use
the downward acceleration due to gravity, g. Thus, the force of gravity on an
object, Fg, whose magnitude is commonly called its weight, can be written as

Fs; = mg. 4-3)
I'he direction of this force is down toward the center of the Earth.

In SI units, g = 9.80m/s? = 9.80 N/kg,' so the weight of a 1.00-kg
mass on Earth is 1.00kg X 9.80 m/s> = 9.80N. We will mainly be con-
cerned with the weight of objects on Earth, but we note that on the Moon,
on other planets, or in space, the weight of a given mass will be different.
For example, on the Moon g is about one sixth what it is on Earth, and a
|.0 kg mass weighs only 1.7 N. Although we will not have occasion to use
British units, we note that for practical purposes on the Earth, a mass of
| kg weighs about 2.2 Ib. (On the Moon, 1 kg weighs only about 0.4 1b.)

The force of gravity acts on an object when it is falling. When an object is
at rest on the Earth, the gravitational force on it does not disappear, as we
know if we weigh it on a spring scale. The same force, given by Eq. 4-3, con-
linues to act. Why, then, doesn’t the object move? From Newton’s second law,
the net force on an object that remains at rest is zero. There must be another
force on the object to balance the gravitational force. For an object resting on
a table, the table exerts this upward force; see Fig. 4-15a. The table is com-
pressed slightly beneath the object, and due to its elasticity, it pushes up on the
object as shown. The force exerted by the table is often called a contact force,
since it occurs when two objects are in contact. (The force of your hand push-
ing on a cart is also a contact force.) When a contact force acts perpendicular
to the common surface of contact, it is usually referred to as the normal force

“normal” means perpendicular); hence it is labeled Fy in the diagram.

The two forces shown in Fig. 4-15a are both acting on the statue, which
remains at rest, so the vector sum of these two forces must be zero (Newton’s
second law). Hence F;; and Fy must be of equal magnitude and in opposite
directions. But they are not the equal and opposite forces spoken of in New-
ton’s third law. The action and reaction forces of Newton’s third law act on
different objects, whereas the two forces shown in Fig. 4-15a act on the same
object. For each of the forces shown in Fig. 4-15a, we can ask, “What is the
reaction force?” The upward force, Fy, on the statue is exerted by the table.
The reaction to this force is a force exerted by the statue on the table. It is
shown in Fig. 4-15b, where it is labeled F{. This force, Fy, exerted on the
table by the statue, is the reaction force to Fy in accord with Newton’s third
law. (We could equally well say the reverse: the force F), on the statue exerted
by the table is the reaction to the force Fy exerted on the table by the statue.)
Now, what about the other force on the statue, the force of gravity F;? Can
you guess what the reaction is to this force? [We will see in Chapter S that
the reaction force is also a gravitational force exerted on the Earth by the
statue, and can be considered to act at the Earth’s center.

'Since 1N = 1 kg-m/s? (Section 4-4), 1 m/s? = 1 N/kg.

SECTION 4-6

Weight = force of gravity

FIGURE 4-15 (a)The net force
on an object at rest is zero according to
Newton’s second law. Therefore the
downward force of gravity (F;;) on an
object must be balanced by an upward
force (the normal force Fy) exerted by
the table in this case. (b) F}, is the force
exerted on the table by the statue and is
the reaction force to Fy, as per Newton’s
third law. (F}; is shown in a different
color to remind us it acts on a different
body.) The reaction to Fy is not shown.

Careful:
Weight and normal force are
not action—reaction pairs
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FIGURE 4-16 Example 4-5.

(a) A 10-kg gift box is at rest on
a table. (b) A person pushes
down on the box with a force of
40.0 N. (c) A person pulls upward
on the box with a force of 40.0 N.
The forces are all assumed to

act along a line; they are shown
slightly displaced in order to be
distinguishable on the diagram.
Only forces acting on the box
are shown.

Weight, normal force, and a box. A friend has given you
a special gift, a box of mass 10.0 kg with a mystery surprise inside. It’s a re-
ward for your fine showing on the physics final. The box is resting on the
smooth (frictionless) horizontal surface of a table (Fig. 4-16a). (a) Deter-
mine the weight of the box and the normal force acting on it. (b) Now your
friend pushes down on the box with a force of 40.0N, as in Fig. 4-16b.
Again determine the normal force acting on the box. (¢) If your friend
pulls upward on the box with a force of 40.0N (Fig. 4-16¢), what now is
the normal force on the box?

SOLUTION (a) The box is resting on the table. The weight of the box is
mg = (10.0kg)(9.80 m/s*) = 98.0N, and this force acts downward. The
only other force on the candy box is the normal force exerted upward on it
by the table, as shown in Fig. 4-16a. We chose the upward direction as the
positive y direction, and then the net force 2F, on the box is|
EFy = Fy — mg. Since the box is at rest, the net force on it must be zero|
(2F, = ma,, and a, = 0). Thus

2F, = Fy—mg=0,

so we have in this case
Fy = mg.

The normal force on the box, exerted by the table, is 98.0 N upward, and
has magnitude equal to the box’s weight.

(b) Your friend is pushing down on the box with a force of 40.0N. So now
there are three forces acting on the box, as shown in Fig. 4-16b. The weight
of the box is still mg = 98.0N. The net force is =F, = Fy — mg — 40.0N,
and is equal to zero since the box remains at rest. Thus, since a = 0, New-
ton’s second law gives

2F, = Fy—mg — 400N = 0,
so the normal force is now
Fy=mg+ 40.0N = 980N + 40.0N = 138.0N,

which is greater than in (a). The table pushes back with more force.

(c) The box’s weight is still 98.0N and acts downward. The force exert-
ed by your friend and the normal force both act upward (positive di-
rection), as shown in Fig. 4-16¢c. The box doesn’t move since your

friend’s upward force is less than the weight. The net force, again set to
zero, is

3F, = Fy — mg + 400N = 0,
SO
Fy=mg —40.0N = 980N — 40.0N = 58.0N.

The table does not push against the full weight of the box because of the
upward pull exerted by your friend.

Notice that the normal force is elastic in origin (the table in Fig. 4-16
sags slightly under the weight of the box).

88 CHAPTER4 Motion and Force: Dynamics
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W VIIR: BN Accelerating the box. What happens when a person

ulls upward on the box in Example 4-5(c) with a force equal to, or
greater than, the box’s weight, say Fp = 100.0N rather than the 40.0N
shown in Fig. 4-16c?

SOLUTION The net force is now
SF, = Fy — mg + Fp = Fy — 980N + 1000N,

nnd if we set this equal to zero, we would get Fy = —2.0N. This is non-
nense, since the negative sign implies Fy points downward, and the table
surcly cannot pull down on the box (unless there’s glue on the table).
‘I'he least Fy can be is zero, which it will be in this case. What really hap-
pens here is clear: the box accelerates upward since the net force is not
/ero; it is

2F,= F, —mg = 1000N — 980N = 20N

upward. See Fig. 4-17. So the box moves upward with an acceleration
ol magnitude

a, = SF,/m = 20 N/10.0 kg = 0.20 m/s’.

(=l Solving Problems with Newton’s Laws:
Vector Forces and Free-Body Diagrams

Newton’s second law tells us that the acceleration of an object is pro-
portional to the net force acting on the object. The net force, as men-
floned earlier, is the vector sum of all forces acting on the object.
Indeed, extensive experiments have shown that forces do add together
iy vectors precisely according to the rules we developed in Chapter 3.
J'or example, in Fig. 4-18, two forces of equal magnitude (100N each)
nrc shown acting on an object at right angles to each other. Intuitively,
we can see that the object will move at a 45° angle and thus the net
force acts at a 45° angle. This is just what the rules of vector addition
give. The Pythagorean theorem tells us that the magnitude of the result-
ant force is Fx = V(100 N)? + (100 N)? = 141N.

F,=100N

SECTION 4-7

Fp (100.0N)

:

’mg (98.0N)

FIGURE 4-17 Example 4-6.
The box accelerates upwards
because Fp, > mg.

FIGURE 4-18 (a)Two forces,
F, and F,, act on an object. (b) The
sum, or resultant, of F, and F, is Fy.

Solving Problems with Newton’s Laws: Vector Forces and Free-Body Diagrams 89



FIGURE 4-19 Two force
vectors act on a boat (Example 4-7).

W PROBLEM SOLVING

Free-body diagram

90 CHAPTER4  Motion and Force: Dynamics

Adding force vectors. Calculate the sum of the two
forces acting on the boat shown in Fig. 4-19a.

SOLUTION These two forces are shown resolved in Fig. 4-19b. We add
the forces using the method of components. The components of F, are

F,, = F, cos 45.0° = (40.0 N)(0.707) = 28.3 N,
F,, = F,sin 45.0° = (40.0 N)(0.707) = 28.3 N.
The components of F, are
F, = +F,cos37.0° = +(30.0 N)(0.799) = +240N,
F,, = — F,sin 37.0° = —(30.0 N)(0.602) = —181N.

