This multiflash photograph of a
ping pong ball shows examples
of motion in two dimensions.
The arcs of the ping pong ball
are parabolas that represent
“projectile motion.” Galileo
analyzed projectile motion

into its horizontal and vertical
components, under the action of
gravity (the gold arrow represents
the downward acceleration of

gravity, g).

FIGURE 3-1 Car traveling on
a road. The green arrows represent
the velocity vector at each position.

1 cm =90 km/h

KINEMATICS IN TWO DIMENSIONS;
VECTORS

sider the description of the motion of objects that move in paths in
two (or three) dimensions. To do so we first need to discuss vectors
and how they are added.

In Chapter 2 we dealt with motion along a straight line. We now con

Vectors and Scalars

We mentioned in Chapter 2 that the term velocity refers not only to how
fast something is moving but also to its direction. A quantity such as ve-
locity, which has direction as well as magnitude, is a vector quantity. Other
quantities that are also vectors are displacement, force, and momentum,
However, many quantities such as mass, time, and temperature, have no
direction associated with them. They are specified completely by giving a
number and units. Such quantities are called scalars.

Drawing a diagram of a particular physical situation is always helpful
in physics, and this is especially true when dealing with vectors. On a dia-
gram, each vector is represented by an arrow. The arrow is always drawn
so that it points in the direction of the vector it represents. The length of
the arrow is drawn proportional to the magnitude of the vector. For exam-
ple, in Fig. 3-1, arrows have been drawn representing the velocity of a car
at various places as it rounds a curve. The magnitude of the velocity at
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vh point can be read off this figure by measuring the length of the cor-
aponding arrow and using the scale shown (1cm = 90km/h).

When we write the symbol for a vector, we will always use boldface type.
) lor velocity we write v. (In handwritten work, the symbol for a vector
i} be indicated by putting an arrow over it, a ? for velocity.) If we are con-
yned only with the magnitude of the vector, we will write simply v, in italics.

Addition of Vectors—Graphical Methods

guiuse vectors are quantities that have direction as well as magnitude, they
it be added in a special way. In this chapter, we will deal mainly with dis-

licement vectors (for which we now use the symbol D) and velocity vec-

i (v). But the results will apply for other vectors we encounter later.

We use simple arithmetic for adding scalars. Simple arithmetic can also be
iied for adding vectors if they are in the same direction. For example, if a per-
“un walks 8km east one day, and 6 km east the next day, the person will be
Hkm + 6km = 14km east of the point of origin. We say that the net or resul-
fint displacement is 14 km to the east (Fig. 3-2a). If, on the other hand, the
jurson walks 8 km east on the first day, and 6 km west (in the reverse direc-
{lon) on the second day, then the person will end up 2km from the origin
{Ilp. 3-2b), so the resultant displacement is 2 km to the east. In this case, the
fenultant displacement is obtained by subtraction: 8km — 6km = 2km.

Resultant =2 km (east)
Resultant = 14 km (east) 6 km
> <
(|t t———4 x (km) ppmmpop———+— x (km)
8 km 106 km East 8 km 10 East
(a) (b)

But simple arithmetic cannot be used if the two vectors are not along
the same line. For example, suppose a person walks 10.0km east and then
wilks 5.0 km north. These displacements can be represented on a graph in
which the positive y axis points north and the positive x axis points east,
{iip. 3-3. On this graph, we draw an arrow, labeled D, to represent the dis-
placement vector of the 10.0-km displacement to the east. Then we draw a
second arrow, D,, to represent the 5.0-km displacement to the north. Both
vectors are drawn to scale, as in Fig. 3-3.

After taking this walk, the person is now 10.0km east and 5.0km
florth of the point of origin. The resultant displacement is represented by
(he arrow labeled Dy, in Fig. 3-3. Using a ruler and a protractor, you can
imcasure on this diagram that the person is 11.2km from the origin at an
ingle of 27° north of east. In other words, the resultant displacement vec-
{or has a magnitude of 11.2 km and makes an angle 6§ = 27° with the posi-
{ive x axis. The magnitude (length) of Dy can also be obtained using the
Ihcorem of Pythagoras in this case, since D,, D,, and Dy form a right tri-
ingle with Dy, as the hypotenuse. Thus

« = VD? + D2 = V(100 km)’ + (50 km)> = V125 km? = 112 km.

