Albert Einstein (1879-1955), one
of the great minds of the
twentieth century, creator of the
special and general theories of
relativity, here shown lecturing.

SPECIAL THEORY OF
RELATIVITY

FIGURE 26-1 Albert
Einstein and his second wife.

od of great progress. The theories developed over the (11§
three centuries had been very successful in explaining
range of natural phenomena. Newtonian mechanics beautify
plained the motion of objects on Earth and in the heavens. Furth
it formed the basis for successful treatments of fluids, wave mull
sound. Kinetic theory explained the behavior of gases and othei
als. Maxwell’s theory of electromagnetism not only brought toge(l
explained electric and magnetic phenomena, but it predicted th
ence of electromagnetic (EM) waves that would behave in cvg
just like light—so light came to be thought of as an electro
wave. Indeed, it seemed that the natural world, as seen through (i
of physicists, was very well explained. A few puzzles remained, bi)
felt that these would soon be explained using already known puii
But it did not turn out so simply. Instead, these few puzzles wif
solved only by the introduction, in the early part of the twentictl &
of two revolutionary new theories that changed our whole conc|d
nature: the theory of relativity and quantum theory.

P hysics at the end of the nineteenth century looked back o}




hysics as it was known at the end of the nineteenth century (what
covered up to now in this book) is referred to as classical physics.
ilcw physics that grew out of the great revolution at the turn of the
ficth century is now called modern physics. In this chapter, we pre-
the special theory of relativity, which was first proposed by Albert
{cin (1879-1955; Fig. 26-1) in 1905. In the following chapter, we intro-
) the equally momentous quantum theory.

Galilean—Newtonian Relativity

vin’s special theory of relativity deals with how we observe events,
{lcularly how objects and events are observed from different frames of
jence.” This subject had, of course, already been explored by Galileo
Newton, We first briefly discuss these earlier ideas, before seeing
fting in Section 26-3) how the theory of relativity changed them.

I'he special theory of relativity deals with events that are observed
mcasured from so-called inertial reference frames, which (as men-
0 in Chapter 4) are reference frames in which Newton’s first law, the
ol inertia, is valid. (Newton’s first law states that, if an object experi-
¥ no net force, the object either remains at rest or continues in motion
Il constant velocity in a straight line.) It is easiest to analyze events
I they are observed and measured from inertial frames, and the Earth,
ligh not quite an inertial frame (it rotates), is close enough that for
il purposes we can consider it an inertial frame. Rotating or otherwise
ylerating frames of reference are noninertial frames,’ and Einstein
Il with such complicated frames of reference in his general theory of
Mivity (Chapter 33).

A reference frame that moves with constant velocity with respect to
Inertial frame is itself also an inertial frame, since Newton’s laws
il in it as well. When we say that we observe or make measurements
i o certain reference frame, it means that we are at rest in that ref-
e frame. ,

Both Galileo and Newton were aware of what we now call the relativity
tiple applied to mechanics: that the basic laws of physics are the same
Wll inertial reference frames. You may have recognized its validity in
jyday life. For example, objects move in the same way in a smoothly
ing (constant-velocity) train or airplane as they do on Earth. (This as-
lus no vibrations or rocking—for they would make the reference frame
lincrtial.) When you walk, drink a cup of soup, play Ping-Pong, or drop
pncil on the floor while traveling in a train, airplane, or ship moving at
Jslant velocity, the bodies move just as they do when you are at rest on
th. Suppose you are in a car traveling rapidly along at constant veloci-
| you release a coin from above your head inside the car, how will it
) It falls straight downward with respect to the car, and hits the floor

ylerence frame is a set of coordinate axes fixed to some body such as the Earth, a train,
oon, and so on. See Section 2-1.

i rotating platform (say a merry-go-round), for example, an object at rest starts moving
ird even though no body exerts a force on it. This is therefore not an inertial frame. See
ndix C, Fig. C-1.

Classical vs.
modern physics

Relativity principle:

the laws of physics

are the same in all
inertial reference frames
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FIGURE 26-2 Acoinis directly below the point of release, Fig. 26-2a. (If you drop (i

dropped by a personin amoving  the car’s window, this won’t happen because the moving air I

car. (a) In the reference frame of  packward relative to the car.) This is just how objects fall on |

the car, the coin falls straight straight down—and thus our experiment in the moving cul |
gz::‘og’zhlgégfgricemfir:me with the relativity principle.

follows a curved (I;arabolic) path. . Note in this example, hovsfever, that to an observer on the |

The upper views show the coin follows a curved path, Fig. 26-2b. The actual path follo

moment of the coin’s release,and  coin is different as viewed from different frames of refercnug =

the lower views are a short time not violate the relativity principle because this principle stilg

later. laws of physics are the same in all inertial frames. The sam¢ Iy

ty, and the same laws of motion, apply in both reference frame

acceleration of the coin is the same in both reference framen, |

ence in Figs. 26-2a and b is that in the Earth’s frame of referen(

has an initial velocity (equal to that of the car). The laws of phyl

fore predict it will follow a parabolic path like any projectile. Hy

reference frame, there is no initial velocity, and the laws of phykis

that the coin will fall straight down. The laws are the same in if

ence frames, although the specific paths are different.'

) Galilean-Newtonian relativity involves certain unprovablic (il

that make sense from everyday experience. It is assumed that the

objects are the same in one reference frame as in another, and §

passes at the same rate in different reference frames. In classical iy

then, space and time are considered to be absolute: their mai

doesn’t change from one reference frame to another. The mass ol

as well as all forces, are assumed to be unchanged by a change i

reference frame.

| The position of an object is, of course, different when specified

ent reference frames, and so is velocity. For example, a person miy

side a bus toward the front with a speed of 5km/h. But if the (il

40 km/h with respect to the Earth, the person is then moving with §

45km/h with respect to the Earth. The acceleration of a body, ha

| the same in any inertial reference frame according to classical 1\

| This is because the change in velocity, and the time interval, will be

! tGalileo, in his great book Dialogues on the Two Chief Systems of the World, dexc)

ilar experiment and predicted the same results. Galileo’s example involved a salif
a knife from the top of the mast of a sailing vessel. If the vessel moves at conil
where will the knife hit the deck (ignoring Earth’s rotation and air resistance)’
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cxample, the person in the bus may accelerate from 0 to Skm/h in
econds, so a = 5km/h/s in the reference frame of the bus. With respect
he Earth, the acceleration is (45km/h — 40km/h)/(1.0s) = 5km/h/s,
Ch is the same.

Since neither F, m, nor a changes from one inertial frame to another,
\ Newton’s second law, F = ma, does not change. Thus Newton’s sec-
law satisfies the relativity principle. It is easily shown that the other
i of mechanics also satisfy the relativity principle.

That the laws of mechanics are the same in all inertial reference
hies implies that no one inertial frame is special in any sense. We ex-
# this important conclusion by saying that all inertial reference frames
tquivalent for the description of mechanical phenomena. No one iner-
ieference frame is any better than another. A reference frame fixed to
i or an aircraft traveling at constant velocity is as good as one fixed on
liarth. When you travel smoothly at constant velocity in a car or air-
le, it is just as valid to say you are at rest and the Earth is moving as it
0 say the reverse. There is no experiment you can do to tell which
e is “really” at rest and which is moving. Thus, there is no way to sin-
out one particular reference frame as being at absolute rest.

A complication arose, however, in the last half of the nineteenth cen-
, When Maxwell presented his comprehensive and very successful the-
of electromagnetism (Chapter 22), he showed that light can be
pdered an electromagnetic wave. Maxwell’s equations predicted that
velocity of light ¢ would be 3.00 X 103m/s; and this is just what is
sured, within experimental error. The question then arose: in what ref-
fice frame does light have precisely the value predicted by Maxwell’s
pry? For it was assumed that light would have a different speed in dif-
nt frames of reference. For example, if observers were traveling on a
¢t ship at a speed of 1.0 X 108m/s away from a source of light, we
ht expect them to measure the speed of the light reaching them to be
% 10°m/s — 1.0 X 108m/s = 2.0 X 108 m/s. But Maxwell’s equations
¢ no provision for relative velocity. They predicted the speed of light to
¢ = 3.0 X 10*m/s. This seemed to imply there must be some special
srence frame where ¢ would have this value.

We discussed in Chapters 11 and 12 that waves travel on water and
)i ropes or strings, and sound waves travel in air and other materials.
tcenth-century physicists viewed the material world in terms of the
of mechanics, so it was natural for them to assume that light too must
¢l in some medium. They called this transparent medium the ether and
med it permeated all space.’ It was therefore assumed that the veloci-
 light given by Maxwell’s equations must be with respect to the ether.
tHowever, it appeared that Maxwell’s equations did not satisfy the rel-
ity principle. They were not the same in all inertial reference frames.
y were simplest in the frame where ¢ = 3.00 X 10®m/s; that is, in a
fence frame at rest in the ether. In any other reference frame, extra
s would have to be added to take into account the relative velocity.
8, although most of the laws of physics obeyed the relativity principle,

medium for light waves could not be air, since light travels from the Sun to Earth through
ol y cmpty space. Therefore, another medium was postulated, the ether. The ether was not
Irunsparent, but, because of difficulty in detecting it, was assumed to have zero density.