F,, is negative because it points along the negative y axis. The components
of the resultant force are (see Fig. 4-19c)

Fg, = Fy, + F,, = 283N + 240N = 523N,
Fp, = F), + F,, = 283N — 181N = 102 N.

To find the magnitude of the resultant force, we use the Pythagorean
theorem:

Fg = VF}, + F%, = V(523) + (102)* = 533N.

The only remaining question is the angle 6 that the net force F makes
with the x axis. We use:

F, 102N
R —
tan 6 = —!F 23N 0.195,

and tan~! (0.195) = 11.0°.

When solving problems involving Newton’s laws and force, it is
very important to draw a diagram showing all the forces acting on each |
object involved. Such a diagram is called a free-body diagram, or force |
diagram: we draw an arrow to represent each force acting on a given |
body, being sure to include every force acting on that body.

[When concerned only about translational motion, we can draw all the |
forces on a given body as acting at the center of the object, thus treating
the object as a point. However, when doing problems involving rotation or,
statics, where each force acts is also important, as we shall see.]

CONCEPTUAL EXAMPLE 4-8| The hockey puck. A hockey puck is |
sliding at constant velocity across a flat horizontal ice surface that is as-
sumed to be frictionless. Which of the sketches in Fig. 4-20 is the correct

free-body diagram for this puck? What would your answer be if the puck
slowed down?

RESPONSE Did you choose (a)? If so, can you answer the question:
what exerts the horizontal force labeled F? If you say that it is the force
needed to maintain the motion (as the ancient Greeks said), ask your-
self: what exerts this force? Remember that another object must exert
any force—and there simply isn’t any possibility here. Therefore, (a) is
wrong. Besides, the force F in Fig. 4-20a would give rise to an accelera-
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lion by Newton’s second law. It is (b) that is correct, as long as there is
no friction. No net force acts on the puck, and the puck slides at con-
sant velocity across the ice. But if someone insists that we come down
{rom the ivory tower of idealized frictionless surfaces, down to the real
world where even smooth ice exerts at least a tiny friction force, then (c)
Is the correct answer. The tiny friction force is in the direction opposite
l0 the motion (it ought to be labeled Fy, not simply F), and the puck’s

velocity decreases, even if very slowly.

Here now is a brief summary of how to approach solving problems in-
volving Newton’s laws:

PROBLEM SOLVING Newton'slLaws;Free-Body Diagrams

FIGURE 4-20 Which isthe
correct free-body diagram for a
hockey puck sliding across
frictionless ice (Example 4-8)?

I. Draw a sketch of the situation.

2. Consider only one object (at a time), and draw a

free-body diagram for that body, showing all the
forces acting on that body, including any un-
known forces that you have to solve for. Do not
show any forces that the body exerts on other
bodies. Draw the arrow for each force vector
reasonably accurately for direction and magni-
tude. Label each force, including forces you must
solve for, as to its source (gravity, person, friction,
and so on). If several bodies are involved, draw a
free-body diagram for each body separately,
showing all the forces acting on that body (and
only forces acting on that body). For each (and
every) force, you must be clear about: on what

5.

object that force acts; and by what object that
force is exerted. Only forces acting on a given
body can be included in =F = ma for that body.

Newton’s second law involves vectors, and it is
usually important to resolve vectors into com-
ponents. Choose an x and a y axis in a way that
simplifies the calculation.

For each body, Newton’s second law can be ap-
plied to the x and y components separately.
That is, the x component of the net force on
that body will be related to the x component of
that body’s acceleration: 2F, = ma,, and simi-
larly for the y direction.

Solve the equation or equations for the un-
known(s).

T'his problem-solving box should not be considered a prescription. Rather
it is a summary of things to do that will start your mind thinking and get-
ting involved in the problem at hand.

In the Examples that follow, we assume that all surfaces are very smooth
Ko that friction can be ignored. (Friction, and Examples using it, are discussed
in the next Section.) In some of the following Examples, we will deal again
with the large gift box on the table, which we first encountered in Example
4-5 (Fig. 4-16). In each successive Example, we add an additional complica-
tion so that, step by step, you can see how to approach solving problems.

SECTION 4-7

Solving Problems with Newton's Laws: Vector Forces and Free-Body Diagrams
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FIGURE 4-21 Example 4-9:
(b) is the free-body diagram.

| Tension in a cord.
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Pulling the mystery box. Suppose a friend asks to exam-
ine the 10.0-kg box you were given (Example 4-5, Fig. 4-16), hoping to guesy
what is inside; and you respond, “Sure, pull the box over to you.” She then
pulls the box by the attached ribbon (or string), as shown in Fig. 4-21a, along
the smooth surface of the table. The magnitude of the force exerted by thy
person is F, = 40.0N, and it is exerted at a 30.0° angle as shown. Calculate
(a) the acceleration of the box, and (b) the magnitude of the upward force
F, exerted by the table on the box. Assume that friction can be neglected.

SOLUTION Figure 4-21b shows the free-body diagram of the box,
which means we show all the forces acting on the box and only the forcey
acting on the box. They are: the force of gravity mg; the normal force ex-
erted by the table Fy; and the force exerted by the person Fp. With the y
axis vertical and the x axis horizontal, the pull of 40.0 N has components

Fp, = (40.0 N)(cos 30.0°) = (40.0 N)(0.866) = 34.6 N,
Fp, = (40.0 N)(sin 30.0°) = (40.0 N)(0.500) = 20.0N.

(a) In the horizontal (x) direction, Fy and mg have zero components,
Thus the horizontal component of the net force is Fp,. From Newton'’s
second law, 2F, = ma,, we have

F px = Ma,,
so
o = Fp, _ (346N)
* m (10.0kg)
The acceleration of the box is thus 3.46 m/s” to the right.

(b) In the vertical (y) direction, with upward as positive, again using
Newton’s second law we have

= 3.46 m/s%

2F, = ma,
Fy— mg + Fp, = ma,.
Now mg = (10.0kg)(9.80m/s*) = 98.0N and Fp, = 20.0N as we calcu-
lated above. Furthermore, we know a, = 0 since the box does not even
move vertically. Thus

Fy— 980N +200N =0
which tells us that the normal force is
Fy=T80N.

Notice that Fy is less than mg. The table does not push against the full
weight of the box since part of the pull exerted by the person is in the
upward direction. Compare this to Example 4-5, part c.

When a flexible cord pulls on an object, the cord is said to be under ten-
sion, and the force it exerts on the object is the tension F. If the cord has neg-
ligible mass, the force exerted at one end is transmitted undiminished to each
adjacent piece of cord along the entire length to the other end. Note that flex-
ible ropes and cords can only pull. They can’t push because they bend.
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{GURE 4-22 Example 4-10. (a) Two boxes - =
W0 connected by a cord. A person pulls horizontally o 112.0 kg.
il box 1 with force Fp = 40.0 N. (b) Free-body

fngram for box 1. (c) Free-body diagram for box 2. €

YNNI BN M Two boxes connected by a cord. Two boxes are con-
ficcted by a lightweight cord and are resting on a table. The boxes have
ihasses of 12.0kg and 10.0kg. A horizontal force Fp of 40.0N is applied
hy a person to the 10.0-kg box, as shown in Fig. 4-22a. Find (a) the ac-
¢eleration of each box, and (b) the tension in the cord.

SOLUTION (a) The free-body diagram for each of the boxes is shown
In Figs. 4-22b and c. We consider each box by itself so that Newton’s sec-
ond law can be applied to each. The cord is light, so we neglect its mass
felative to the mass of the boxes. The force F;, acts on box 1. Box 1 exerts
it lorce Fr on the connecting cord, and the cord exerts an opposite but
v(ual magnitude force F; back on box 1 (Newton’s third law). These
forces on box 1 are shown in Fig. 4-22b. Because the cord is considered
{0 be massless, the tension at each end is the same." Hence the cord ex-
urts a force Fp on the second box; Fig. 4-22¢ shows the forces on box 2.
‘I'here will be only horizontal motion. We take the positive x axis to the

ripht, and we use subscripts 1 and 2 to refer to the two boxes. Applying
LI, = ma, to box 1, we have:

l‘or box 2, the only horizontal force is Fr, so
2F, = Fr = mya,.

I'he boxes are connected, and if the cord remains taut and doesn’t stretch,
then the two boxes will have the same acceleration a. Thus a, = a, = a,

und we are given m; = 10.0kg and m, = 12.0kg. We add the two equa-
tions above and obtdin

(m+m)a=Fp—Fp+F=F
or
_ Fp 400N

“m;+m, 220kg

‘I'his is what we sought. Notice that we would have obtained the same re-
nult had we considered a single system, of mass m, + m,, acted on by a
net horizontal force equal to Fp. (The tension forces F; would then be
considered internal to the system as a whole, and summed together would
make zero contribution to the net force on the whole system.)