You can use the Pythagorean theorem, of course, only when the vectors
are perpendicular to each other.

SECTION 3-2

FIGURE 3-2 Combining
vectors in one dimension.

FIGURE 3-3 A person walks
10.0 km east and then 5.0 km north.
These two displacements are
represented by the vectors D, and
D,, which are shown as arrows. The
resultant displacement vector, Dy,
which is the vector sum of D, and
D,, is also shown. Measurement on
the graph with ruler and protractor
shows that Dy has a magnitude of
11.2 km and points at an angle

6 = 27° north of east.
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FIGURE 3-3 (Repeated from
previous page.) A person walks
10.0 km east and then 5.0 km north.
The resultant vector has magnitude
Dy = 11.2km at an angle 6 = 27°
north of east.

Tail-to-tip method
of

adding vectors

West =451
T
South

FIGURE 3-4 If the vectors
are added in reverse order, the
resultant is the same. (Compare
Fig. 3-3.)

FIGURE 3-5 .
The resultant of three vectors,
V=V +V,+V,

The resultant displacement vector, Dy, is the sum of the vectors D,
and D,.Thatis,

D, =D, + D,

This is a vector equation. An important feature of adding two vectors tha
are not along the same line is that the magnitude of the resultant vector i
not equal to the sum of the magnitudes of the two separate vectors, but iy
smaller than their sum:

Dy < D, + D, [Vectors not along the same linc|

In our example (Fig. 3-3), Dy = 11.2km, whereas D, + D, equals 15 km,
We generally are not interested in D, + D,; rather we are interested in
the vector sum of the two vectors and its magnitude, Dy. Note also that we
cannot set Dy equal to 11.2km, because we have a vector equation and
11.2km is only a part of the resultant vector, its magnitude. We could write
something like this, though: Dy = D; + D, = (11.2km, 27° N of E).

Figure 3-3 illustrates the general rules for graphically adding two vec:
tors together, no matter what angles they make, to get their sum. The ruley
are as follows:

1. On a diagram, draw one of the vectors—call it V;—to scale.

2. Next draw the second vector, V,, to scale, placing its tail at the tip
of the first vector and being sure its direction is correct.

3. The arrow drawn from the tail of the first vector to the tip of the
second represents the sum, or resultant, of the two vectors.

Note that vectors can be translated parallel to themselves to accomplish
these manipulations. The length of the resultant can be measured with

ruler and compared to the scale. Angles can be measured with a protrac-
tor. This method is known as the tail-to-tip method of adding vectors.

Note that it is not important in which order the vectors are added.
For example, a displacement of 5.0 km north, to which is added a dis-
placement of 10.0km east, yields a resultant of 11.2km and angl¢
6 = 27° (see Fig. 3—4), the same as when they were added in reverse
order (Fig. 3-3). That is,

V,+V,=V,+V,

The tail-to-tip method of adding vectors can be extended to three of
more vectors. The resultant is drawn from the tail of the first vector to the
tip of the last one added. An example is shown in Fig. 3-5; the three vec:
tors could represent displacements (northeast, south, west) or perhap
three forces. Check for yourself that you get the same resultant no matter
in which order you add the three vectors.

/1 + V2
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A sccond way to add two vectors is the parallelogram method. It is
Iy ¢quivalent to the tail-to-tip method. In this method, the two vectors
(rawn starting from a common origin, and a parallelogram is con-
lieted using these two vectors as adjacent sides as shown in Fig. 3-6b.
\o resultant is the diagonal drawn from the common origin. In Fig, 3-6a,
¢ (nil-to-tip method is shown, and it is clear that both methods yield the
o result.
It is a common error to draw the sum vector as the diagonal running
Iween the tips of the two vectors, as in Fig. 3—6¢. This is incorrect: it does
Ol represent the sum of the two vectors. (In fact, it represents their dif-
funce, V, — V,, as we will see in the next Section.)

(a) Tail-to-tip

~

(c) Wrong

I¥Y subtraction of Vectors, and
Multiplication of a Vector by a Scalar

{liven a vector V, we define the negative of this vector (— V) to be a vec-
lor with the same magnitude as V but opposite in direction, Fig. 3-7.
Note, however, that no vector is ever negative in the sense of its magni-
lude: the magnitude of every vector is positive. A minus sign tells us
pbout its direction.