All inertial
reference frames
are equally valid

The “ether”
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the laws of electricity and magnetism apparently did not. |
seemed to single out one reference frame that was bcttd
other—a reference frame that could be considered absolutcly
Scientists soon set out to determine the speed of the Enrtli
this absolute frame, whatever it might be. A number of clever @
were designed. The most direct were performed by A. A. Migl
E. W. Morley in the 1880s. The details of their experiment ar {
the next Section. Briefly, what they did was measure the differ
speed of light in different directions. They expected to find o dif
pending on the orientation of their apparatus with respect to th
just as a boat has different speeds relative to the land when I
stream, downstream, or across the stream, so too light would be
have different speeds depending on the velocity of the ether pus
Strange as it may seem, they detected no difference at ull,
great puzzle. A number of explanations were put forth over a perld
but they led to contradictions or were otherwise not generally i¢(§
Then in 1905, Albert Einstein proposed a radical new the(
onciled these many problems in a simple way. But at the same i
shall soon see, it completely changed our ideas of space and )i}

* BYA The Michelson—Morley Experime

The Michelson—-Morley experiment was designed to measure i}
the ether—the medium in which light was assumed to travel wi
to the Earth. The experimenters thus hoped to find an absolul¢
frame, one that could be considered to be at rest.

One of the possibilities nineteenth-century scientists conuld
that the ether is fixed relative to the Sun, for even Newton (T
Sun as the center of the universe. If this were the case (therc wil
antee, of course), the Earth’s speed of about 3 X 10*m/s in its of
the Sun would produce a change of 1 part in 10* in the specd
(3.0 X 10°m/s). Direct measurement of the speed of light to this
was not possible. But A. A. Michelson, later with the help of ‘
was able to use his interferometer (Section 24-9) to measure {he &
in the speed of light in different directions to this accuracy. Thix fi
periment is based on the principle shown in Fig. 26-3. Part (a) In
of the Michelson interferometer, and it is assumed that the “cthg '
moving with speed v to the right. (Alternatively, the Earth I8 1
move to the left with respect to the ether at speed v.) The light
source is split into two beams by the half-silvered mirror My
travels to mirror M, and the other to mirror M,. The beams arc 1€
M, and M, and are joined again after passing through Mj. The e
posed beams interfere with each other and the resultant is viewd
observer’s eye as an interference pattern (discussed in Section 24

Whether constructive or destructive interference occurs i |
of the interference pattern depends on the relative phases of
beams after they have traveled their separate paths. To examing ||
consider an analogy of a boat traveling up and down, and aci()
whose current moves with speed v, as shown in Fig. 26-3b. In §
the boat can travel with speed ¢ (not the speed of light in this Ch

First we consider beam 2 in Fig. 26-3a, which travels puril
“ether wind.” In its journey from Mg to M,, we expect the light |
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ipes URE 26-3 The Michelson-Morley experiment. (a) Michelson v
e fcrometer. (b) Boat analogy: boat 1 goes across the stream and back; boat 2
efol lownstream and back upstream. (c) Calculation of the velocity of boat (or
il heam) traveling perpendicular to the current (or ether wind). . SNE R
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i) speed ¢ + v, just as a boat traveling downstream (see Fig. 26-3b) ac-
08 the speed of the river current. Since the beam travels a distance /,,
lime it takes to go from Mg to M, ist = L,/(c + v). To make the return
) from M, to Mg, the light must move against the ether wind (like the
)l going upstream), so its relative speed is expected to be ¢ — v. The
0 for the return trip is /,/(c — v). The total time required for beam 2 to
¢l from Mg to M, and back to My is

©

vdlin _ b b
“wing b ecre -
S;lll\ 212

ol =
" el = v*/c?)
flected ) second line was obtained from the first by finding the common de-
ow Al linator and factoring out ¢ in the denominator.
ed b Now let us consider beam 1, which travels crosswise to the ether wind.
9). i'v the boat analogy (part b) is especially helpful. The boat is to go from
he o Wl A to wharf B directly across the stream. If it heads directly across,
f the #stream’s current will drag it downstream. To reach wharf B, the boat
thi | Jl head at an angle upstream. The precise angle depends on the magni-
ss, it f )8 of ¢ and v, but is of no interest to us in itself. Part (c) of Fig. 26-3
till w Ws how to calculate the velocity v’ of the boat relative to Earth as it
1SC). fics the stream. Since ¢, v, and v’ form a right triangle, we have that
llel 1@ V¢? — v% The boat has the same velocity when it returns. If we now
ttod ly these principles to light beam 1 in Fig. 26-3a, we see that the beam
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travels with a speed V/cZ — v? in going from Mg to M, and budl
total distance traveled is 2, so the time required for beam | |

round trip is 2;/Vc? — v?, or
cV1 —v¥/c?
Notice that the denominator in this equation for involves it &

whereas that for ¢, does not.
‘ If I, = I, = I, we see that beam 2 will lag behind beam | hy:

|
21 1 1
[ At=t, -t = 272 :
c\1 =¥/ V1-2%c

\ If v = 0, then At = 0, and the two beams will return in phisé:
were initially in phase. But if v # 0, then At # 0, and the (Wi

l return out of phase. If this change of phase from the condititl
that for v = v could be measured, then v could be determiig

Earth cannot be stopped. Furthermore, it is not possible to i

assume [, = I,

Michelson and Morley realized that they could detect the
in phase (assuming that v # 0) if they rotated their apparaiuss
then the interference pattern between the two beams should
the rotated position, beam 1 would now move parallel to the
beam 2 perpendicular to it. Thus the roles could be reverseil,
rotated position the times (designated by primes) would be

21, 21,
The time lag between the two beams in the nonrotated position (§
would be
At=t,—t; = 2B __ B
‘ 2THT 1 - 0D V1 -
In the rotated position, the time difference would be
At =ty —t] = G S W
V1-wijct (1= v/C)

When the rotation is made, the fringes of the interference pil
tion 24-9) will shift an amount determined by the difference:

2 1 1
“A =2 AN '
At — At C(ll lz)(l Y P c’)

This expression can be considerably simplified if we assume thil §
For in this case we can use the binomial expansion,* SO '

1- /¢ g o Vi-v/e 2

<

[

tThe binomial expansion (see Appendix A) states that(1 £ xy" = 1 £ nx + [n(n |
In our case we have, therefore, (1 — x)! =1 + x,and (1 — x)V2 =1 + x, wheo 8
term is kept, since x = v?/c? is assumed to be small.
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, 2 v? 1v°
At — At ’~'z(ll+12)(1+?—1—§-c‘§)

2
v
~h+ )%

we take v = 3.0 X 10*m/s, the speed of the Earth in its orbit around
un. In Michelson and Morley’s experiments, the arms /, and /, were
It 11 m long. The time difference would then be about

(22 m)(3.0 X 10°m/s)%/(3.0 X 10* m/s)> =~ 7.0 X 10~¥s.

visible light of wavelength A = 5.5 X 1077 m, say, the frequency would
= ¢/A = (3.0 X 10° m/s)/(5.5 X 107" m) = 5.5 X 10" Hz, which means
wave crests pass by a point every 1/(5.5 X 10*Hz) = 1.8 X 10 s,
4, with a time difference of 7.0 X 10765, Michelson and Morley should
noted a movement in the interference pattern of (7.0 X 107'¢s)/
% 10"%s) = 0.4 fringe. They could easily have detected this, since their
Wutus was capable of observing a fringe shift as small as 0.01 fringe.

Jut they found no significant fringe shift whatever! They set their ap-
fus at various orientations. They made observations day and night so
they would be at various orientations with respect to the Sun (due to
larth’s rotation). They tried at different seasons of the year (the Earth
Iffcrent locations due to its orbit around the Sun). Never did they ob-
) o significant fringe shift.

I'his “null” result was one of the great puzzles of physics at the end of
fiineteenth century. To explain it was a difficult challenge. One possibil-
cxplain the null result was to apply an idea put forth independently
 F. Fitzgerald and H. A. Lorentz (in the 1890s) in which they proposed
fny length (including the arm of an interferometer) contracts by a fac-
| = v2/c? in the direction of motion through the ether. According to
niz, this could be due to the ether affecting the forces between the
cules of a substance, which were assumed to be electrical in nature.
Iheory was eventually replaced by the far more comprehensive theory
used by Albert Einstein in 1905—the special theory of relativity.

Postulates of the Special Theory of
Relativity

problems that existed at the turn of the century with regard to electro-
Jetic theory and Newtonian mechanics were beautifully resolved by Ein-
' introduction of the theory of relativity in 1905. Einstein, however, was
tently not influenced directly by the null result of the Michelson-Morley
fiment. What motivated Einstein were certain questions regarding elec-
hgnetic theory and light waves. For example, he asked himself: “What
|t [ see if I rode a light beam?” The answer was that instead of a travel-
lectromagnetic wave, he would see alternating electric and magnetic
§ ut rest whose magnitude changed in space, but did not change in time.
lields, he realized, had never been detected and indeed were not con-
Il with Maxwell’s electromagnetic theory. He argued, therefore, that it

The null result

SECTION 26-3  Postulates of the Special Theory of Relativity
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The two
postulates of
‘ special

relativity
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was unreasonable to think that the speed of light relative (o
could be reduced to zero, or in fact reduced at all. This idea b
ond postulate of his theory of relativity.

Einstein concluded that the inconsistencies he found i
netic theory were due to the assumption that an absolute #|ii§
his famous 1905 paper, he proposed doing away completcly
of the ether and the accompanying assumption of an absol
frame at rest. This proposal was embodied in two postulates. |
tulate was an extension of the Newtonian relativity principlé
not only the laws of mechanics but also those of the rest vl
cluding electricity and magnetism:

First postulate (the relativity principle): The laws of phy:
same form in all inertial reference frames.

The second postulate is consistent with the first:

Second postulate (constancy of the speed of light): Light
through empty space with a definite speed c independent ¢
of the source or observer.