(h) From the equation above for box 2 (F; = m,a,), the tension in the
cord is

= 1.82m/s%

Fr = mya = (12.0kg)(1.82 m/s?) = 21.8 N.

bis- o

I§ince the mass m of the cord is zero, the net force on the cord is SF = ma = 0 no matter
whit a is. Hence the forces pulling on the cord at its two ends must add up to zero.

SECTION 4-7
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™ PHYSICS APPLIED m Elevator and counterweight (Atwood’s machine). Two

Elevator (as Atwood’s machine)

a,

=

Elevator
car

= '] Counterweight
1150 kg ‘ m, = 1000 l%g

L mg
(b) ©

FIGURE 4-23 Example 4-11.
(a) Atwood’s machine in the form of
an elevator-counterweight system.
(b) and (c) Free-body diagrams for
the two masses.

= PROBLEM SOLVING

Check your result by seeing if it
works in situations where the
answer is easily guessed

masses suspended over a pulley by a cable, as shown in Fig. 4-23a, is
sometimes refefred to generically as an Atwood’s machine. Consider the
real-life application of an elevator (m,;) and its counterweight (m,). To
minimize the work done by the motor to raise and lower the elevator
safely, m, and m, are similar in mass. We leave the motor out of the sys-
tem for this calculation, and assume the cable’s mass is negligible and the
pulley is frictionless and massless,” which assures that the tension Fy in
the cord has the same magnitude on both sides of the pulley. Let the
mass of the counterweight be m, = 1000 kg. Assume the mass of the
empty elevator is 850kg, and its mass when carrying four passengers is
m, = 1150 kg. For the latter case (m; = 1150 kg), calculate (a) the accel-
eration of the elevator and (b) the tension in the cable.

SOLUTION (a) Figures 4-23b and c show the free-body diagrams for the
two masses. It is clear that m,, being the heavier, will accelerate downward,
and m, will accelerate upward. The magnitudes of their accelerations
will be equal (we assume the cable doesn’t stretch). For the counter-
weight, m,g = (1000 kg)(9.80 m/s*) = 9800N, so F; must be greater
than 9800 N (in order that m, will accelerate upward). For the elevator,
m,g = (1150kg)(9.80 m/s?) = 11,300 N, which must have greater magni-
tude than F; so that m, accelerates downward. Thus our calculation must
give F; between 9800 N and 11,300 N. To find F7 as well as the acceleration a,
we apply =F = ma to each box, where we take upward as the positive y|
direction for both boxes. With this choice of axes,a, = a,and a; = —a.Thus |

Fr—mg=ma, = —ma
F; — m,g = mya, = +mya.

We subtract the first equation from the second to get
(my — my)g = (my + my)a.

We solve this for a:

L _m-—m _1150kg — 1000kg
my + m,® ~ 1150 kg + 1000 kg

g = 0.070g = 0.68 m/s’. |

The elevator (m,) accelerates downward (and the counterweight m, up-
ward) at a = 0.070 g = 0.68 m/s.
(b) The tension in the cord, Fr, can be obtained from either of the two]
2F = ma equations, setting a = 0.070 g:

Fr=mg — ma =m;(g — a)
1150 kg (9.80 m/s* — 0.68 m/s?) = 10500 N,
Fr = m,g + mya =m,(g + a)
1000 kg (9.80 m/s? + 0.68 m/s*) = 10500 N,

which are consistent.

We can check our equation for the acceleration a in this Example by
noting that if the masses were equal (m, = m,), then our equation above|
for a would give a = 0, as we should expect. Also, if one of the masses i
zero (say, m; = 0), then the other mass (m, # 0) would be predicted by

our equation to accelerate at a = g, again as expected.

tWe'll see how to deal with a rotating pulley with mass in Chapter 8.
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 CONCEPTUAL EXAMPLE 4-12| The advantage of a pulley. Muscleman
I trying to lift a piano (slowly) up to a second-story apartment (Fig. 4-24).
He is using a rope looped over two pulleys as shown. How much of the
piano’s 2000 N weight does he have to pull on the rope?

RESPONSE Look at the forces acting on the lower pulley at the piano.
‘The weight of the piano is pulling down. The tension in the rope, looped
through this pulley, pulls up twice, once on each side of the pulley. Thus,
Newton’s second law gives

2F; — mg = ma.

‘lo move the piano with constant speed (¢ = 0) requires a tension in the
cord, and hence a pull on the cord, of F; = mg/2. Muscleman exerts a
force equal to half the piano’s weight. We say the pulley has given a me-
chanical advantage of 2, since without the pulley Muscleman would have
L lo exert twice the force.

Getting the car out of the mud. Finding her car stuck in
the mud, a bright graduate of a good physics course ties a strong rope to the
back bumper of the car, and the other end to a tree, as shown in Fig. 4-25a.
She pushes at the midpoint of the rope with her maximum effort, which she
cstimates to be a force F;, = 300N. The car just begins to budge with the
1ope at an angle 6 (see the figure) which she estimates to be 5°. With what
lorce is the rope pulling on the car? Neglect the mass of the rope.

SOLUTION First, note that the tension in a rope is always along the
rope. Any component perpendicular to the rope would cause the rope to
bend or buckle (as it does here where F;, acts)—in other words, a rope can
support a tension force only along its length. Let F;; and F, be the forces
the rope exerts on the tree and on the car, as shown in Fig. 4-25a. As our
“free body,” we choose the tiny section of rope where she pushes. The free-
body diagram is shown in Fig. 4-25b, which shows F;, as well as the tensions
in the rope (note that we have used Newton’s third law). At the moment
the car budges, the acceleration is still essentially zero, so a = 0. For the x
component of ZF = ma = 0 on that small section of rope, we have

EFX=FTZI_FT11=O’ or

Hence Fy, = Fr,, and we can write F; = Fy; = Fp,. In the y direction,
the forces acting are Fp, and the components of Fy, and F,, that point in

the negative y direction (each equal to Frsin 6). So for the y component
of ZF = ma, we have

2F, = Fp — 2F;sin 6 = 0.
We solve this for Fy and insert Fp = 300 N, which was given:

. F, 300N
T 2sin@® 2sin5°

Fy cos 0 — Fy,cos 8 = 0.

= 1700 N.

She was able to magnify her effort almost six times using this technique!
LNotice the symmetry of the problem, which ensures that F;, = F,.

SECTION 4-7

FIGURE 4-24 Conceptual
Example 4-12.

How to get out
of the mud

(®)

FIGURE 4-25 Example 4-13.
Getting a car out of the mud.

W PROBLEM SOLVING

Use any symmetry present to
simplify a problem
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FIGURE 4-26 An object
moving to the right on a table or
floor. The two surfaces in contact are
rough, at least on a microscopic scale.

Kinetic friction

F;, L Fy

FIGURE 4-27 Whenan
object is pulled by an applied
force (F,) along a surface, the
force of friction F;, opposes the
motion. The magnitude of Fy, is
proportional to the magnitude of
the normal force (Fy).
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Until now we have ignored friction, but it must be taken into account in
most practical situations. Friction exists between two solid surfaces because
even the smoothest looking surface is quite rough on a microscopic scale,
Fig. 4-26. When we try to slide an object across another surface, these mi-
croscopic bumps impede the motion. In addition, at the atomic level, the
atoms on a bump of one surface come so close to the atoms of the other
surface that electric forces between the atoms can form chemical bonds, as
a tiny weld between the two surfaces. Sliding an object across a surface is
often jerky due to the making and breaking of these bonds. Even when a
body rolls across a surface, there is still some friction, called rolling friction,
although it is generally much less than when a body slides across a surface.
We will be concerned mainly with sliding friction in this section, and it is
usually called kinetic friction (kinetic is from the Greek for “moving”).

When a body is in motion along a rough surface, the force of kinetic
friction acts opposite to the direction of the body’s velocity. The magni-
tude of the force of kinetic friction depends on the nature of the two slid-
ing surfaces. For given surfaces, experiment shows that the friction force s
approximately proportional to the normal force between the two surfaces,
which is the force that either object exerts on the other, perpendicular to
their common surface of contact (see Fig. 4-27). The force of friction be-
tween hard surfaces depends very little on the total surface area of con-
tact; that is, the friction force on this book is roughly the same whether it
is being slid on its wide face or on its spine, assuming the surfaces have the
same smoothness. We can write the proportionality as an equation by in-
serting a constant of proportionality, w,:

Fy = wFy.