We can now define the subtraction of one vector from another: the
(ilference between two vectors, V, — V, is defined as

V,= V=V, + (=V).

That is, the difference between two vectors is equal to the sum of the first
plus the negative of the second. Thus our rules for addition of vectors can
he applied as shown in Fig. 3-8 using the tail-to-tip method.

_\71

v A v, -V,
- [=——ess "1 = I P — e — = v2— Vl V2

(b) Parallelogram

Parallelogram method
of adding vectors

FIGURE 3-6 Vector
addition by two different
methods, (a) and (b).
Part (c) is incorrect.

FIGURE 3-7 The negative
of a vector is a vector having the
same length but opposite direction.

FIGURE 3-8
Subtracting two
vectors: V, — V..
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V,=15V

v
/ V;=-20V
FIGURE 3-9 Multiplying a
vector V by a scalar c gives a
vector whose magnitude is ¢
times greater and in the same

direction as V (or opposite
direction if ¢ is negative).

Resolving a vector
into components

Vector components

FIGURE 3-10 Resolving
a vector V into its components
along an arbitrarily chosen set
of x and y axes. Note that

the components, once found,
themselves represent the vector.
That is, the components contain
as much information as the
vector itself.

A vector V can be multiplied by a scalar c. We define this product
that ¢V has the same direction as V and has magnitude cV. That is, mul
plication of a vecfor by a positive scalar ¢ changes the magnitude of (I
vector by a factor ¢ but doesn’t alter the direction. If c is a negative scall
the magnitude of the product cV is still ¢V (without the minus sign), ¥
the direction is precisely opposite to that of V. See Fig. 3-9. ‘

Adding Vectors by Components

Adding vectors graphically using a ruler and protractor is often not sul
ciently accurate and is not useful for vectors in three dimensions. We
cuss now a more powerful and precise method for adding vectors.

Consider first a vector V that lies in a particular plane. It can
expressed as the sum of two other vectors, called the components of (|
original vector. The components are usually chosen to be along two pef
pendicular directions. The process of finding the components is known 2
resolving the vector into its components. An example is shown in Fig. 3- |
the vector V could be a displacement vector that points at an ang
# = 30° north of east, where we have chosen the positive x axis to b (i
the east and the positive y axis north. This vector V is resolved into ity |
and y components by drawing dashed lines from the tip (A) of the veot
and drawing these lines perpendicular to the x and y axes (lines AB ul
AC). Then the lines OB and OC represent the x and y components of ¥
respectively, as shown in Fig. 3-10b. These vector components are wrilté
V, and V,. We generally show vector components as arrows, like vectof
but dashed. The scalar components,V, and V,,, are numbers, with units, thi§
are given a positive or negative sign depending on whether they pol
along the positive or negative x or y axis. As can be seen in Fig. 3~
V, +V, = Vby the parallelogram method of adding vectors.

(b)

Space is made up of three dimensions, and sometimes it is necessif
to resolve a vector into components along three mutually perpendiculi§
directions. In rectangular coordinates the components are Ve Vy, and ¥,
Resolution of a vector in three dimensions is merely an extension of th
above technique. We will mainly be concerned with situations in which i
vectors are in a plane and two components are all that are necessary.

In order to add vectors using the method of components, we need to U8
the trigonometric functions sine, cosine, and tangent, which we now revicw,

Given any angle, 6, as in Fig. 3-11a, a right triangle can be constructed |
drawing a line perpendicular to either of its sides, as in Fig. 3-11b. The longe
side of a right triangle, opposite the right angle, is called the hypotenu
which we label 4. The side opposite the angle 8 is labeled o, and the side adf
cent is labeled a. We let ki, o, and a represent the lengths of these sides, 1§
spectively. We now define the three trigonometric functions, sine, cosine, i
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is to be to side adjacent a
d into its x . . . .
{4 1 interesting fact that if we make the triangle bigger, but keep the
the vectog lux, then the ratio of the length of one side to the oth f
AB and Alglox, then the ratio of the length of one side to the other, or of one
es ts of V {he hypotenuse, remains the same. That is, in Fig. 3-11c we have:
aents (?t : W/h', o/h = o'/h’; and o/a = o'/a’. Thus the values of sine, cosine,
;re writtef jtent dlo not depend on how big the triangle is. They depend only on the
© Yectcl)ll's, {lie nngle. The values of sine, cosine, and tangent for different angles can
ltﬁ:;ltsf):)i:: Il uning a scientific calculator, or from Tables (see inside rear cover).
elul tri tric identity i
Fig, 3-10, {ielul trigonometric identity is
sin? @ + cos?6 =1 (3-2)
} lollows from the Pythagorean theorem (o? + a*> = h* in Fig. 3-11).
[
2 2 2 + 2 h2
sin20+"c0520=%+%=0—hz—£-=-};2-=1.
= ulwo Appendix A for other details on trigonometric functions and
ast