These two postulates form the foundation of Einstein’s specii
relativity. It is called “special” to distinguish it from his later *
ory of relativity,” which deals with noninertial (acceleratin
frames (discussed in Chapter 33). The special theory, which i '
cuss here, deals only with inertial frames.
The second postulate may seem hard to accept, for it Vil
monsense notions. First of all, we have to think of light travell
empty space. Giving up the ether is not too hard, however, (uf
had never been detected. But the second postulate also telly |
speed of light in vacuum is always the same, 3.00 X 10%m/n,
what the speed of the observer or the source. Thus, a person {f
ward or away from a source of light will measure the samc |1
light as someone at rest with respect to the source. This contlit
everyday notions, for we would expect to have to add in the vold
observer. Part of the problem is that in our everyday expetici
not measure velocities anywhere near as large as the speed of |
we can’t expect our everyday experience to be helpful when d '
such a high velocity. On the other hand, the Michelson-May
ment is fully consistent with the second postulate.’
Einstein’s proposal has a certain beauty. For by doing away W |

of an absolute reference frame, it was possible to reconcile classl
ics with Maxwell’s electromagnetic theory. The speed of light |
Maxwell’s equations is the speed of light in vacuum in any refere
Einstein’s theory required giving up commonsense notiol)
and time, and in the following sections we will examine somg
interesting consequences of Einstein’s theory. Our arguments
part will be simple ones. We will use a technique that Einstein ||

'The Michelson-Morley experiment can also be considered as evidence for i}
late, for it was intended to measure the motion of the Earth relative to an abisolig
frame. Its failure to do so implies the absence of any such preferred frame.
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Il imagine very simple experimental situations in which little mathe-
is needed. In this way, we can see many of the consequences of rel-
Y theory without getting involved in detailed calculations. Einstein
| these “gedanken” experiments, which is German for “thought” ex-
onts. Some of the more mathematical details of special relativity are
(| in Appendix E.
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ol the important consequences of the theory of relativity is that
ih no longer regard time as an absolute quantity. No one doubts
lime flows onward and never turns back. But, as we shall see in
¢ction and the next, the time interval between two events, and
whether two events are simultaneous, depends on the observer’s
lUhce frame.

Wo events are said to occur simultaneously if they occur at exactly
me time. But how do we know if two events occur precisely at the
lime? If they occur at the same point in space—such as two apples
il on your head at the same time—it is easy. But if the two events
| 0t widely separated places, it is more difficult to know whether the
I are simultaneous since we have to take into account the time it
lor the light from them to reach us. Because light travels at finite
, it person who sees two events must calculate back to find out when
ictually occurred. For example, if two events are observed to occur at
me time, but one actually took place farther from the observer than
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ling, () {her, then the former must have occurred earlier, and the two events
ot alley jlot simultaneous.
s us ()

¢ will now make use of a simple thought experiment. We assume an
fver, called O, is located exactly halfway between points A and B
Iwo events occur, Fig. 26-4. The two events may be lightning that
I the points A and B, as shown, or any other type of events. For brief
¥ like lightning, only short pulses of light will travel outward from A
/l and reach O. O “sees” the events when the pulses of light reach
| 0. If the two pulses reach O at the same time, then the two events
0 be simultaneous. This is because the two light pulses travel at the
| ipeed (postulate 2), and since the distance OA equals OB, the time
jo light to travel from A to O and B to O must be the same. Observ-
van then definitely state that the two events occurred simultaneously.
with (i l¢ other hand, if O sees the light from one event before that from the
ssical N I, then it is certain the former event occurred first.
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A “thought”
experiment

FIGURE 26-4 A moment
after lightning strikes points A
and B, the pulses of light are
traveling toward the observer O,
but O “sees” the lightning only
when the light reaches O.
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FIGURE 26-5 Observers O,
and O,, on two different trains
(two different reference frames),
are moving with relative velocity v.
0, says that O, is moving to the
right (a); O, says that O, is moving
to the left (b). Both viewpoints are
legitimate—it all depends on your
reference frame.

FIGURE 26-6 Thought
experiment on simultaneity. To

observer O,, the reference frame of

0, is moving to the right. In (a),
one lightning bolt strikes the two
reference frames at A, and A,, and

a second lightning bolt strikes at B;

and B,. (b) A moment later, the
light from the two events reaches

0, at the same time, so according to

observer O,, the two bolts of

lightning strike simultaneously. But

| in Oy’s reference frame, the light
I from B, has already reached O;,
I whereas the light from A, has not

| yet reached O,. So in Oy’s reference

U frame, the event at B, must have
preceded the event at A;. Time is
1? not absolute.
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The question we really want to examine is this: if two ¥
multaneous to an observer in one reference frame, are they
neous to another observer moving with respect to the first? Lol
observers O, and O, and assume they are fixed in reference [f
2 that move with speed v relative to one another. Thesc |
frames can be thought of as trains (Fig. 26-5). O, says that Ol
the right with speed v, as in (a); and O, says 0, is moving 10 |
speed v, as in (b). Both viewpoints are legitimate according {0 §
ty principle. (There is, of course, no third point of view whiclj
which one is “really” moving.)

Now suppose two events occur that are observed and i
both observers. Let us assume again that the two events HI&
ing of lightning and that the lightning marks both tralne
struck: at A, and B, on O’s train, and at A, and B, on 0,'%
simplicity, we assume that O, happens to be exactly haliwii
A, and By, and that O, is halfway between A, and B,. We ni
selves in one reference frame or the other, from which w¢
observations and measurements. Let us put ourselves in ('

frame, so we observe O; moving to the right with speed v,
assume that the two events occur simultaneously in O,’s fruil
at the instant when O, and O, are opposite each other, Vg
short time later, Fig. 26-6b, the light from A, and B, reached
same time (we assumed this). Since O, knows (or measuy
tances 0,A, and O,B, as equal, O, knows the two events il
neous in the O, reference frame. '
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Jut what does observer O, observe and measure? From our (0,) ref-
¢c frame, we can predict what O, will observe. We see that O, moves
¢ right during the time the light is traveling to O, from A, and B,. As
h in Fig. 26-6b, we can see from our O, reference frame that the
{ Irom B, has already passed O,, whereas the light from A, has not yet
led 0. Therefore, it is clear that O, will observe the light coming
) B, before he observes the light coming from A,. Now O,’s frame is
bod as O,’s. Light travels at the same speed ¢ for O, as for O, (the
id postulate)'; and in the O, reference frame, this speed c is of course
ime for light traveling from A, to O as it is for light traveling from
0 O,. Furthermore the distance 0,4, equals O,B,. Hence, since O,
Wives the light from B, before he observes the light from A, (we es-
Ished this above, looking from the O, reference frame, Fig. 26—6b),
| observer O, can only conclude that the event at B, occurred before
pvent at A;. The two events are not simultaneous for O,, even though
are for O,.

We thus find that rwo events which are simultaneous to one observer
ot necessarily simultaneous to a second observer.

It may be tempting to ask: “Which observer is right, O, or 0,?” The
wer, according to relativity, is that they are both right. There is no
)" reference frame we can choose to determine which observer is
| Both frames are equally good. We can only conclude that simultane-
Iy not an absolute concept, but is relative. We are not aware of it in
yday life, however, because the effect is noticeable only when the rel-
) speed of the two reference frames is very large (near c), or the dis-
U involved are very large.

Because of the principle of relativity, the argument we gave for the
lipht experiment of Fig. 26-6 can be done from O,’s reference frame as
|, In this case, O, will be at rest and will see event B; occur before A,.
0, will recognize (by drawing a diagram equivalent to Fig. 26-6—try
|l see!) that O,, who is moving with speed v to the left, will see the two
Iils as simultaneous.

'»—5 Time Dilation and the Twin Paradox

fact that two events simultaneous to one observer may not be simul-
Ous to a second observer suggests that time itself is not absolute.
Il it be that time passes differently in one reference frame than in an-
I? This is, indeed, just what Einstein’s theory of relativity predicts, as
vllowing thought experiment shows.

that O, does not see himself catching up with one light beam and running away from

her (that is O,’s viewpoint of what happens for O,). O, sees both light beams traveling
rame speed, c.

Simultaneity
is relative

SECTION 26-5 Time Dilation and the Twin Paradox




Light —_|
source

Receiver Clock timer

FIGURE 26-7 Time dilation
can be shown by a thought
experiment: the time it takes for

light to travel over and back on a
spaceship is longer for the observer
on Earth (b) than for the observer on
the spaceship (a).

Figure 26-7 shows a spaceship traveling past Earth at high s
point of view of an observer on the spaceship is shown in part (i),
of an observer on Earth in part (b). Both observers have accuii
The person on the spaceship (a) flashes a light and measurcs ({i§
takes the light to travel across the spaceship and return aftcy
from a mirror. The light travels a distance 2D at speed c, so th¢
quired, which we call A, is

rp=22.

This is the time as measured by the observer on the spaceship.

The observer on Earth, Fig. 26-7b, observes the same proce
this observer, the spaceship is moving. So the light travels the
path shown in going across the spaceship, reflecting off the mir(
turning to the sender. Although the light travels at the same speg
observer (the second postulate), it travels a greater distance. |
time required, as measured by the observer on Earth, will be g/
that measured by the observer on the spaceship. The time intey
observed by the observer on Earth can be calculated as follo
time At, the spaceship travels a distance 2L = v At where v is (h¢
the spaceship (Fig. 26-7b). Thus, the light travels a total dista
diagonal path of 2\/D? + L2 and therefore

2VD? + I 2V D? + v¥(Ar)/4
Cc = = .
At At

804 CHAPTER 26  Special Theory of Relativity




(juare both sides, and then solve for At, to find

c? = (4A_Dt)22 + v?
Ao 2D
cV1 — v?/c?
tombine this with the formula above for At (Af, = 2D/c) and find:
At = —AL— (26-1)
V1 - v/

¢ V1 — v?/c? is always less than 1, we see that At > At,. That is,
lime interval between the two events (the sending of the light, and
{ception on the spaceship) is greater for the observer on Earth than
the observer on the spaceship. This is a general result of the theory
lativity, and is known as time dilation. Stated simply, the time-dila-
cffect says that

tlocks moving relative to an observer are measured by that observer
{v run more slowly (as compared to clocks at rest).

c¢ver, we should not think that the clocks are somehow at fault. Time
lually measured to pass more slowly in any moving reference frame as
pured to your own. This remarkable result is an inevitable outcome of
Iwo postulates of the theory of relativity.