This relation is not a fundamental law; it is an experimental relation be-
tween the magnitude of the friction force F;, which acts parallel to the
two surfaces, and the magnitude of the normal force Fy which acts per-
pendicular to the surfaces. It is not a vector equation since the two forces
are perpendicular to one another. The term p, is called the coefficient of
kinetic friction, and its value depends on the nature of the two surfaces,
Measured values for a variety of surfaces are given in Table 4-2. Thes¢
are only approximate, however, since u depends on whether the surfacey
are wet or dry, on how much they have been sanded or rubbed, if any
burrs remain, and other such factors. But u, is roughly independent of
the sliding speed.

What we have been discussing up to now is kinetic friction, when on¢
object slides over another. There is also static friction, which refers to a force
parallel to the two surfaces that can arise even when they are not sliding,
Suppose an object such as a desk is resting on a horizontal floor. If no hori-
zontal force is exerted on the desk, there also is no friction force. But now,
suppose you try to push the desk, but it doesn’t move. You are exerting
horizontal force, but the desk isn’t moving, so there must be another force on
the desk keeping it from moving (the net force is zero on an object thal
doesn’t move). This is the force of static friction exerted by the floor on the
desk. If you push with a greater force without moving the desk, the force
of static friction also has increased. If you push hard enough, the desk will]
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tg\ BLE 4-2 Coefficients of Friction'

Z

Coefficient of Coefficient of
Surfaces Static Friction, u;  Kinetic Friction, p,
Wood on wood 0.4 0.2
lee on ice 0.1 0.03
Mctal on metal (lubricated) 0.15 0.07
Steel on steel (unlubricated) 0.7 0.6
Rubber on dry concrete 1.0 0.8
IRubber on wet concrete 0.7 0.5
[tubber on other solid surfaces 1-4 1
Itflon® on Teflon in air 0.04 0.04
|tllon on steel in air 0.04 0.04
lLubricated ball bearings <0.01 <0.01
Synovial joints (in human limbs) 0.01 0.01

-
'Vulues are approximate and are intended only as a guide.

uventually start to move, and kinetic friction takes over. At this point, you
hive exceeded the maximum force of static friction, which is given by
Vi = msFy, where i is the coefficient of static friction (Table 4-2). Since the

furce of static friction can vary from zero to this maximum value, we write
Fy, = uFy.

You may have noticed that it is often easier to keep a heavy object mov-
g, such as pushing a table, than it is to start it moving in the first place.
1'his is consistent with the fact (see Table 4-2) that u, is generally greater
(hin . (It can never be less. Why?)

WIS EIER Friction: static and kinetic. Our 10.0-kg mystery box
Iests on a horizontal floor. The coefficient of static friction is u, = 0.40

and the coefficient of kinetic friction is . = 0.30. Determine the force of
friction, Fy, acting on the box if a horizontal external applied force F ‘s 1S
¢xerted on it of magnitude: (a) 0, (b) 10N, (c) 20N, (d) 38N, and (e) 40 N.

SOLUTION The free-body diagram of the box is shown in Fig. 4-27.
lixamine it carefully. In the vertical direction there is no motion, so
LI, = ma, = 0yields Fy — mg = 0. Hence the normal force for all cases is

Fy = mg = (10.0kg)(9.8 m/s?) = 98 N.

(w) Since no force is applied in this first case, the box doesn’t move, and F, =0

() The force of static friction will oppose any applied force up to a max-
imum of

1. Fy = (0.40)(98 N) = 39N,

‘The applied force is F, = 10N. Thus the box will not move; since
2l = F, — F, = O then F,, = 10N.

(¢) An applied force of 20N is also not sufficient to move the box. Thus
Iy = 20N to balance the applied force.

() The applied force of 38N is still not quite large enough to move the
hox; so the friction force has now increased to 38 N to keep the box at rest.

SECTION 4-8

Static friction
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-50 (e) A force of 40N will start the box moving since it exceeds the maxi-

140 Fre=nsFn mum force of static friction, u Fy, = (0.40)(98 N) = 39 N. Instead of static
S 30 friction, we now have Kinetic friction, and its magnitude is
Ry
13
8 | F, = u Fy = (0.30)(98 N) = 29 N.
ﬁ 20 Suatic | Kinetic & = Py = (0.30)( )
3o friction |  friction There is now a net (horizontal) force on the box of magnitude F =
& lp 2.0 310 ::I;o Sp 6.0 ZO 40N — 29N = 11N, so the box will accelerate at a rate
0 i .

Applied force, FA N\ £ . = SF/m = 11N/10kg = 1.1 m/s’

n . o
mot(i)on ‘ sliding as long as the applied force is 40 N. Figure 4-28 shows a graph that sum-

marizes this Example.

FIGURE 4-28 Magnitude
of the force of friction as a
function of the external force . . o e gl :
applied to a body initially at rest. l\{ow we look at some Examples involving kinetic frlctlon in a variety of
As the applied force is increased  Situations. Note that both the normal force and the friction force are forces
in magnitude, the force of static exerted by one surface on another; one is perpendicular to the contact sur-
friction increases linearly to just  faces (the normal force), and the other is parallel (the friction force).

match it, until the applied force

equals p Fy. If the applied force

increases further, the body will | CONCEPTUAL EXAMPLE 4-15 | To push or to pull a sled? Your little
begin to move, and the friction sister wants a ride on her sled. If you are on flat ground, will you exert

f(())rcet dtopslto a;oughly. o less force if you push her or pull her? See Figs. 4-29a and b. Assume the
constant value characteristic o same angle 0 il‘l each case.

kinetic friction.

RESPONSE Free-body diagrams are shown in Figs. 4-29¢ and d. If you
push her, and 6 > 0, there is a vertically downward component to your
force. Hence the normal force upward exerted by the ground will be
larger than mg (where m is the mass of sister plus sled). If you pull her,
your force has a vertically upward component, s0 the normal force Fy
can be less than mg. Because the friction force is proportional to the
normal force, it will be less if you pull her. So you exert less force if you
pull her.

FIGURE 4-29

|
] mg L mg &
! © (d)

98 CHAPTER4 Motion and Force: Dynamics




; the maxi-
ad of static

litude F =

h that sum-

a variety of

¢ are forces
contact sur-
nee).

Your little
1l you exert
Assume the

ind d. If you
1ent to your
und will be
rou pull her,
nal force Fy
ional to the
force if you

RN EX ] Two boxes and a pulley. In Fig. 4-30a, two boxes are
tonnected by a cord running over a pulley. The coefficient of kinetic fric-
lion between box I and the table is 0.20. We ignore the mass of the cord
ind pulley and any friction in the pulley, which means we can assume
Ihat a force applied to one end of the cord will have the same magnitude
it the other end. We wish to find the acceleration, a, of the system, which
will have the same magnitude for both boxes assuming the cord doesn’t
Nretch. As box IT moves down, box I moves to the right.

SOLUTION Free-body diagrams are shown for each box in Fig. 4-30b

ind c. Box I does not move vertically, so the normal force just balances
the weight,

Fy = mg = (50kg)(9.8 m/s?) = 49 N.

In the horizontal direction, there are two forces on box I (Fig. 4-30b): Fy, the
lcnsion in the cord (whose value we don’t know), and the force of friction

Fy = wFy = (020)(49 N) = 9.8 N.

‘I'he horizontal acceleration is what we wish to find; we use Newton’s sec-
ond law in the x direction, £F;, = m,a,, which becomes (taking the posi-
live direction to the right and setting a;, = a):

Next consider box IL. The force of gravity Fy = myg = 19.6NN pulls
downward; and the cord pulls upward with a force Fy. So we can write New-
ton’s second law for box II (taking the downward direction as positive):

[box II]

|Note here that if a # 0, then F; is not equal to m;g.] We have two un-

knowns, a and Fr, and we also have two equations. We solve the box I
¢quation for Fr:

2Fn,v =myg — Fy = mya.

F.=F, + ma,

and substitute this into the box II equation:
myg — Fy — ma = mya.

Now we solve for a and put in numerical values:

m+my  5.0kg + 2.0kg

which is the acceleration of box I to the right, and of box II down.
If we wish, we can calculate Fy using the first equation:

Fp = Fy + ma =98N + (50kg)(1.4m/s?) = 17N.

= 1.4 m/s?,

R

We now discuss some examples of objects moving on an incline such
#s a hill or a ramp. Solving problems is usually easier if we choose the xy
toordinate system so that the x axis points along the incline (either up the
Incline, or down the incline), and the y axis perpendicular to the incline, as
shown in Fig. 4-31. This helps because then a has only one component,
ind if friction is present, two of the forces will have only one component:
Iy along the plane, opposite to the object’s velocity, and Fy which is not
vertical but is perpendicular to the plane.

SECTION 4-8

mg
(®)
Fr
II
(c) mpg
FIGURE 4-30

Example 4-16.