Wiex.)
le use of trigonometric functions for finding the components of a

s necessary i I8 lllustrated in Fig, 3-12, where it is seen that a vector and its two

rpendicular Jnents can be thought of as making up a right triangle. We then see
V.and V. {he slne, cosine, and tangent are as given in the figure. If we multiply
sion of thzc; #linition of sin & = V,/V by V on both sides, we get

n which the V, = Vsin 6. (3-3a)

essary. j L. .
1 uily, [rom the definition of cos @, we obtain

need to use¢
IW review, V. = Vcos 6. (3-3b)
astructed b , .

3 {hist 0 is chosen (by convention) to be the angle that the vector
The longest o ye 1 5
hypotenuse with the positive x axis.

Y
1 SIf-ie adja- LVi1 convention is used, the vector component opposite the angle is proportional to
se sides, re- , whuther we call that component x or y. Most often we use the convention that it is
, cosine, and Sumponent (Eq. 3-3a).

FIGURE 3-11 Starting
with an angle 6 as in (a), we
can construct right triangles of
different sizes, (b) and (c), but
the ratio of the lengths of the
sides does not depend on the
size of the triangle.

Trig.
functions
defined

e

0 v, x
V.
. =_y
sin 6 v
V
cos@=-*
vV
V.
tan @ = ¥
VX

Vi=vis+Ve

FIGURE 3-12 Finding the
components of a vector using
trigonometric functions.

Components

of a

vector
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North
V (V=500m) Vy=Vsin 6=250m
V,=Vcos0=433m
6=30°
x x V =VV2+VZ=500m
0 East East y
(a) (b)

FIGURE 3-13 (a) Vector V represents a displacement of 500m at a 30° angle north of east.
(b) The components of V are V, and V, whose magnitudes are given on the right.

Using Egs. 3-3, we can calculate V, and V, for any vector, such as thal
lustrated in Fig. 3-10 or Fig. 3-12. Suppose V represents a displacemei
500 m in a direction 30° north of east, as shown in Fig. 3-13.Then V = 5()
From the trigonometric tables, sin 30° = 0.500 and cos 30° = 0.866. Then

V. = Vcos 6 = (500 m)(0.866) = 433 m (east),
V, = Vsin 6 = (500 m)(0.500) = 250 m (north).

Note that there are two ways to specify a vector in a given coordini|

system:
Two ways 1. We can give its components, V, and V).
toasf’ :ztl?; 2. We can give its magnitude V and the angle 6 it makes with the y(
itive x axis.
We can shift from one description to the other using Eqgs. 3-3, and, for (|
reverse, by using the theorem of Pythagoras' and the definition of tanguil
Components V=VVi+ Vi (3~
related to
magnitude and tan 8 = & (3-4
direction Vi
as can be seen in Fig. 3-12.
We can now discuss how to add vectors using components. The first al¢
is to resolve each vector into its components. Next we can see, using Fig. 3|
*In three dimensions, the theorem of Pythagoras becomes V = VV?2 + V2 + VZ, wherc 1|
the component along the third, or z, axis.
y
FIGURE 3-14 Y
- r----------------

The components of

| V=V, +Vare
V.=V, +V,and
Vy = Vly + V2y'

\<< - am .

-----------*‘

Vi
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*h as that il-
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5.Then
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(3-4a)

(3-4b)

‘'he first step
ng Fig. 3-14,

V2, where V, is

Ihe nddition of any two vectors V, and V, to give a resultant,
'V, | V,, implies that

Vi=WV, + Vy

3-5)
Vy - Vly + VZy'

il |4, 1he sum of the x components equals the x component of the result-
ll similarly for y. That this is valid can be verified by a careful exami-
Al 0l Fig. 3-14. But note carefully that we add all the x components
hier to get the x component of the resultant; and we add all the y com-
Uiln together to get the y component of the resultant. We do not add
Iponents to y components.