I'he concept of time dilation may be hard to accept, for it violates
tommonsense understanding. We can see from Eq. 26-1 that the
dilation effect is negligible unless v is reasonably close to c. If v is
h less than c, then the term v?/c? is much smaller than the 1 in the
yminator of Eq. 26-1, and then At = At, (see Example 26-2). The
(s we experience in everyday life are much smaller than c, so it is
wonder we don’t ordinarily notice time dilation. Experiments have
( the time-dilation effect, and have confirmed Einstein’s predic-
4, In 1971, for example, extremely precise atomic clocks were flown
hd the world in jet planes. The speed of the planes (10° km/h) was
h less than c, so the clocks had to be accurate to nanoseconds
’s) in order to detect any time dilation. They were this accurate,
they confirmed Eq. 26-1 to within experimental error. Time dila-
ol had been confirmed decades earlier, however, by observation on
val, ihentary particles” (see Chapter 32) which have very small masses
cally 107 to 107" kg) and so require little energy to be accelerat-
speeds close to c. Many of these elementary particles are not sta-
nd decay after a time into smaller particles. One example is the
i, whose mean lifetime is 2.2 us when at rest. Careful experiments
td that when a muon is traveling at high speeds, its lifetime is meas-
1o be longer than when it is at rest, just as predicted by the time-
lon formula.

Time-dilation formula

Time dilation:
moving clocks
run slowly

Why we don’t usually
notice time dilation

SECTION 26-5 Time Dilation and the Twin Paradox 805
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m Lifetime of a moving muon. () What will b¢
lifetime of a muon as measured in the laboratory if it is If
v = 0.60c = 1.8 X 108 m/s with respect to the laboratory? (¥
at rest is 2.2 X 107®s. (b) How far does a muon travel in the |

on average, before decaying?

SOLUTION (a) If an observer were to move along with the
muon would be at rest to this observer), the muon would hi¥
life of 2.2 X 107%s. To an observer in the lab, the muon lives
cause of time dilation. From Eq. 26-1 with » = 0.60c, we have

Ay, 22X 107Ss 22X 107%s "

= - = 2|
\/1 v? \[1 0362 Voed

At =

c? c?

(b) At a speed of 1.8 X 108 m/s, classical physics would tell us
mean life of 2.2mus, an average muon would travel |
(1.8 X 10°m/s)(2.2 X 10~®s) = 400 m. But relativity predicts
distance of (1.8 X 10°m/s)(2.8 X 107°s) = 500m, and it is |
distance that is measured experimentally.

We need to make a comment about the use of Eq. 26-1 and |
ing of At and At,. The equation is true only when Az, represents i
terval between the two events in a reference frame where the {!
occur at the same point in space (as in Fig. 26-7a where the tw( §
the light flash being sent and being received). This time inte
called the proper time. Then At in Eq. 26-1 represents the time i
tween the two events as measured in a reference frame moving
v with respect to the first. In Example 26-1 above, Af, (and nol &
equal to 2.2 X 107%s because it is only in the rest frame of the |
the two events (“birth” and “decay”) occur at the same point in

me Time dilation at 100 km/h. Let’s check tin
for everyday speeds. A car traveling 100 km/h covers a certull
in 10.00s according to the driver’s watch. What does an ol
Earth measure for the time interval?

SOLUTION The car’s speed relative to Earth is |} [
(1.00 X 10°m)/(3600s) = 27.8 m/s. We set A, = 10.00s in
dilation formula (the driver is at rest in the reference f1i
car), and then At is

go B _ 10.00 s ~ 10,0
\ﬁ_ v ( 27.8m/s )2 V1 - 8.8
c? 3.00 X 108 m/s

If you put these numbers into a calculator, you will obtain Al
since the denominator differs from 1 by such a tiny amount. |i
time measured by an observer on Earth would be no differenl
measured by the driver, even with the best of today’s instrumeil
puter that could calculate to a large number of decimal places ¢
a difference between Ar and At,. But we can estimate the diffef




ily using the binomial expansion (Appendix A), which says that in a
Mula of the form (1 + x)",if x << 1, then to a good approximation,

1xx)"=1+nx

our time-dilation formula, we have the factor 1/V/1 — v?/¢? =
v*/c*)™V2. Thus (setting x = v?/c* and n = —1 in the binomial

11 be the

2\ —1/2 2
At = At0<1 - ”—2) ~ Ato(l + %”—2)
l1ave ¢ ¢
1/ 27.8m/s 2] 15
~ 10. + o) | =~ 10.00s + 4 X :
_ 1000s[1 2(3'0())( 108m/s) 10.00s + 4 X 10755

the difference between At and A¢, is predicted to be 4 X 105, an

icasurably small amount.
1 us that

ivel d =
icts an av lime dilation has aroused interesting speculation about space travel.
irding to classical (Newtonian) physics, to reach a star 100 light-years
y would not be possible for ordinary mortals (1 light-year is the distance
| can travel in 1 year = 3.0 X 108m/s X 3.15 X 10”s = 9.5 X 10 m).
I if a spaceship could travel at close to the speed of light, it would take
100 years to reach such a star. But time dilation tells us that the time
lved would be less for an astronaut. In a spaceship traveling at v =
U, the time for such a trip would be only about Aty = Ar\/1 — v%/¢? =
yV1 — (0.999)? = 4.5yr. Thus time dilation allows such a trip, but
gnormous practical problems of achieving such speeds will not be over-
¢ in the near future.

Notice, in this example, that whereas 100 years would pass on Earth, only
years would pass for the astronaut on the trip. Is it just the clocks that
|d slow down for the astronaut? The answer is no. All processes, includ-
lifc processes, run more slowly for the astronaut according to the Earth
grver. But to the astronaut, time would pass in a normal way. The astro-
| would experience 4.5 years of normal sleeping, eating, reading, and so
And people on Earth would experience 100 years of ordinary activity.
Not long after Einstein proposed the special theory of relativity, an
irent paradox was pointed out. According to this twin paradex, sup-
s 100km one of a pair of 20-year-old twins takes off in a spaceship traveling at
high speed to a distant star and back again, while the other twin re-
hs on Earth. According to the Earth twin, the traveling twin will age
, Whereas 20 years might pass for the Earth twin, perhaps only 1 year
jending on the spacecraft’s speed) would pass for the traveler. Thus,
h the traveler returns, the earthbound twin could expect to be 40 years
whereas the traveling twin would be only 21.

I'his is the viewpoint of the twin on the Earth. But what about the
cling twin? If all inertial reference frames are equally good, won’t the
¢ling twin make all the claims the Earth twin does, only in reverse?
't the astronaut twin claim that since the Earth is moving away at high
d, time passes more slowly on Earth and the twin on Earth will age
This is the opposite of what the Earth twin predicts. They cannot
| be right, for after all the spacecraft returns to Earth and a direct
parison of ages and clocks can be made.

interval,
ime intciy
ving with
not Af) w
{ the muoil
nt in space

unt. Indeed
ferent fromi
ruments, A
ices could |
difference
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FIGURE 26-8 (a) A spaceship
traveling at very high speed from
Earth to Neptune, as seen from
Earth’s frame of reference. (b) As
viewed by an observer on the
spaceship, Earth and Neptune are
moving at the very high velocity v:
Earth leaves the spaceship, and a
time At, later planet Neptune arrives
at the spaceship. [Note in (b) that
each planet does not look shortened
because at high speeds we see the
trailing edge (as in Fig. 26-10), and
the net effect is to leave its
appearance as a circle.]
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There is, however, not a paradox at all. The consequences
cial theory of relativity—in this case, time dilation—can be |
by observers in inertial reference frames. The Earth is such
nearly so), whereas the spacecraft is not. The spacecraft accelil
start and end of its trip and, more importantly, when it turns (i}
far point of its journey. During these acceleration periods, th¢
predictions based on special relativity are not valid. The twii
in an inertial frame and can make valid predictions. Thus, thefg
dox. The traveling twin’s point of view expressed above is nol ¢
predictions of the Earth twin are valid, and the prediction thil
ing twin returns having aged less is the proper one.!

Length Contraction

Not only time intervals are different in different reference (i
intervals—lengths and distances—are different as well, accold
special theory of relativity, and we illustrate this with a though! &
Observers on Earth watch a spacecraft traveling at speed |l

to, say, Neptune, Fig. 26-8a. The distance between the plancts, |
by the Earth observers, is Ly. The time required for the trip, mel
Earth, is At = L,/v. In Fig. 26-8b we see the point of view of ab
the spacecraft. In this frame of reference, the spaceship is at el
Neptune move with speed v. (We assume v is much greater thii
speed of Neptune and Earth, so the latter can be ignored.) ‘I
tween the departure of Earth and arrival of Neptune (as obsctV '
spacecraft) is the “proper time” (since the two events occul i
point in space—i.e., on the spacecraft). Therefore the time intciy

the spacecraft observers than for the Earth observers, becausc

tion. From Eq. 26-1, the time for the trip as viewed by the o

At, = At\/1 — v?/c?. Since the spacecraft observers measiiie

speed but less time between these two events, they must als( {]

3

Earth

(a)

NG

—0= oy > -—
Ne|
(b)

tEinstein’s general theory of relativity, which deals with accelerating refcrcm;ﬁ_
firms this result.