FIGURE 4-31 Forces onan
object sliding down an incline.
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Sport

FIGURE 4-32 Example
4-17. A skier descending a slope.

m The skier. The skier in Fig. 4-32a has just begun des
scending the 30° slope. Assuming the coefficient of kinetic friction is 0.10,
(a) first draw the free-body diagram, then calculate (b) her acceleration
and (c) the speed she will reach after 4.0s.

SOLUTION (a) The free-body diagram in Fig. 4-32b shows all the
forces acting on the skier: her weight (Fg = mg) downward, and the two
forces exerted on her skis by the snow—the normal force perpendiculaf
to the snow’s surface, and the friction force parallel to the surface. Thes¢
three forces are shown acting at one point in Fig. 4-32b, for convenience,
Also for convenience, we choose the x axis parallel to the snow surface
with positive direction downhill, and the y axis perpendicular to the surs
face. With this choice, we only have to resolve one vector into compos
nents, the weight. The components of the weight are shown as dashed
lines in Fig. 4-32c. They are given by

Fg, = mgsin 6,
Fg, = mgcos 0,

where we have stayed general, using 6 rather than 30° for now.
(b) To calculate her acceleration down the hill, a,, we apply Newton's
second law to the x direction:

3F, = ma,
mgsin 0 — w Fy = ma,

where the two forces are the component of the gravity force (+x dire
tion) and the friction force (— x direction). We want to find the value of g,
but we don’t yet know F in the last equation. Let’s see if we can get I
from the y component of Newton’s second law:

2F, = ma,
Fy — mgcos 6 =ma, =0

where we set a, = 0 because there is no motion in the y direction (per
pendicular to the slope). Thus we can solve for Fy:

Fy = mgcos 6
and we can substitute this into our equation above for ma,:
mg sin @ — u,(mg cos 6) = ma,.

There is an m in each term which can be canceled out. Thus (settin
6 = 30° and p, = 0.10):

a, = gsin30° — u,g cos 30° = 0.50g — (0.10)(0.866)g = 0.41¢

The skier’s acceleration is 0.41 times the acceleration of gravity, which i
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humbers is a = (0.41)(9.8 m/s?) = 4.0m/s2 It is interesting that the mass
vinceled out and so we have the useful conclusion that the acceleration
iloesn’t depend on the mass. That such a cancellation sometimes occurs,
find thus may give a useful conclusion as well as saving calculation, is a big
iilvantage of working with the algebraic equations and putting in the
flumbers only at the end.

(¢) The speed after 4.0s is found by using Eq. 2-10a:

v=1,+at=0+ (4.0m/s?)(4.0s) = 16 m/s,

where we assumed a start from rest.

bl ome

= PROBLEM SOLVING

It is often helpful
to put in numbers
only at the end

LISt N Measuring 11,. Suppose in Example 4-17 that the
#now is slushy and the skier moves down the 30° slope at constant speed.

What can you say about the coefficient of friction, u,?

NOLUTION Now the skier moves down the slope at constant speed,
ind we want to find u,. The free-body diagram and the =F = ma equa-

llons for the x and y components will be the same as above, except that
fow we are given a, = (0. Thus

2F, = Fy — mgcos § = ma, = 0
2F, = mgsin 0 — w Fy = ma, = 0.

I''om the first equation, we have Fy = mg cos 8; we substitute this into
the second equation:

mgsin 6 — u, (mg cos 6) = 0.
Now we solve for u,:

ﬂgkin 6 sinf

cos @

Ry = = tan 0

. mg cos 6 -
which for 6 = 30° is

My = tan @ = tan 30° = 0.58.

A method for determining u,
Notice that we could use the equation

My =tan 0

lo determine p, under a variety of conditions. All we need to do is ob-
scrve at what slope angle the skier descends at constant speed. Here is
inother reason why it is often useful to plug in numbers only at the end:
~we obtained a general result useful for other situations as well.

SECTION4-8 Applications Involving Friction, Inclines




MProblem Solving—A General Approach

A basic part of & physics course is solving problems effectively. Problem
solving is important not only because it is valuable in itself, but also because
it makes you think about the ideas and concepts, and by applying the con-
cepts, you come to understand them better. We have already studied a range
of Examples in these first few chapters. It is so important to learn problem
solving that we will spend a little time now summarizing how to approach
problems in general, even though much of this has been discussed beforc,
The approach discussed here, though emphasizing Newton’s laws, can be
applied generally for other topics discussed throughout this book.

w PROBLEM SOLVING InGeneral 7

L

Read and reread written problems carefully. A
common error is to leave out a word or two
when reading, which can completely change the
meaning of a problem.

. Draw an accurate picture or diagram of the sit-

uation. (This is probably the most overlooked,
yet most crucial, part of solving a problem.)
Use arrows to represent vectors such as veloci-
ty or force, and label the vectors with appropri-
ate symbols. When dealing with forces and
applying Newton’s laws, make sure to include
all forces on a given body, including unknown
ones, and make clear what forces act on what
body (otherwise you may make an error in de-
termining the net force on a particular body). A
separate free-body diagram needs to be drawn
for each body involved, and it must show all
the forces acting on a given body (and only on
that body). Do not show forces that the body
exerts on other bodies.

. Choose a convenient xy coordinate system

(choose one that makes your calculations easi-

er). Vectors are to be resolved into components

along these axes. When using Newton’s second
law, apply =F = ma separately to x and y com-
ponents, remembering that x direction forces
are related to a,, and similarly for y.

. Note what the unknowns are—that is, what

you are trying to determine—and decide what
you need in order to find the unknowns. For
problems in the present chapter, we use New-
ton’s laws. More generally, it may help to see if

. Try to solve the problem approximately, to see if

. Solve the problem, which may include algebra-

. Be sure to keep track of umits, for they can |

there are one or more relationships (or equa-
tions) that relate the unknowns to the knowns.
But be sure each relationship is applicable in
the given case. It is very important to know the
limitations of each formula or relationship—
when it is valid and when not. In this book, the
more general equations have been given num-
bers, but even these can have a limited range of
validity (often stated briefly, in brackets, to the
right of the equation).

it is doable (to check if enough information has
been given) and reasonable. Use your intuition,
and make rough calculations—see “Order of
Magnitude Estimating” in Section 1-7. A rough
calculation, or a reasonable guess about what the
range of final answers might be, is very useful.
And a rough calculation can be checked against
the final answer to catch errors in calculation
(such as in a decimal point or the powers of 10).

ic manipulation of equations and/or numerical
calculations. Substituting numbers into the
equations only at the end can give you greater
insight into the problem and to related ones.

!

serve as a check (they must balance on both '|
sides of any equation). ,

. Again consider if your answer is reasonable.

The use of dimensional analysis, described in |

Appendix B, can also serve as a check for many !
problems. |
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SUMMARY

Newton’s three laws of motion are the basic
\uiical laws describing motion.
Newton’s first law (the law of inertia) states
Jil if the net force on an object is zero, an object
flginally at rest remains at rest, and an object in
Wolion remains in motion in a straight line with
Islant velocity.
Newton’s second law states that the acceleration
{ i body is directly proportional to the net force
Ailing on it, and inversely proportional to its mass:

2F = ma.

twion’s second law is one of the most important
Wil fundamental laws in classical physics.
Newton’s third law states that whenever one
Binly cxerts a force on a second body, the second
Nily always exerts a force on the first body which
¢tual in magnitude but opposite in direction:

F,=—Fy

~ T'he tendency of a body to resist a change in
I8 motion is called inertia. Mass is a measure of
e inertia of a body.

' Weight refers to the force of gravity on a body,
Al is equal to the product of the body’s mass m

L. QUESTIONS

and the acceleration of gravity g:
F; = mg.

Force, which is a vector, can be considered as a
push or pull; or, from Newton’s second law, force
can be defined as an action capable of giving rise
to  acceleration. The net force on an object is the
vector sum of all forces acting on it.

When two bodies slide over one another, the
force of friction that each body exerts on the other
can be written approximately as F, = u, Fy, where
Fy is the normal force (the force each body exerts
on the other perpendicular to their contact sur-
faces), and p, is the coefficient of kinetic friction. If
the bodies are at rest relative to each other, then F;,
is just large enough to hold them at rest and satis-
fies the inequality F;, < u Fy, where p is the coef-
ficient of static friction.

For solving problems involving the forces on
one or more bodies, it is essential to draw a free-
body diagram for each body, showing all the
forces acting on only that body. Newton’s second

law can be applied to the vector components for
each body.

§, Why does a child in a wagon seem to fall backward
when you give the wagon a sharp pull?

4, What, roughly, does an apple weigh in newtons?

4 Il the acceleration of a body is zero, are no forces
icting on it?

4, Why do you push harder on the pedals of a bicycle when
first starting out than when moving at constant speed?