I the magmtude and direction of the resultant vector are desired, they
e oblained using Egs. 3-4.

{lie choice of coordinate axes is, of course, always arbitrary. You can
i 1educe the work involved in adding vectors by a good choice of axes—
‘Wiimple, by choosing one of the axes to be in the same direction as one
e vectors, Then that vector will have only one nonzero component.

QUUHA AN Mail carrier’s displacement. A rural mail carrier leaves

i post office and drives 22.0 km in a northerly direction to the next town.

B¢ (hen drives in a direction 60.0° south of east for 47.0km (Fig. 3-15a)
#nother town. What is her displacement from the post office?

i1 LUTION We want to find her resultant displacement from the origin.

B0 choose the positive x axis to be east and the positive y axis north, and

puilve cach displacement vector into its components (Fig. 3—-15b). Since
, as magnitude 22.0 km and points north, it has only a y component:

D, =0, D;,=220km
liervis D, has both x and y components:
D,, = +(47.0 km)(cos 60°) = + (47.0 km)(0.500) = +23.5 km
D,, = —(47.0 km)(sin 60°) = —(47.0 km)(0.866) = —40.7 km.

Molice that D,, is negative because this vector component points along
e negative y axis. The resultant vector, D, has components:

D, =D, +D,= Okm+ 235km = +23.5km

D, = D,, + D,, =22.0km + (—40.7 km) = —18.7 km
I specifies the resultant vector completely:

D,=235km, D,=-187km.

Wo can also specify the resultant vector by giving its magnitude and
ple using Egs. 3-4:

D = VD2 + D?*=V(235km)? + ( — 187 km)? = 30.0 km

D —18.7 km
= —y = = —
tan 6 D, 235 km 0.796.
¢ilculator with an INV TAN or TAN"! key gives @ = tan~!(—0.796) =
K.5°. The negative sign means 8 = 38.5° below the x axis, Fig. 3-15c.

Adding vectors
analytically
(by components)

Choice of axes
can simplify

effort needed
y
North
D f\e0o
X
Post” |0 \ East
office D,
(a)
D, 4
x
y
D,
X
0 D,
D
(©

FIGURE 3-15 Example 3-1.
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The signs of trigonometric functions depend on which “quadrant” thy
angle falls: for example, the tangent is positive in the first and third quad-
rants (from 0° te 90°, and 180° to 270°), but negative in the second and
fourth quadrants; see Appendix A-8. The best way to keep track of an-
gles, and to check any vector result, is always to draw a vector diagram. A
vector diagram gives you something tangible to look at when analyzing a
problem, and provides a check on the results.

= PROBLEM SOLVING Adding Vectors ‘

1.
2.

Here is a brief summary of how to add two or more
vectors using components:

Draw a diagram, adding the vectors graphically.
Choose x and y axes. Choose them in a way, if
possible, that will make your work easier. (For
example, choose one axis along the direction of
one of the vectors so that vector will have only
one component.)

Resolve each vector into its x and y compo-
nents, showing each component along its ap-
propriate (x or y) axis as a (dashed) arrow.
Calculate each component (when not given)
using sines and cosines. If 6, is the angle vector
V, makes with the x axis, then:

Vi, = V, cos 6,, Viy = Visin 6,.

Pay careful attention to signs: any component
that points along the negative x or y axis gets a
negative sign.

5. Add the x components together to get the x
component of the resultant. Ditto for y:

V. = Vi, + V,, + any others
V, =V}, + V,, + any others.
This is the answer: the components of the re-

sultant vector.

6. If you want to know the magnitude and direc-
tion of the resultant vector, use Eqs. 3—4:

|4
Ve oV AV S tan b=
The vector diagram you already drew helps to

obtain the correct position (quadrant) of the
angle 6.

Three short trips. An airplane trip involves three legs,

with two stopovers, as shown in Fig. 3-16a. The first leg is due east for
620 km; the second leg is southeast (45°) for 440 km; and the third leg is at 53°
south of west, for 550 km, as shown. What is the plane’s total displacement?