£ 1l nce as less. If we let L be the distance between the planets as viewed by
pacecraft observers, then L = v At;,. We have already seen that At, =
| — v*/c*and At = Ly/v, so we have L = v Aty = vAtr\/1 — v?/c? =
| — v%/c% That is,

L=LV1 -9/ (26-2) Length-contraction formula

i is a general result of the special theory of relativity and applies to
bilhs of objects as well as to distance. The result can be stated most sim-
n words as:

the length of an object is measured to be shorter when it is moving Length contraction:

relative to the observer than when it is at rest. moving objects are shorter
(in the direction of motion)

is called length contraction. The length L, in Eq. 26-2 is called the
per length. It is the length of the object—or distance between two points
Jic positions are measured at the same time—as measured by observers
081 with respect to it. Equation 26-2 gives the length L that will be meas-
| by observers when the object travels past them at speed v. It is impor-
lo note, however, that length contraction occurs only along the direction
lotion. For example, the moving spaceship in Fig. 26-8a is shortened in
jh, but its height is the same as when it is at rest.

l.ength contraction, like time dilation, is not noticeable in everyday
hecause the factor /1 — v%/c? in Eq. 26-2 differs from 1.00 signifi-
ily only when v is very large.

from

s Ml
sured
bscrve
s Earll
the 1¢l

W8Sl Painting’s contraction. A rectangular painting meas-
it the {8 1.00 m tall and 1.50 m wide. It is hung on the side wall of a spaceship
al x| liich is moving past the Earth at a speed of 0.90c. See Fig. 26-9a.
) What are the dimensions of the picture according to the captain of
pacedf 0 spaceship? (b) What are the dimensions as seen by an observer on
e the ¢ Earth? (@
neabiie

DLUTION (a) The painting (as well as everything else in the space-
Ip) looks perfectly norinal to everyone on the spaceship, so the captain
08 a 1.00 m by 1.50 m painting.

) Only the dimension in the direction of motion is shortened, so the
Ight is unchanged at 1.00 m, Fig. 26-9b. The length, however, is con-

Heted to
2
' v
= (1.50 m)V1 — (0.90)* = 0.65 m.

) the picture has dimensions 1.00m X 0.65 m.

(b

FIGURE 26-9 Example 26-3.
leptunc

liquation 26-2 tells us what the length of an object will be measured

¢ when traveling at speed v. The appearance of the object is another

lcr. Suppose, for example, you are traveling to the left past a small

lling at speed v = 0.85c. This is equivalent to the building moving past

SECTION 26—6 Length Contraction 809
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FIGURE 26-10 Building
seen (a) at rest, and (b) moving
at high speed. (¢) Diagram
explains why the side of the
building is seen (see the text).

FIGURE 26-11 According
to an accurate clock on a fast-
moving train, a person () begins
dinner at 7:00 and (b) finishes at
7:15. At the beginning of the
meal, observers on Earth set
their watches to correspond with
the clock on the train. These
observers measure the eating
time as 20 minutes.
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you to the right at speed v. The building will look narrower (il
height), but you will also be able to see the side of the building |
are directly in front of it. This is shown in Fig, 26-10b—part (i)
building at rest. The fact that you see the side is not really a 1¢l
fect, but is due to the finite speed of light. To see how this ot
at Fig. 26-10c which is a top view of the building, looking dowi}
stant shown, the observer O is directly in front of the building.
points A and B reach O at the same time. If the building were M
from point C could never reach O. But the building is moving
speed and does “get out of the way” so that light from C can I
deed, at the instant shown, light from point C when it was al i}
cation (C’ on the diagram) can reach O because the building K
In order to reach the observer at the same time as light froml
light from C had to leave at an earlier time since it must trive
distance. Thus it is light from C’ that reaches the observer i
time as light from A and B. This, then, is how an observer mij
the front and side of an object at the same time even whuti
front of it.' It can be shown, by the same reasoning, that sphuth
will actually still have a circular outline even at high speeds, |
the planets in Fig. 26-8b are drawn round rather than contracis

WEour-Dimensional Space-Time

Let us imagine a person is on a train moving at a very high
0.65¢, Fig. 26-11. This person begins a meal at 7:00 and finishus
cording to a clock on the train. The two events, beginning an
meal, take place at the same point on the train. So the prope
tween these two events is 15min. To observers on Earth, (he
take longer—20 min according to Eq. 26-1. Let us assume (hitf
was served on a 20-cm-diameter plate. To observers on the Eutl

t]t would be an error to think that the building in Fig. 26-10b would look rotinlé
correct since in that case side A would look shorter than side B. In fact, if thu ¢
rectly in front, these sides appear equal in height. Thus the building looks vl
front face, but we also see the side, as described above. Also, though it
Fig. 26-10b, the walls of the building would appear curved, because of dilteild
from the observer’s eye of the various points from top to bottom along a vertle




ly 15cm wide (length contraction). Thus, to observers on the Earth,
ical looks smaller but lasts longer.
In a sense these two effects, time dilation and length contraction, balance
) other. When viewed from the Earth, what the meal seems to lose in size
iins in length of time it lasts. Space, or length, is exchanged for time.
Considerations like this led to the idea of four-dimensional space—time:
Lt takes up three dimensions and time is a fourth dimension. Space and
are intimately connected. Just as when we squeeze a balloon we make
dimension larger and another smaller, so when we examine objects and
Ms from different reference frames, a certain amount of space is ex-
\ged for time, or vice versa.
Although the idea of four dimensions may seem strange, it refers to
llea that any object or event is specified by four quantities—three to
uribe where in space, and one to describe when in time. The really un-
| aspect of four-dimensional space—time is that space and time can in-
Nix: a little of one can be exchanged for a little of the other when the
‘ence frame is changed.
It is difficult for most of us to understand the idea of four-dimensional
¢-time. Somehow we feel, just as physicists did before the advent of
|ivity, that space and time are completely separate entities. Yet we have
Il in our thought experiments that they are not completely separate.
| difficulty in accepting this is reminiscent of the situation in the seven-
Ith century at the time of Galileo and Newton. Before Galileo, the ver-
| direction, that in which objects fall, was considered to be distinctly
yrent from the two horizontal dimensions. Galileo showed that the ver-
| dimension differs only in that it happens to be the direction in which
Ity acts. Otherwise, all three dimensions are equivalent, a viewpoint we
iecept today. Now we are asked to accept one more dimension, time,
ih we had previously thought of as being somehow different. This is not

)y that there is no distinction between space and time. What relativity

fhown is that space and time determinations are not independent of
inother.

. Momentum and Mass

three basic mechanical quantities are length, time intervals, and mass.
first two have been shown to be relative—their value depends on the
fence frame from which they are measured. We might ask if mass, too,
fclative quantity.
Analysis of collision processes between two particles shows that if we
{ lo preserve conservation of momentum as a principle also in relativ-
we must redefine momentum as

mgyv
p=—— 26-3)
1Y
02

peeds much less than the speed of light, Eq. 26-3 gives the classical
ficntum, p = mpu. We have written m; rather than m because
26-3 suggests a relativistic interpretation of mass. Namely, that the
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FIGURE 26-12 Massofa
particle (rest mass m,) as a function
of speed v (given as a fraction of ¢,
the speed of light).
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mass of an object is measured to increase as its speed increasey
to the formula

m,

m = 0,
1 — v?/c?

In this mass-increase formula, m, is the rest mass of the objecl
it has as measured in a reference frame in which it is at rest; il
mass it will be measured to have in a reference frame in which i
speed v.

Relativistic momentum and mass increase have been testod
times on tiny elementary particles (such as muons), and they |
found to increase in accord with Egs. 26-3 and 26-4.

ATl Mass of moving electron. Calculate the il
electron when it has a speed of (a) 4.00 X 10"m/s in the CR|
vision set, and (b) 0.98c in an accelerator used for cancer thuil

SOLUTION The rest mass of an electron is my = 9.11
(@) At v = 4.00 X 107 m/s, the electron’s mass will be

m 911 x 1073k
L B _g19x10

m =
\ﬁ 0 \[ | _ (400 X 10" m/sy
c? (3.00 X 10® m/s)>
Even at such a high speed (v = 0.1c), the electron’s mass is onl
percent higher than its rest mass. But in (b), we have

m mg m §
m= = = =18 :‘ '
v? ©98cF  Vi- oy
1-—- ? 1- __CT_

An electron traveling at 98 percent the speed of light has i
times its rest mass!

Figure 26-12 is a graph of mass versus speed for any particle.

mhe Ultimate Speed

A basic result of the special theory of relativity is that the s
object cannot equal or exceed the speed of light. That the spu(
is a natural upper speed limit in the universe can be seen froe
of Egs. 26-1 through 26-4. It is perhaps easiest to see it from
the mass-increase formula, m = my/\/1 — v*/c*. As an objecl
ated to greater and greater speeds, its mass becomes larger i)
Indeed, if v were to equal c, the denominator in this equatiofn
zero and the mass m would become infinite. To accelerate i
to v = ¢ would thus require infinite energy, and so is not pous| [
larly, Eqs. 26-1 and 26-2 tell us that length would disappeil
become infinite as v approaches c.

CHAPTER 26  Special Theory of Relativity
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E = mc?; Mass and Energy

¢n a steady net force is applied to an object of rest mass m,, the ob-
increases in speed. Since the force is acting over a distance, work is
¢ on the object and its kinetic energy increases. As the speed of the
Uct approaches c, the speed cannot increase indefinitely because it
hot exceed c. On the other hand, the mass of the object increases
I increasing speed. That is, the work done on an object not only in-
kcs its speed but also contributes to increasing its mass. Since the
20l 'k done on an object increases its energy, this new twist from the the-
ava of relativity leads to the idea that mass is a form of energy, a crucial
| of Einstein’s theory.