A, Only one force acts on an object. Can the object
have zero acceleration? Can it have zero velocity?

f, When a golf ball is dropped to the pavement, it
hounces back up. (a) Is a force needed to make it
hounce back up? (b) If so, what exerts the force?

¥, lixamine, in the light of Newton’s first and second laws,
the motion of your leg during one stride while walking.

#, Why might your foot hurt if you kick a heavy desk
or a wall?

¥, When you are running and want to stop quickly, you
must decelerate quickly. () What is the origin of the
lorce that causes you to stop? (b) Estimate (using
your.own experience) the maximum rate of decelera-
tion of a person running at top speed to come to rest.

FIGURE 4-33 Question 10.

10. A stone hangs by a fine thread from the ceiling, and a
section of the same thread dangles from the bottom of
the stone (Fig. 4-33). If a person gives a sharp pull on
the dangling thread, where is the thread likely to
break: below the stone or above it? What if the person
gives a slow and steady pull? Explain your answers.

11. The force of gravity on a 2-kg rock is twice as great
as that on a 1-kg rock. Why then doesn’t the heavier
rock fall faster?
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12.

Compare the effort (or force) needed to lift a 10-kg
object when you are on the Moon as compared to
lifting it on Earth. Compare the force needed to
throw a 2-kg object horizontally with a given speed
when on the Moon as compared to on Earth.
Whiplash sometimes results from an automobile ac-
cident when the victim’s car is struck violently from
the rear. Explain why the head of the victim seems
to be thrown backward in this situation. Is it really?
A person exerts an upward force of 40N to hold a
bag of groceries. Describe the “reaction” force (New-
ton’s third law) by stating (a) its magnitude, (b) its di-
rection, (¢) on what body it is exerted, and (d) by
what body it is exerted.

. When you stand still on the ground, how large a

force does the ground exert on you? Why doesn’t
this force make you rise up into the air?

. According to Newton’s third law, each team in a tug

17.

18.

of war (Fig. 4-34) pulls with equal force on the other
team. What, then, determines which team will win?
When driving on slick roads, why is it advisable to
apply the brakes slowly?

Why is the stopping distance of a truck much shorter
than for a train going the same speed?

19. Can a coefficient of friction exceed 1.0?

PROBLEMS

FIGURE 4-34 A tug of war. Describe the forces
on each of the teams and on the rope. Question 16.

20. A block is given a push so that it slides up a ramp,

After the block reaches its highest point, it slides
back down. Why is the magnitude of its acceleratioi
less on the descent than on the ascent?

. A heavy crate rests on the bed of a flatbed truck

When the truck accelerates, the crate remains wherg
it is on the truck, so it, too, accelerates. What forc¢
causes the crate to accelerate?

. You can hold a heavy box against a rough wall and

prevent it from slipping down by pressing only horis
zontally. How can the application of a horizonul
force keep an object from moving vertically?

SECTIONS 4-4 TO 4-6

1.

2.

3.

(I) What force is needed to accelerate a child on a
sled (total mass = 60.0kg) at 1.15 m/s??

(I) A net force of 255 N accelerates a bike and rider
at 2.20 m/s?, What is the mass of the bike and rider?
(I) How much force is required to accelerate a 9.0-g
object at 10,000 “g’s” (say, in a centrifuge)?

. (I) How much tension must a rope withstand if it is

used to accelerate a 1050-kg car horizontally at
1.20 m/s?? Ignore friction.

. (I) What is the weight of a 66-kg astronaut (a) on

Earth, (b) on the Moon (g = 1.7 m/s?), (c) on Mars
(g = 3.7 m/s?), (d) in outer space traveling with con-
stant velocity?

. (II) A 20.0-kg box rests on a table. (a) What is the

weight of the box and the normal force acting on it?
(b) A 10.0-kg box is placed on top of the 20.0-kg box,
as shown in Fig. 4-35. Determine the normal force that
the table exerts on the 20.0-kg box and the normal
force that the 20.0-kg box exerts on the 10.0-kg box.

. (II) What average force is required to stop an 1100-kg

car in 8.0s if it is traveling at 90 km/h?

. (II) What average force is needed to accelerate a

7.00-gram pellet from rest to 175 m/s over a distance
of 0.700 m along the barrel of a rifle?

FIGURE 4-35 Problem 6.

. (II) A fisherman yanks a fish out of the water witl

an acceleration of 4.5m/s? using very light fishing
line that has a “test” value of 22 N. The fishermail
unfortunately loses the fish as the line snaps. Whal
can you say about the mass of the fish?

. (II) A 0.140-kg baseball traveling 45.0m/s strikcf

the catcher’s mitt, which, in bringing the ball to res|
recoils backward 11.0cm. What was the average
force applied by the ball on the glove?

. (II) What is the average force exerted by a shot-pul

ter on a 7.0-kg shot if the shot is moved through a dis
tance of 2.8 m and is released with a speed of 13 m/s}

. (IT) How much tension must a rope withstand if it if

used to accelerate a 1200-kg car vertically upward a
0.80 m/s?? Ignore friction.
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, (I1) A 10-kg bucket is lowered by a rope in which
there is 63 N of tension. What is the acceleration of
the bucket? Is it up or down?

, (11) An elevator (mass 4850 kg) is to be designed so
{hat the maximum acceleration is 0.0600 g. What are
the maximum and minimum forces the motor should
gxert on the supporting cable?

:M. (11) A 75-kg petty thief wants to escape from a third-
mory jail window. Unfortunately, a makeshift rope
mide of sheets tied together can support a mass of
only 58 kg. How might the thief use this “rope” to es-
cape? Give quantitative answer.

46, (11) A person stands on a bathroom scale in a mo-

{lonless elevator. When the elevator begins to move,
the scale briefly reads only 0.75 of the person’s regu-
lnr weight. Calculate the acceleration of the elevator,
ind find the direction of acceleration.

|7, (11) The cable supporting a 2100-kg elevator has a max-

imum strength of 21,750 N. What maximum upward ac-
(eleration can it give the elevator without breaking?

i, (11) (a) What is the acceleration of two falling sky
divers (mass 120.0 kg including parachute) when the
upward force of air resistance is equal to one fourth
of their weight? (b) After popping open the para-
thute, the divers descend leisurely to the ground at
constant speed. What now is the force of air resistance

on the sky divers and their parachute? See Fig. 4-36.

A

:
‘_

FIGURE 4-36 Problem 18.

{0, (11) A Saturn V rocket has a mass of 2.75 X 10°kg
and exerts a force of 33 X 10°N on the gases it ex-
pels. Determine (@) the initial vertical acceleration
of the rocket, (b) its velocity after 8.0s, and (c) how
long it takes to reach an altitude of 9500 m. Ignore
mass of gas expelled and assume g remains constant.

M), (11I) An exceptional standing jump would raise a
person 0.80 m off the ground. To do this, what force
must a 66-kg person exert against the ground? As-
sume the person crouches a distance of 0.20 m prior
to jumping, and thus the upward force has this dis-
tance to act over before he leaves the ground.

1. (111) A person jumps from the roof of a house 4.5-m
high. When he strikes the ground below, he bends his
knees so that his torso decelerates over an approxi-
mate distance of 0.70 m. If the mass of his torso (ex-
cluding legs) is 45 kg, find (a) his velocity just before
his feet strike the ground, and (b) the average force
cxerted on his torso by his legs during deceleration.

22. (III) The 100-m dash can be run by the best sprinters in
10.0s. A 65-kg sprinter accelerates uniformly for the
first 50 m to reach top speed, which he maintains for the
remaining S0m. (a) What is the average horizontal
component of force exerted on his feet by the ground
during acceleration? (b) What is the speed of the sprint-
er over the last S0 m of the race (i.e., his top speed)?

SECTION 4-7

23. (I) A box weighing 70 N rests on a table. A rope tied
to the box runs vertically upward over a pulley and a
weight is hung from the other end (Fig. 4-37). Deter-
mine the force that the table exerts on the box if the
weight hanging on the other side of the pulley weighs
(a) 30N, (b) 60N, and (c) 90 N.

24. (I) A 650-N force acts in a northwesterly direction. A
second 650-N force must be exerted in what direction
so that the resultant of the two forces points westward?

FIGURE 4-37 Problem 23.

25. (I) Draw the free-body diagram for a basketball
player (a) just before leaving the ground on a jump,
and (b) while in the air. (Fig. 4-38)

FIGURE 4-38
Problem 25.
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26.

27.

29.
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(a)
FIGURE 4-39

(b)
Problem 27.

(I) Sketch the free-body diagram of a baseball (a) at
the moment it is hit by the bat, and again (b) after it
has left the bat and is flying toward the outfield.

(IT) The two forces F, and F, shown in Fig. 4-39a
and b (looking down) act on a 27.0-kg object on a
frictionless tabletop. If F; = 10.2N and F, = 16.0N,
find the net force on the object and its acceleration
for each situation, (a) and (b).