FIGURE 3-16 +y
Example 3-2. North

+y
North

+X -x
East 0

-y
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1ION We follow the steps in the above Problem Solving box:
(2): Already shown in Fig. 3-16a, where we have taken the x axis
(then D, has only an x component).

I8 Imperative to draw a good figure. The components are shown in
10h, Notice that instead of drawing all the vectors starting from a
Ol origin, as we did in Fig. 3-15b, here we have drawn them “tail-
4" utyle, which is just as valid and may make it easier to see.

HW we calculate the components:

D;: D, = +D,cos0° =D, =620km

. D,, = +D,sin0° =0km
get the x 4
y: D,: D, = +D,cos45° = +(440 km)(0.707) = +311 km
D,, = —D,sin 45° = — (440 km)(0.707) = —311 km
D, D, = —D;cos 53° = — (550 km)(0.602) = —331 km
of the re- D,, = —Djsin 53° = — (550 km)(0.799) = —439 km.
e B R titulully that we have given a minus sign to each component that Vector Components
3_4: ) 10b points in the negative x or negative y direction. We see why x(km) | y(km)
oo il drawing is so important. We summarize the components in the D, 620 0
% 10 (he margin. D, 311 | -31
Vi This v casy: D, | -331 | -439
w helps to ) D+ D, +D;, =620km + 311 km — 331km = 600km Dy 600 —750
BN Dy, + Dy + Dy, = Okm — 311 km ~ 439 km = ~750 km.
4 4 v components are 600 km and — 750 km, and point respectively
» vkl and south. This is one way to give the answer.
Wo cin also give the answer as
Dy = VD2 + D = V(600)* + (—750)’ km = 960 km

D, -750km
_ Yy _—/OVkm &0
s three legs, tan 0 = D, 600km 1.25, so § = —51°,
lue east for o _ .
1legis at 53° v wu assume only two significant figures. Thus, the total displace-

hin magnitude 960km and points 51° below the x axis (south of

slacement? p - & ]
) i was shown in our original sketch, Fig. 3-16a.

' Projectile Motion

Miler 2, we studied the motion of objects in one dimension in terms of
I ent, velocity, and acceleration, including purely vertical motion of
| hindles undergoing acceleration due to gravity. Now we examine the
el motion of objects moving through the air in two dimensions
Ahie Hvih's surface, such as a golf ball, a thrown or batted baseball,
il luotballs, speeding bullets, and athletes doing the long jump or high

SECTION 3-5
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Horizontal and
vertical motion
analyzed separately

FIGURE 3-18 Projectile
motion. (A vertically falling
object is shown at the left for
comparison. )
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FIGURE 3-17 This strobe photograph of a soccer ball in the air shows (|
characteristic “parabolic” path of projectile motion.

jump. These are all examples of projectile motion (see Fig. 3-17), which
can describe as taking place in two dimensions. Although air resistancg
often important, in many cases its effect can be ignored, and we will ignofg
in the following analysis. We will not be concerned now with the procesy
which the object is thrown or projected. We consider only its motion «fl¢)
has been projected and is moving freely through the air under the actio
gravity alone. Thus the acceleration of the object is that due to gravity, wij
acts downward with magnitude 8 = 9.80m/ s, and we assume it is constiif
Galileo first accurately described projectile motion. He showed thil
could be understood by analyzing the horizontal and vertical componei(i]
the motion separately. This was an innovative analysis, not done in this

"This restricts us to objects whose distance traveled and maximum height above the |
are small compared to the Earth’s radius (6400 km).

¥ Projectile
N motion
J

- e




prior to Galileo. (It was also idealized in that it did not take into
i tosistance.) For convenience, we assume that the motion begins
() at the origin of an xy coordinate system (so x, = y, = 0).

W look at a (tiny) ball rolling off the end of a table with an initial
¥, In the horizontal (x) direction. See Fig. 3—18 (also shown is an
{ fmg vertically, for comparison). The velocity vector v at each in-
iy In the direction of the ball’s motion at that instant and is al-
@it to the path. Following Galileo’s ideas, we treat the horizontal
il components of the velocity, v, and v,, separately, and we can
kinematic equations (Egs. 2—- 10a through 2-10d) to each.