To find the mathematical relationship between mass and energy, Ein-
Il assumed that the work—energy theorem (Chapter 6) is still valid in rel-
iy. That is, the net work done on a particle is equal to its change in
lic energy (kE). Using this theorem, Einstein showed that at high speeds
formula KE = 3mv? is not correct. You might think that using Eq.26-4
i would give KE = 3myw?/\/1 — v?/c?, but this formula, too, is wrong.
¢nd, Einstein showed that the kinetic energy of a particle is given by

KE = mc? — myc?, (26-5)

fe m is the mass of the particle traveling at speed v and my is its rest mass.
But what does the second term in Eq. 26-5—the m,c>—mean? Consis-
with the idea that mass is a form of energy, Einstein called m,c? the rest
fty of the object. We can rearrange Eq. 26-5 to get mc> = myc? + K. We
e’ the total energy E of the particle (assuming no potential energy), and
tc that the total energy equals the rest energy plus the kinetic energy:

n, E = mc?, (26-6a)
E = myc? + KE. (26-6b)
T ¢ we have Einstein’s famous formula E = mc?.

l'or a particle at rest in a given reference frame, its total energy is
m,c?, which we have called its rest energy. This formula mathemati-
fclates the concepts of energy and mass. But if this idea is to have
Meaning from a practical point of view, then mass ought to be con-
blc to energy and vice versa. That is, if mass is just one form of ener-
licn it should be convertible to other forms of energy just as other
of energy are interconvertible. Einstein suggested that this might be
ble, and indeed changes of mass to other forms of energy, and vice
, have been experimentally confirmed countless times. The intercon-
on of mass and energy is most easily detected in nuclear and elemen-

speed

om il particle physics. For example, the neutral pion (7% of rest mass
n E 10" kg is observed to decay into pure electromagnetic radiation
tis 0 lons). The =° completely disappears in the process. The amount of

and | fomagnetic energy produced is found to be exactly equal to that pre-
n wo il by Einstein’s formula, E = myc® The reverse process is also com-
n ob) observed in the laboratory: electromagnetic radiation under certain
ssibl tions can be converted into material particles such as electrons. On a

Aar i ' scale, the energy produced in nuclear power plants is a result of the
I mass of the uranium fuel as it undergoes the process called fission

Relativistic kinetic energy

E = mc?, mass
related to energy

Mass and energy
interchangeable

SECTION 26-10  E = mc? Mass and Energy
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w PROBLEM SOLVING

814

Relativistic KE

Rest energy

(Chapter 31). Even the radiant energy we receive from the Sufl
ample of E = mc* the Sun’s mass is continually decreasing u#
electromagnetic energy outward.

The relation E = mc? is now believed to apply to all pid
though the changes are often too small to measure. That is, wh
ergy of a system changes by an amount AE, the mass of |
changes by an amount Am given by

AE = (Am)(c?).

In a chemical reaction where heat is gained or lost, the masscs 0 |
tants and the products will be different. Even when water is it
stove, the mass of the water increases very slightly. This example
to understand from the point of view of kinetic theory (Chapte
cause as heat is added, the temperature and therefore the averi
the molecules increases; and Eq. 264 tells us that the mass also 1l

Pion's KE. A 7° meson (m, = 2.4 X 10"
at a speed v = 0.80c = 2.4 X 10°m/s. What is its kinetic cndlf
pare to a classical calculation.

SOLUTION The mass of the 7#° moving with a speed of v = i
B my 24X 10" % kg
V1-v2/c2 V1- (080

m =40X 10"k

Thus its KE is
KE = (m — mg)c? = (40 X 10 % kg — 2.4 X 107 kg)(3.0 '
=14x 10717

Notice that the units of mc? are kg-m?/s?, which is the joule. A ¢li
culation would give KE = img? = 3(2.4 X 10 kg)(24 x 10"}
6.9 x 10~12J, about half as much, but this is not a correct result

N1 Energy from pion mass. How much encrgy §
released if the 7° meson in the last example is transformed ¢
into electromagnetic radiation?
SOLUTION The rest energy of the a° is
E, = myc?* = (2.40 X 10"2 kg)(3.00 X 108 m/s)* = 2.16

This is how much energy would be released if the m° decaycd il
saw in Chapter 17, Section 17-4, that the energies of atomic pil
often expressed in terms of the electron volt (eV) unit:

1eV=160X10"2J, and 1MeV =10°eV = 160
Thus the rest mass of the 7° is equivalent to

216 x 1071 J
1.60 X 1072 J/MeV

of energy. If the #° had ke = 1.4 X 107", the total enerjly
would be (2.16 + 1.4) X 1071 J = 3.6 X 107113, or 230 MeV.

= 135 MeV

CHAPTER26  Special Theory of Relativity




A Energy from nuclear decay. The energy required or re-
Sed in nuclear reactions and decays comes from a change in mass be-
¢n the initial and final particles. In one type of radioactive decay
hapter 30), an atom of uranium (m = 232.03714 u) decays to an atom of
Hrium (m = 228.02873 u) plus an atom of helium (m = 4.00260 u) where
masses given are in atomic mass units (1u = 1.6605 X 10~?kg). Cal-
lite the energy released in this decay.

DLUTION The initial mass is 232.03714u, and after the decay it is
102873 u + 4.00260 u = 232.03133 u, so there is a decrease in mass of
H)581 u. This mass, which equals (0.00581 u)(1.66 X 10~? kg) = 9.64 X
kg, is changed into energy. By E = mc?, we have

E = (9.64 X 107 ¥ kg)(3.0 X 10°m/s)* = 8.68 X 10" J.
ltc 1 MeV = 1.60 X 1072 J, the energy released is 5.4 MeV.

llquation 26-5 for the kinetic energy can be written in terms of the
{l v of the object with the help of Eq. 26—4:

iz )
= 2
KE = myc’| —F———= —1}- (26-7)
0 ( 1 - %/c?
t low speeds, v << ¢, we can expand the square root in Eq. 26-7 using
binomial expansion (see Appendix A or Example 26-2). Then we get
12?2

~ 2 el
KE~m0C(1+2c2+ 1)
~ 3mgv?,
0 the dots in the first expression represent very small terms in the ex-
flon which we have neglected since we assumed that v << ¢. Thus at
ipeeds, the relativistic form for kinetic energy reduces to the classical
\KE = ymqv?. This is, of course, what we would like. It makes relativity
bic valuable theory in that it can predict accurate results at low speed as
i at high. Indeed, the other equations of special relativity also reduce
glr classical equivalents at ordinary speeds: length contraction, time di-
i, and mass increase all disappear for v << ¢ since V1 — v%/c? ~ 1.
A useful relation between the total energy E of a particle and its mo-
lim p can also be derived. The relativistic momentum of a particle of
m and speed v is given by Eq. 26-3:

myv
p=myv=—Fr———-
V1 — v?/c?

), since E = mc? we can write (in the first line we insert “o? — v*”
| is zero, but will help us):
E? = m%* = m%¥(c? + v* — v?)
= m*c*? + m2c(c* - v?)
m3c*(1 — v?/c?)

1 - 22/c?

= p2c?

E? = p’c* + m3ct, (26-8)
® we have assumed there is no potential energy. Thus, the total energy
0 written in terms of the momentum p, or in terms of the kinetic energy

26-6).

Energy released in
nuclear process

Relativistic momentum

Energy—momentum relation
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| Units: In the tiny world of atoms and nuclei, it is common to (U

eV/cforp ineV (electron volts) or multiples such as MeV (10°eV). Mol

eV/c? form Eq. 26-8) can be quoted in units of eV/c (or MeV/c). Andl |
quoted (from E = mc?) in units of eV/c* (or MeV/c?).

A Bl Relativistic Addition of Velocitie

Consider a rocket ship that travels away from the Earth with §
assume that this rocket has fired off a second rocket that truV
u' with respect to the first (Fig. 26-13). We might expect thal |
of rocket 2 with respect to Earth is u = v + ', which in the ¢it
the figure is u = 0.60c + 0.60c = 1.20c. But, as discussed in S
no object can travel faster than the speed of light in any relel '
Indeed, Einstein showed that since length and time are differe '
ent reference frames, the old addition-of-velocities formuli (¥
valid. Instead, the correct formula is |

Relativistic addition of velocities u vt+u

formula (u and v along same line) 1+ /c?

for motion along a straight line. We derive this formula in A
u' is in the opposite direction from v, then 1’ must have a mii|
u=@-—u)/1 - o/

u'=0.60c with /%

respect to
rocket 1 Q
i . 1 . . sl .
‘_ [\ AL Relative velocity, relativistically. Calculule
4 of rocket 2 in Fig. 26-13 with respect to Earth.

v=060cwith | SOLUTION Rocket 2 moves with speed u’ = 0.60c witl
pe rocket 1. Rocket 1 has speed v = 0.60c with respect to Earth

of rocket 2 with respect to Earth is therefore

0.60c + 0.60c  1.20c

= (06000600 _ 136 088
=

u

' l FIGURE 26-13 Rocket2is L
fired from rocket 1 with speed

| u' = 0.60c. What is the speed of
rocket 2 with respect to the Earth?