. (IT) A person pushes a 14.5-kg lawn mower at con-

stant speed with a force of 88.0N directed along the
handle, which is at an angle of 45.0° to the horizontal
(Fig. 4-40). (@) Draw the free-body diagram showing
all forces acting on the mower. Calculate (b) the hori-
zontal retarding force on the mower, then (c) the nor-
mal force exerted vertically upward on the mower by
the ground, and (d) the force the person must exert on
the lawn mower to accelerate it from rest to 1.5m/s in
2.5 seconds (assuming the same retarding force).

B B L e b e SO i il

FIGURE 4-40 Problem 28.

(II) At the instant a race began, a 65-kg sprinter was
found to exert a force of 800 N on the starting block
at a 22° angle with respect to the ground (see chapter
opening photo). () What was the horizontal acceler-
ation of the sprinter? (b) If the force was exerted for
0.38 s, with what speed did the sprinter leave the
starting block?

30.

31

32.

FIGURE 4-42
Problem 32.

FIGURE 4-41 Problem 30.

(IT) One 3.0-kg paint bucket is hanging by a massless
cord from another 3.0-kg paint bucket, also hanging
by a massless cord, as shown in Fig. 4-41. (a) If the
buckets are at rest, what is the tension in each cord!
(b) If the two buckets are pulled upward with an a¢
celeration of 1.60 m/s? by the upper cord, calculat¢
the tension in each cord.

(II) A 6500-kg helicopter accelerates upward uf
0.60 m/s? while lifting a 1200-kg car. (a) What is th¢
lift force exerted by the air on the rotors? (b) Whal
is the tension in the cable (ignore its mass) that con:
nects the car to the helicopter?

(IT) A window washer pulls herself upward using the
bucket-pulley apparatus shown in Fig. 4-42. (a) How
hard must she pull downward to raise herself slowly
at constant speed? (b) If she increases this force by |
10 percent, what will her acceleration be? The masy
of the person plus the bucket is 65 kg.
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FIGURE 4-43 Problem 34.

J, (1) A train locomotive is pulling two cars of the
#ivme mass behind it. Show that the tension in the
coupling between the locomotive and the first car is
twice that between the first car and the second car,
lor any nonzero acceleration of the train.

i, (1) A pair of fuzzy dice is hanging by a string from
your rearview mirror. While you are accelerating
from a stoplight to 20m/s (in 5.0 seconds), what
nngle 8 does the string make with the vertical? See
Iig. 4-43.

FIGURE 4-44 Probiem 35.

A8, (111) Three blocks on a frictionless horizontal sur-
face are in contact with each other, as shown in
Fig. 4-44. A force F is applied to block 1 (mass m,).
(a) Draw a free-body diagram for each block. De-
termine (b) the acceleration of the system (in terms
of my, m,, and m,), (c) the net force on each block,
and (d) the force of contact that each block exerts
on its neighbor. (¢) If m, = m, = m; = 12.0kg and
F = 96.0N, give numerical answers to (), (c), and
(d). Do your answers make sense intuitively?

48 m
T 2.2kg 3.2kg
1.80 m
FIGURE 4-45 Problem 36.

36. (IIT) The two masses shown in Fig. 4-45 are each
initially 1.80 m above the ground, and the massless
frictionless pulley is 4.8 m above the ground. What
maximum height does the lighter object reach after
the system is released? [Hint: First determine the ac-
celeration of the lighter mass and then its velocity at
the moment the heavier one hits the ground. This is
its “launch” speed.]

37. (IIT) Suppose the cord in Example 4-10 and Fig, 4-22
is a heavy rope of mass 1.0kg. Calculate the accelera-
tion of each box and the tension at each end of the
cord, using the free-body diagrams shown in Fig. 4-46.
Assume the cord doesn’t sag,

SECTION 4-8

38. (I) If the coefficient of kinetic friction between a 35-kg
crate and the floor is 0.30, what horizontal force is re-
quired to move the crate at a steady speed across the
floor? What horizontal force is required if u, is zero?

39. (I) A force of 40.0 N is required to start a 5.0-kg box
moving across a horizontal concrete floor. (a) What
is the coefficient of static friction between the box
and the floor? (b) If the 40.0-N force continues, the
box accelerates at 0.70 m/s%. What is the coefficient
of kinetic friction?

Fr, Cord Fp, () ——— ) R
S g z—wmal s G?‘*%' e
mc=10kg ; M‘ 100kg.o2
(b) (©)

FIGURE 4-46 Problem 37. Free-body diagrams for each of the objects of the
system shown in Fig. 4-22a. Vertical forces, Fy, and F, are not shown.
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40.

41.

42.

43.

45.

(I) (a) A box sits at rest on a rough 30° inclined plane’
Draw the free-body diagram, showing all the forces
acting on the box. (b) How would the diagram change
if the box were sliding down the plane? (c) How would
it change if the box were sliding up the plane after an
initial shove?

(I) A 2.0-kg silverware drawer becomes stuck, so the
owner gradually pulls with more and more force.
When the applied force reaches 8.0N, the drawer
suddenly opens, throwing all the utensils to the floor.
Find the coefficient of static friction between the
drawer and the cabinet.

(II) Drag race tires in contact with an asphalt sur-
face probably have one of the highest coefficients of
static friction in the everyday world. Assuming a
constant acceleration and no slipping of tires, esti-
mate the coefficient of static friction for a drag racer
that covers the quarter mile in 6.0s.

(II) For the system of Fig. 4-30 (Example 4-16),
how large a mass would body I have to have to pre-
vent any motion from occurring? Assume p, = 0.30.

. (IT) A box is given a push so that it slides across the

floor. How far will it go, given that the coefficient of
kinetic friction is 0.20 and the push imparts an initial
speed of 4.0 m/s?

(II) Two crates, of mass 75 kg and 110 kg, are in con-
tact and at rest on a horizontal surface (Fig. 4-47). A
730-N force is exerted on the 75-kg crate. If the coef-
ficient of kinetic friction is 0.15, calculate (a) the ac-
celeration of the system, and (b) the force that each
crate exerts on the other.

46.

108

FIGURE 4-47

Problem 45.

(II) (a) Show that the minimum stopping distance for
an automobile traveling at speed v is equal to v?/2p.g,
where p, is the coefficient of static friction between
the tires and the road, and g is the acceleration of
gravity. (b) What is this distance for a 1200-kg car trav-
eling 95 km/h if u, = 0.75? (c) What would it be if the
car were on the Moon but all else stayed the same?

CHAPTER4 Motion and Force: Dynamics

47.

49.

50.

51,

52.

(I1) A flatbed truck is carrying a heavy crate. The cu

efficient of static friction between the crate and the
bed of the truck is 0.75. What is the maximum rate af
which the driver can decelerate and still avoid have
ing the crate slide against the cab?

. (IT) On an icy day, you worry about parking your car |

your driveway, which has an incline of 12°. Your neigl
bor Ralph’s driveway has an incline of 9.0°, and Boi
nie’s driveway across the street has one of 6.0°. Th¢
coefficient of static friction between tire rubber and ic¢
is 0.15. Which driveway(s) will be safe to park in?

(IT) A child slides down a slide with a 28° incline, an{
at the bottom her speed is precisely half what ||
would have been if the slide had been frictionless,
Calculate the coefficient of kinetic friction betweci}
the slide and the child.

(IT) A coffee cup on the dashboard of a car slidef
forward on the dash when the driver deceleratey
from 40 km/h to rest in 3.5 s or less, but not if he do
celerates in a longer time. What is the coefficient of
static friction between the cup and the dash?

(II) A wet bar of soap (mass = 150 grams) slides witl:
out friction down a ramp 2.0 m long inclined at 7.3,
How long does it take to reach the bottom? Neglecl
friction. How would this change if the soap’s mas
were 250 grams?

(IT) The block shown in Fig. 4-48 lies on a smootl)
plane tilted at an angle 8 = 22.0° to the horizontul
(a) Determine the acceleration of the block as |l
slides down the plane. (b) If the block starts fron|
rest 9.10m up the plane from its base, what will bh¢
the block’s speed when it reaches the bottom of th¢
incline? Ignore friction.

FIGURE 4-48 Block on inclined plane.
Problems 52, 53, and 54.

53.

(II) A block is given an initial speed of 3.0m/s up
the 22.0° plane shown in Fig. 4-48. (a) How far up
the plane will it go? (b) How much time elapses be«
fore it returns to its starting point? Ignore friction.
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, (I1) Repeat (a) Problem 52 and (b) Problem 53, as-
suming p, = 0.20 between the block and plane.

4, (11) A roller coaster reaches the top of the steepest

hill with a speed of 6.0 km/h. It then descends the
hill, which is at an average angle of 45° and is 45.0m
long. What will its speed be when it reaches the bot-
tom? Assume w, = 0.12.