Wwo cxamine the vertical (y) component of the motion. Once the
bus Lhe table (at ¢ = 0), it experiences a vertically downward acceler-
v ncceleration due to gravity. Thus v, is initially zero but increases

shows the ll{ {n the downward direction (until the ball hits the ground). Let us
8 o positive upwards. Then a, = —g, and from Eq. 2-10a we can
. g since the initial velocity in the vertical direction (v,,) is zero.
), which we : ; R e Y
osistance i il displacement, y, is given by y = —3 g%, if we set y, = 0.
oy 4 Hie horizontal direction, on the other hand, there is no acceleration.
vill ignore it ;
A lzontal component of velocity, v,, remains constant, equal to its
» process by

wluy, v,,, and thus has the same magmtude at each point on the
Hh# \wo vector components, v, and ¥, can be added vectorially to
Al velocity v for each point on the path, as shown in Fig. 3-18.

W funult of this analysis, which Galileo himself predicted, is that an
Wofected horizontally will reach the ground in the same time as an

stion after it
he action ol
-avity, which
is constant.'

;wiiégg ol:’ Wiopped vertically. This is because the vertical motions are the same
pone {iMus, as shown in Fig. 3-18 where on the left a falling object is
s in this way

Plgure 3-19 is a multiple-exposure photograph of an experiment
flims this.

4l object is projected at an upward angle, as in Fig. 3-20, the
4 In similar, except that now there is an initial vertical component
Miiity, 1,,. Because of the downward acceleration of gravity, v, con-
iy (decrenses until the object reaches the highest point on its path in
* ), nt which point v, = 0. Then v, starts to increase in the down-
Elifoction, as shown (that is, becoming negative). As before, v, re-
Lonstant,

sove the Earth

v, =0 at this point

\{

FIGURE 3-19 Multiple-exposure
photograph showing positions of two
balls at equal time intervals. One ball
was dropped from rest at the same time
the other was projected horizontally
outward. The vertical position of each
ball is seen to be the same.

FIGURE 3-20 Pathofa
projectile fired with initial
velocity v, at angle 0 to the
horizontal. Path is shown in
black, the velocity vectors are
green arrows, and velocity
components are dashed.
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s Solving Problems Involving
Projectile Motion

We now work through several Examples of projectile motion quantf
tively. We use the kinematic equations (2-10a through 2-10c) separilg
for the vertical and horizontal components of the motion. These ¢\
tions are shown separately for the x and y components of the motio
Table 3-1, for the general case of two-dimensional motion. Note thi
and y are the respective displacements, that v, and v, are the compong|

y
of the velocity, and that a, and a, are the components of the accelerat|d

The subscript , means “at ¢t = 0.”

TABLE 3-1 General Kinematic Equations for
Constant Acceleration in Two Dimensions

x Component (horizontal) y Component (verti¢
v, =V, t+ at (Eq.2-10a) Y, = Uy + ayt

X =%y + 00t + lat? (Eq.2-10b) Ya=0Yo staVyol iy ya 8
2= v + 2a, (x — x;) (Eq.2-10c) vl =%+ 2a,(y

We can simplify these equations for the case of projectile motion £
cause we can set a, = 0. See Table 3-2, which assumes y is positive upwi
soa, = —g= —9.80 m/s?. Note that if 0 is chosen relative to the + . i
as in Fig. 3-20, then v, = v, cos 6, and v, = v, sin 6.

TABLE 3-2 Kinematic Equations for Projectile Motion
ly positive upward; a, = 0, a, = —g = -9.80 m/s?)

Horizontal Motion Vertical Motion'

(a, = 0,v, = constant) (a, = —g = constunf

v, = Uy (Eq.2-10a) v, = Uy — 8t

X =Xg + vt (Eq.2-10b) ¥ = Yo+ vyt — g1t
(Eq.2-10c) v = 02 ~ 2gy

'If y is taken positive downward, the minus (—) signs become + signs.
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PAROBLEM SOLVING Projectile Motion

pproach to solving problems that we dis-
| In Scction 2—6 also applies here. However,
i problems involving projectile motion can
110 1 bit of creativity, and cannot be done just
fiply following some rules. Certainly you
#void just plugging numbers into equations
feom to “work.”