Notice that Eq. 26-9 reduces to the classical form for velo
| 'i compared to the speed of light since 1 + vu’ /c? = 1 for v and
| Thus,u = v + u'.

i ‘ Let us test our formula in one more case, that of the spudl
‘ Suppose that rocket 1 in Fig. 26-13 sends out a beam of ligh
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¢. Equation 26-9 tells us that the speed of this light with respect
lurth is

= 0.60c + ¢ 1.60c _
(0.60c)(c) 1.60
1+ —22
c

S

S th is fully consistent with the second postulate of relativity.
spectl | o s
els at'l The Impact of Special Relativity
the Hp
ase sho feat many experiments have been performed to test the predictions of
Section #pecial theory of relativity. Within experimental error, no contradic-
rence | ¥ have been found. Scientists have therefore accepted relativity as an
ent in U jrute description of nature.
is no | At speeds much less than the speed of light, the relativistic formulas
lice to the old classical ones, as we have discussed. We would, of course,
p—or rather, insist—that this be true since Newtonian mechanics
ks so well for objects moving with speeds v << c. This insistence that a
¢ general theory (such as relativity) give the same results as a more re-
lled theory (such as classical mechanics which works for v << ¢) is
\ppendi d the. correspondence principle. The two theories must correspond
ninus siil fe their realms of validity overlap. Relativity thus does not contradict
sical mechanics. Rather, it is a more general theory, of which classical
hanics is now considered to be a limiting case.
I'he importance of relativity is not simply that it gives more accurate
Its, especially at very high speeds. Much more than that, it has
late the N Iped the way we view the world. The concepts of space and time are
’ scen to be relative, and intertwined with one another, whereas before
were considered absolute and separate. Even our concepts of matter
vith fclﬂl‘(' energy have changed: either can be converted to the other. The im-
arth. The &

of relativity extends far beyond physics. It has influenced the other
lves, and even the world of art and literature; it has, indeed, entered
jieneral culture.

f'rom a practical point of view, we do not have much opportunity in
thiily lives to use the mathematics of relativity. For example, the factor
v?/c?, which appears in many relativistic formulas, has a value of 0.995
i v = 0.10c. Thus, for speeds even as high as 0.10c = 3.0 X 10’ m/s, the
I V1 — v?/c? in relativistic formulas gives a numerical correction of less
| percent. For speeds less than 0.10c, or unless mass and energy are in-
jinged, we thus don’t usually need to use the more complicated rela-
¢ formulas, and can use the simpler classical formulas.

I'he special theory of relativity we have studied in this chapter deals
Inertial (nonaccelerating) reference frames. In Chapter 33 we will dis-
briefly the more complicated “general theory of relativity” which can
with noninertial reference frames.

r velocitics
rvand

1e speed ol
1 of light #@

Correspondence principle

SECTION 26-12  The Impact of Special Relativity
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J_ SUMMARY

An inertial reference frame is one in which New-
ton’s law of inertia holds. Inertial reference frames
can move at constant velocity relative to one anoth-
er; accelerating reference frames are noninertial.

The special theory of relativity is based on two
principles: the relativity principle, which states that
the laws of physics are the same in all inertial ref-
erence frames, and the principle of the constancy
of the speed of light, which states that the speed of
light in empty space has the same value in all iner-
tial reference frames.

One consequence of relativity theory is that
two events that are simultaneous in one reference
frame may not be simultaneous in another. Other
effects are time dilation: moving clocks are meas-
ured to run slowly; length contraction: the length
of a moving object is measured to be shorter (in its
direction of motion) than when it is at rest; mass
increase: the mass of a body is measured to in-
crease with speed. Quantitatively,

L = LyV1 - vY/c?

U
V1 — v?/c?

"= V1 — v?/c?

where L, At, and m are the length, time interval,
and mass of objects (or events) that are observed

J_ QUESTIONS

as they move by at speed v; Lo, At,, and

proper length, proper time, and rest mi
the same quantities as measured in the §
of the objects or events. Velocity add
must be done in a special way. All theue
significant only at high speeds, closc (0
of light, which itself is the ultimatc |
universe.

The theory of relativity has changg
tions of space and time, and of mass il
Space and time are seen to be intimalaly
ed, with time being the fourth dimensi
tion to the three dimensions of space
energy are interconvertible. The equatio

E = mc?

tells how much energy E is needcd |
mass m, or vice versa. Said another wi
is the amount of energy an object has
its mass m. The law of conservation of ¢ii
include mass as a form of energy. The ki
gy of an object moving at speed v is gIvl

1

2 2
KE = mc? — myct = | —F—
0 (\/1—'02/c2

where my, is the rest mass of the objel
mentum p of an object is related to its (¢ "
E (assuming no potential energy) by

2 — n2p2 2.4
E* = p°c® + myc".

1. You are in a windowless car in an exceptionally smooth
train. Is there any physical experiment you can do in
the train car to determine whether you are moving?

2. You might have had the experience of being at a red
light when, out of the corner of your eye, you see the
car beside you creep forward. Instinctively you
stomp on the brake pedal, thinking that you are
rolling backward. What does this say about absolute
and relative motion?

3. A worker stands on top of a moving railroad car,
and throws a heavy ball straight up (from his point
of view). Ignoring air resistance, will the ball land on

the car or behind it?

818 CHAPTER 26  Special Theory of Relativity

4. Does the Earth really go around the Sil
also valid to say that the Sun goes arounil
Discuss in view of the first principle of ¢l
there is no best reference frame).

5. If you were on a spaceship traveling at (0,5
a star, at what speed would the starlight §)

6. Will two events that occur at the same plif
time for one observer be simultaneou
observer moving with respect to the first!

7. Analyze the thought experiment of Scctioff
Oy’s point of view. (Make a diagram i
Fig. 26-6.)




I'he time-dilation effect is sometimes expressed as
“moving clocks run slowly.” Actually, this effect has
huthing to do with motion affecting the functioning
0l clocks. What then does it deal with?

J Does time dilation mean that time actually passes
el More slowly in moving reference frames or that it
inly seems to pass more slowly?

A young-looking woman astronaut has just arrived
the liome from a long trip. She rushes up to an old gray-
hinired man and in the ensuing conversation refers to
Iim as her son. How might this be possible?

It you were traveling away from Earth at speed 0.5¢,
would you notice a change in your heartbeat? Would
your mass, height, or waistline change? What would
ubservers on Earth using telescopes say about you?
Discuss how our everyday lives would be different if
{he speed of light were only 25 m/s.

Do mass increase, time dilation, and length contrac-
{lon occur at ordinary speeds, say 90 km/h?

Suppose the speed of light were infinite. What would
happen to the relativistic predictions of length con-
\raction, time dilation, and mass increase?

secnil
1ergy
netiQ
:n by
PROBLEMS

16.

17.

18.

e

. Explain how the length-contraction and time-dilation

formulas might be used to indicate that c is the limit-
ing speed in the universe.

Consider an object of mass m to which is applied a
constant force for an indefinite period of time. Dis-
cuss how its velocity and mass change with time.

A white-hot iron bar is cooled to room temperature.
Does its mass change?

Does the equation E = mc? conflict with the conser-
vation of energy principle? Explain.

Does E = mc? apply to particles that travel at the
speed of light? Does it apply only to them?

20. An electron is limited to travel at speeds less than c.

21.

22

23.

Does this put an upper limit on the momentum of an
electron? If so, what is this upper limit?

If mass is a form of energy, does this mean that a spring
has more mass when compressed than when relaxed?
It is not correct to say that “matter can neither be
created nor destroyed.” What must we say instead?
Is our intuitive notion that velocities simply add, as
we did in Section 3-8, completely wrong?

CTIONS 26-5 AND 26-6

(1) Lengths and time intervals (as well as mass) de-
pend on the factor

V1 — v?/c?

liccording to the theory of relativity (Egs. 26-1, 26-2,
20-4). Evaluate this correction factor for speeds of:
{t) v =20,000m/s (typical speed of a satellite);
(h) v = 0.0100c; (c) v =0.100c; (d) v = 0.900c;
() v = 0.990c; (f) v = 0.999c.

{I) A spaceship passes you at a speed of 0.850c. You
icasure its length to be 48.2 m. How long would it
hc when at rest?

{I) A beam of a certain type of elementary particle
{ravels at a speed of 2.70 X 108 m/s. At this speed,
{hc average lifetime is measured to be 4.76 X 107Ss,
What is the particle’s lifetime at rest?

{l) If you were to travel to a star 100 light-years
from Earth at a speed of 2.60 X 10® m/s, what would
ou measure this distance to be?

{Il) You are sitting in your car when a very fast
#ports car passes you at a speed of 0.37c. A person in
{hat car says his car is 6.00 m long and yours is 6.21 m
long. What do you measure for these two lengths?

sun? ()
d the |

zlativil

10.

. (II) What is the speed of a beam of pions if their av-

erage lifetime is measured to be 4.10 X 1078s? At
rest, their lifetime is 2.60 X 107 %s.

. (II) Suppose you decide to travel to a star 90 light-

years away. How fast would you have to travel so the
distance would be only 25 light-years?

. (IT) At what speed do the relativistic formulas for

length and time intervals differ from classical values
by 1.00 percent? (This is a reasonable way to esti-
mate when to do relativistic calculations rather than
classical.)

. (II) Suppose a news report stated that starship En-

terprise had just returned from a 5-year voyage while
traveling at 0.89c. (@) If the report meant 5.0 years of
Earth time, how much time elapsed on the ship?
(b) If the report meant 5.0 years of ship time, how
much time passed on Earth?

(II) A certain star is 75.0 light-years away. How long
would it take a spacecraft traveling 0.950¢ to reach
that star from Earth, as measured by observers: (a) on
Earth, (b) on the spacecraft? (c) What is the distance
traveled according to observers on the spacecraft?
(d) What will the spacecraft occupants compute their
speed to be from the results of (b) and (c)?
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11. (I1) A friend of yours travels by you in her fast
sports vehicle at a speed of 0.580c. You measure it to
be 5.80 m long and 1.20 m high. (a) What will be its .
length and height at rest? (b) How many seconds
would you say elapsed on your friend’s watch when
20.0s passed on yours? (c) How fast did you appear
to be traveling to your friend? (d) How many sec-
onds would she say elapsed on your watch when she
saw 20.0 s pass on hers?

12. (III) How fast must a pion be moving, on average, to
travel 10.0 m before it decays? The average lifetime,
at rest, is 2.60 X 1078%s.

SECTION 26-8

13. (I) What is the mass of a proton traveling at v = 0.90c?