86, (11) An 18.0-kg box is released on a 37.0° incline and

uccelerates down the incline at 0.270 m/s% Find the
[riction force impeding its motion. How large is the
cocfficient of friction?

47, (11) In the design of a supermarket, there are to be sev-

vral ramps connecting different parts of the store. Cus-
tomers will have to push grocery carts up the ramps,
Fig. 4-49, and it is obviously desired that this not be
(0o difficult. An engineer has done a survey and found
that almost no one complains if the force required is no
more than 50N. Will a slope 6 = 5° be too steep, as-
suming a 30-kg grocery cart (full of groceries)? Assume
{riction (wheels against ground, wheel on the axles, and
10 on), can be accounted for by a coefficient 1, = 0.10.

FIGURE 4-49 Problem 57.

K, (11) Figaro the cat (5.0kg) is hanging on the table-
cloth, pulling Cleo’s fishbowl (11 kg) toward the edge
of the table (Fig. 4-50). The coefficient of kinetic fric-
tion between the tablecloth (ignore its mass) under
the fishbowl and the table is 0.44. (a) What is the ac-
ccleration of Figaro and the fishbowl? (b) If the fish-
howl is 0.90 m from the edge of the table, how much
time does it take for Figaro to pull Cleo off the table?

€

FIGURE 4-50

Problem 58.

FIGURE 4-51 Problem 59.

59. (III) A small mass m is set on the surface of a sphere,
Fig. 4-51. If the coefficient of static friction is p; = 0.60,
at what angle ¢ would the mass start sliding? [Hint:
compare to Fig. 4-48; how are 6 and ¢ related?]

60. (IIT) The 70-kg climber in Fig. 4-52 is supported in
the “chimney” by the friction forces exerted on his
shoes and back. The static coefficients of friction be-
tween his shoes and the wall, and between his back
and the wall, are 0.80 and 0.60, respectively. What is
the minimum normal force he must exert? Assume
the walls are vertical and that friction forces are
both at a maximum.

FIGURE 4-52 Problem 60.
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FIGURE 4-53 Problems 61, 62, and 63.

61. (IIT) A block (mass m,) lying on a frictionless in-

clined plane is connected to a mass m, by a mass-
less cord passing over a pulley, as shown in Fig. 4-53.

. GENERAL PROBLEMS

62.

63.

. (III) If a bicyclist of mass 65 kg (including the bicy:

(a) Determine a formula for the acceleration of the
system in terms of m,, m,, 6, and g. (b) What condi
tions apply to masses m, and m, for the acceleration
to be in one direction (say, m, down the plane), or i
the opposite direction?

(I1I) Suppose the coefficient of kinetic friction be:
tween m, and the plane in Fig. 4-53 is p, = 0.15,
and that m, = m, = 2.7 kg. As m, moves down, deter:
mine the magnitude and direction of the acceleration
of m, and m,, given 6 = 25°.
(1IT) What smallest value of u, will keep the system of
Problem 62 from accelerating?

cle) can coast down a 6.0° hill at a steady speed of
6.0 km/h because of air resistance, how much forcy
must be applied to climb the hill at the same specd
(and the same air resistance)?

65. According to a simplified model of a mammalian
heart, at each pulse, approximately 20 g of blood is
accelerated from 0.25 m/s to 0.35 m/s during a period
of 0.10s. What is the magnitude of the force exerted
by the heart muscle?

66. A person has a reasonable chance of surviving an
automobile crash if the deceleration is no more than
30 “g’s.” Calculate the force on a 70-kg person accel-
erating at this rate. What distance is traveled if
brought to rest at this rate from 90 km/h?

67. (a) If the horizontal acceleration produced by an earth-
quake is a,and if an object is going to “hold its place”
on the ground, show that the coefficient of static fric-
tion with the ground must be at least y1, = a/g. (b) The
famous Loma Prieta earthquake that stopped the 1989
World Series produced ground accelerations of up to
4,0m/s? in the San Francisco Bay Area. Would a chair
have started to slide on a linoleum floor if the coeffi-
cient of static friction were 0.25?

68. A 1000-kg car pulls a 450-kg trailer. The car exerts a
horizontal force of 3.5 X 10° N against the ground in
order to accelerate. What force does the car exert on
the trailer? Assume an effective friction coefficient
of 0.15 for the trailer.

69. Police lieutenants, examining the scene of an accident
involving two cars, measure the skid marks of one of
the cars, which nearly came to a stop before colliding,
to be 80 m long. The coefficient of kinetic friction be-
tween rubber and the pavement is about 0.80. Estimate
the initial speed of that car assuming a level road.

70. A car starts rolling down a 1-in-4 hill (1-in-4 means that
for each 4 m traveled along the road, the elevation
change is 1 m). How fast is it going when it reaches the
bottom after traveling 50 m? (a) Ignore friction. (b) As-
sume an effective coefficient of friction equal to 0.10.

110 CHAPTER4 Motion and Force: Dynamics

71.

72.

73.

A fisherman in a boat is using a “10-1b test” fishing
line. This means that the line can exert a force of
45 N without breaking (11b = 4.45 N). (a) How heavy
a fish can the fisherman land if he pulls the fish up
vertically at constant speed? (b) If he accelerates the
fish upwards at 2.0 m/s?, what maximum weight fish
can he land? ‘

An elevator in a tall building is allowed to reach i ‘
maximum speed of 3.5 m/s going down. What musl|
the tension be in the cable to stop this elevator ovet
a distance of 3.0m if the elevator has a mass of
1300 kg including occupants?

Two boxes, m; = 1.0kg with a coefficient of kineti
friction of 0.10, and m, = 2.0kg with a coefficient of
0.20, are placed on a plane inclined at 6 = 30°. (a) Wha
acceleration does each block experience? (b) If a taut
string is connected to the blocks (Fig. 4-54), with m, ini: |
tially farther down the slope, what is the acceleration of
each block? (c¢) If the initial configuration is re:
versed with m, starting lower with a taut string, what
is the acceleration of each block?

FIGURE 4-54 Problem 73.
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. A 75.0-kg person stands on a scale in an elevator.

What does the scale read (in kg) when (a) the eleva-
tor is at rest, (b) the elevator is climbing at a con-
stant speed of 3.0 m/s, (c) the elevator is falling at
3.0 m/s, (d) the elevator is accelerating upward at
3.0 m/s?, (e) the elevator is accelerating downward
at 3.0 m/s??

f, A small block of mass m is given an initial speed v, up
i ramp inclined at angle 6 to the horizontal. It travels a
distance d up the ramp and comes to rest. (a) Deter-
mine a formula for the coefficient of kinetic friction
hetween the block and ramp. (b) What can you say
nbout the value of the coefficient of static friction?

fi, A motorcyclist is coasting with the engine off at a
stcady speed of 17 m/s but enters a sandy stretch
where the coefficient of friction is 0.80. Will the cy-
clist emerge from the sandy stretch without having
{o start the engine if the sand lasts for 15m? If so,
what will be the speed upon emerging?

A city planner is working on the redesign of a hilly
portion of a city. An important consideration is how
seep the roads can be so that even low-powered
cars can get up the hills without slowing down. It is
piven that a particular small car, with a mass of
1100 kg, can accelerate on a level road from rest to
21 m/s (75 km/h) in 14.0 s. Using this data, calculate
{he maximum steepness of a hill.

A bicyclist can coast down a 5.0° hill at a constant
6.0 km/h. If the force of friction (air resistance) is
proportional to the speed v so that F = cv, calcu-
Inte (a) the value of the constant ¢, and (b) the aver-
ige force that must be applied in order to descend
the hill at 20 km/h. The mass of the cyclist plus bicy-
cle is 80 kg.

), loun, who likes physics experiments, dangles her
witch from a thin piece of string while the jetliner
she is in takes off from Dulles Airport (Fig. 4-55).
She notices that the string makes an angle of 25° with
respect to the vertical while the aircraft accelerates
lor takeoff, which takes about 18 seconds. Estimate
the takeoff speed of the aircraft.

FIGURE 4-55 Problem 79.

80. (a) What minimum force F is needed to lift the
piano (mass M) using the pulley apparatus shown
in Fig. 4-567 (b) Determine the tension in each
section of rope: Fyy, Fy,, Fr;, and Fr,.

FIGURE 4-56 Problem 80.

81. A 28.0-kg block is connected to an empty 1.00-kg
bucket by a cord running over a frictionless pulley
(Fig. 4-57). The coefficient of static friction between
the table and the block is 0.450 and the coefficient of
kinetic friction between the table and the block is
0.320. Sand is gradually added to the bucket until the
system just begins to move. (a) Calculate the mass of
sand added to the bucket. (b) Calculate the accelera-
tion of the system.

28.0kg

FIGURE 4-57 Problem 81.

General Problems m