14. (I) At what speed will an object’s mass be twice its
rest mass?

15. (II) At what speed v will the mass of an object be 10
percent greater than its rest mass?

16. (II) Escape velocity from the Earth is 40,000 km/h.
What would be the percent increase in mass of a
7.2 X 10°-kg spacecraft traveling at that speed?

17. (I1) (a) What is the speed of an electron whose mass
is 10,000 times its rest mass? Such speeds are
reached in the Stanford Linear Accelerator, SLAC.
(b) If the electrons travel in the lab through a tube
3.0km long (as at SLAC), how long is this tube in
the electron’s reference frame?

SECTION 26-10

18. (I) What is the kinetic energy of an electron whose
mass is 3.0 times its rest mass?

19. (I) A certain chemical reaction requires 4.82 X 104J
of energy iput for it to go. What is the increase in
rest mass of the products over the reactants?

20. (I) When a uranium nucleus at rest breaks apart in the
process known as fission in a nuclear reactor, the re-
sulting fragments have a total kinetic energy of about
200 MeV. How much mass was lost in the process?

21. (I) Calculate the rest energy of an electron in joules
and in MeV (1 MeV = 1.60 x 107%J).

22. (I) Calculate the rest mass of a proton in MeV/ ck

23. (I) The total annual energy consumption in the United
States is about 8 X 10'° J. How much mass would
have to be converted to energy to fuel this need?

24. (II) How much energy can be obtained from conver-
sion of 1.0 gram of mass? How much mass could this
energy raise to a height of 100 m?

25, (II) Show that when the kinetic energy of a particle
equals its rest energy, the speed of the particle is
about 0.866¢.
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26. (II) (a) How much work is required (0
proton from rest up to a speed of (LYY
would be the momentum of this proton

27. (II) (@) By how much does the mass of |
crease each year as a result solely of {
reaching it? (b) How much mass dou |
per year? (Radiation from the Sun reuchif
at a rate of about 1400 W/m? of arca i}
to the energy flow.)

28. (II) Calculate the kinetic energy and
a proton traveling 2.50 X 10° m/s.

29. (I1) What is the momentum of a 750 M
(that is, one with KE = 750 MeV)?

30. (II) What is the speed of a proton accel
potential difference of 75 MV?

31. (II) What is the speed of an electron
1.00 MeV?

32. (II) What is the speed and apparent 1i|
electron when it hits a television screo)
accelerated by the 25,000 V of the pictui¢

33. (I1) Two identical particles of rest masn Hig
each other at equal and opposite spcei,
sion is completely inelastic and resulty |
particle at rest due to momentum (il
What is the rest mass of the new piil
much energy was lost in the collision? [ () '
netic energy is lost in this collision?

34. (II) Calculate the mass of a proton (/i
10~%" kg) whose kinetic energy is half ity
gy. How fast is it traveling?

35. (II) What is the speed and momentum ol
(my = 9.11 X 107 kg) whose kinetic ¢}
its rest energy?

36. (II) Suppose a spacecraft of rest mass A1
accelerated to 0.21c. (@) How much kingk
would it have? (b) If you used the claxni¢
for KE, by what percentage would you h |8

37. (1) Calculate the kinetic energy and mi}
proton (m, = 1.67 X 1077 kg) traveling 9.
By what percentages would your calculf
been in error if you had used classical fornii

38. (II) The americium nucleus, %5Am, deciys
tunium nucleus, Z]Np, by emitting an aljl
of mass 4.00260 u and kinetic energy 5.9
mate the mass of the neptunium nuclcus, |
recoil, given that the americium mass iy Mh

39, (II) An electron (m, = 9.11 x 107 kg) i |8
from rest to speed v by a conservative |0l
process, its potential energy decreases by 7.4t
Determine the electron’s speed, v.

40. (II) Make a graph of the kinetic energy
mentum for (a) a particle of nonzero resl

(b) a particle with zero rest mass.




(IT) What magnetic field intensity is needed to keep
%0-GeV protons revolving in a circle of radius
|.0km (at, say, the Fermilab synchrotron)? Use the
fclativistic mass. The proton’s rest mass is
0,938 GeV/c% (1 GeV = 10°eV))

{I1) A negative muon traveling at 33 percent the speed
of light collides head on with a positive muon traveling
it 50 percent the speed of light. The two muons (each
of mass 105.7 MeV/c?) annihilate, and produce elec-
{romagnetic energy of what total amount?

(I1) Show that the energy of a particle of charge e re-
volving in a circle of radius 7 in a magnetic field B is
piven by E(in eV) = Brc in the relativistic limit
(n = o).

(11I) Show that the kinetic energy (KE) of a particle
of rest mass m, is related to its momentum p by the
oquation p = V/(xE)? + 2(kE)(myc?)/c.

CTION 26-11

(1) A person on a rocket traveling at 0.50c (with respect
tv the Earth) observes a meteor come from behind and
puss her at a speed she measures as 0.50c. How fast is
thc meteor moving with respect to the Earth?

GENERAL PROBLEMS

46.

47.

48.

(II) Two spaceships leave the Earth in opposite di-
rections, each with a speed of 0.50c with respect to
the Earth. (@) What is the velocity of spaceship 1 rel-
ative to spaceship 2? (b) What is the velocity of
spaceship 2 relative to spaceship 1?

(II) An observer on Earth sees an alien vessel ap-
proach at a speed of 0.60c. The Enterprise comes to
the rescue (Fig. 26-14), overtaking the aliens while
moving directly toward Earth at a speed of 0.90c rel-
ative to Earth. What is the relative speed of one ves-
sel as seen by the other?

Enterprise
v = 0.90c
=)
v = 0.60c
FIGURE 26-14 Problem 47.

(II) A spaceship leaves Earth traveling 0.65c. A sec-
ond spaceship leaves the first at a speed of 0.91¢ with
respect to the first. Calculate the speed of the second
ship with respect to Earth if it is fired (@) in the same
direction the first spaceship is already moving, (b) di-
rectly backward toward Earth.

As a rule of thumb, anything traveling faster than
wbout 0.1c is called relativistic—i.e., for which the
torrection using special relativity is a significant ef-
fuct. Is the electron in a hydrogen atom (radius
0.5 X 107 m) relativistic? (Treat the electron as
though it were in a circular orbit around the proton.)

An atomic clock is taken to the North Pole, while
imother stays at the Equator. How far will they be
out of synchronization after a year has elapsed?

‘I'he nearest star to Earth is Proxima Centauri, 4.3
light-years away. (¢) At what constant velocity must
I spacecraft travel from Earth if it is to reach the
sar in 4.0 years, as measured by travelers on the
pacecraft? (b) How long does the trip take accord-
ing to Earth observers?

Derive a formula showing how the density of an ob-
Ject changes with speed v relative to an observer.

An airplane travels 1500 km/h around the world, re-
jurning to the same place, in a circle of radius essen-
finlly equal to that of the Earth. Estimate the
llifference in time to make the trip as seen by Earth
ind airplane observers. [Hint: Use the binomial ex-
puansion, Appendix A.]

54.

55.

56.

57.

58.

How many grams of matter would have to be totally
destroyed to run a 100-W lightbulb for 1 year?

What minimum amount of electromagnetic energy is
needed to produce an electron and a positron to-
gether? A positron is a particle with the same rest
mass as an electron, but has the opposite charge.
(Note that electric charge is conserved in this
process. See Section 27-4.)

A 1.68-kg mass oscillates on the end of a spring
whose spring constant is k = 48.7 N/m. If this sys-
tem is in a spaceship moving past Earth at 0.900c,
what is its period of oscillation according to (a) ob-
servers on the ship, and (b) observers on Earth?

An electron (m, = 9.11 X 107 kg) enters a uni-
form magnetic field B = 1.8 T, and moves perpen-
dicular to the field lines with a speed v = 0.92¢c.
What is the radius of curvature of its path?

A free neutron can decay into a proton, an electron,
and a neutrino. The neutrino’s rest mass is zero, and
the other masses can be found in the table inside the
front cover. Determine the total kinetic energy
shared among the three particles when a neutron de-
cays at rest.

General Problems 821




. The Sun radiates energy at a rate of about 4 X 10%'W.

(a) At what rate is the Sun’s mass decreasing?
(b) How long does it take for the Sun to lose a mass
equal to that of Earth? (c) Estimate how long the Sun
could last if it radiated constantly at this rate.

. An unknown particle is measured to have a negative

charge and a speed of 2.24 X 10% m/s. Its momen-
tum is determined to be 3.07 X 10~%kg-m/s. Identi-
fy the particle by finding its rest mass.

. How much energy would be required to break a he-

lium nucleus into its constituents, two protons and
two neutrons? The rest masses of a proton (includ-
ing an electron), a neutron, and helium are, respec-
tively, 1.00783 u, 1.00867 u, and 400260 u. (This is
called the total binding energy of the 3He nucleus.)

. What is the percentage increase in the mass of a car

822

traveling 110 km/h as compared to at rest?

CHAPTER26  Special Theory of Relativity

. Two protons, each having a speed of (/&

laboratory, are moving toward each oil§
mine (a) the momentum of each proton |
ratory, (b) the total momentum of the (W
the laboratory, and (c) the momentum of
as seen by the other proton.

. A pi meson of rest mass m, decays ul

muon (rest mass m,) and a neutrino OF
mass. Show that the kinetic energy of 1§
KE, = (m, — m,)c*/2m,.

. A farm boy studying physics believes thu

15.0-m-long pole into a 12.0-m-long bl
fast enough (carrying the pole). Can he di
in detail. How does this fit with the iden (1
is running the barn looks even shorter thiif

. Show analytically that a particle with 1

and energy E has a speed given by

pe’ pe

Vmic? + p?

v="F "