AN nlways, read carefully and draw a careful
.,

L loose an origin and an xy coordinate system.
Alulyze the horizontal (x) motion and the ver-
titnl (y) motion separately. If you are given the

)lnl velocity, you may want to resolve it into
% v and y components.

m quantita-
) separately
Chese equa-
e motion in
Note that x
components
icceleration.

3. List the known and unknown quantities, choosing

a, =0anda, = —gor +g, where g = 9.80m/s>
dependlng on whether you choose y positive up
or down. Remember that v, never changes
throughout the trajectory, and that v, = 0 at
the highest point of any trajectory that returns
downward. The velocity just before hitting the
ground is generally not zero.

Think for a minute before jumping into the
equations. A little planning goes a long way.
Apply the relevant equations (Table 3-2), com-
bining equations if necessary. You may need to
combine components of a vector to get magni-
tude and direction (Egs. 3-4).

it (vertical) 7
ayt ALY 5N Driving off a cliff. A movie stunt driver on a motorcy-
of + ta 22 I8 ipeeds horizontally off a 50.0-m-high cliff. How fast must the motor-
yza O 2 Yo) tlv lcave the cliff-top if it is to land on level ground below, 90.0 m from
e ARl n huse of the cliff (Fig. 3-21) where the cameras are?
M.UTION We take the y direction to be positive upward, with the top
] al the cliff as y, = 0, so the bottom is at y = — 50.0 m. First, we find how
: motion be- Mg It takes the motorcycle to reach the ground below. We use Eq. 2-10b
ive upwards, )l (he vertical (y) direction (Table 3-2) with y, = 0, and v, = 0:
the +x axis, 1
! y =8
‘Wo wolve for r and set y = —50.0m:
/ 2y ,2(— 50.0 m)
n -8 —9.80 m/s? 2
0 m/s?) 1) calculate the initial velocity, v,,, we again use Eq. 2-10b, but this time
L rerd lor the horizontal (x) direction, with @, = 0 and x, = 0:
= constant) X = vt
8t x _900m
yot — 38t Yo T, Thaion e 282 m/s,
2
2 Which is 101 km/h.
e FIGURE 3-21
Example 3-3.

90.0m I 61




FIGURE 3-22 Example 34.

W PHYSICS APPLIED

Sports

vy, = 0 at this point

0 V0

A kicked foothall. A football is kicked at an
6, = 37.0° with a velocity of 20.0m/s, as shown in Fig. 3-22. Cul¢
(a) the maximum height, (b) the time of travel before the foothull
the ground, (c) how far away it hits the ground, (d) the velocity vec(s
the maximum height, and (e) the acceleration vector at maximum i
Assume the ball leaves the foot at ground level.

SOLUTION This may seem difficult because there are so many
tions. But we can deal with them one at a time. We take the y dircotid
positive upward. The components of the initial velocity are (Fig, 3

V9 = Y, co0s 37.0° = (20.0 m/s)(0.799) = 16.0 m/s
V9 = v, 8in 37.0° = (20.0 m/s)(0.602) = 12.0 m/s.

(a) At the maximum height, the velocity is horizontal (Fig. 3-22
v, = 0; and this occurs (see Eq. 2-10a in Table 3-2) at time

t=v,/g = (120m/s)/(9.80 m/s?) = 1.22s.
From Eq. 2-10b, with y, = 0, we have
y =0, — 38t
= (12.0 m/s)(1.22 s) — 3(9.80 m/s?)(1.22 5)? = 7.35 m,
Alternatively, we could have used Eq. 2-10c, solved for y, and fou)
_ %~ % _ (120m/s? — (Om/s)’
2g 2(9.80 m/s?)

(b) To find the time it takes for the ball to return to the ground,
Eq. 2-10b with y, = 0 and also set y = 0 (ground level):

y =735m.

Y=o+ vyt — 38
0 =0 + (12.0m/s)t — 1(9.80 m/s?)1
which is an equation that can be easily factored:
[£(9.80 m/s?)¢t — 12.0 m/s]¢ = 0.
There are two solutions, ¢ = 0 (which corresponds to the initial point, y}

_2(12.0m/s)
"~ (9.80 m/s?)

which is the result we sought.

=245s,

62 CHAPTER3 Kinematics in Two Dimensions; Vectors




an angle
Calculate
otball hits
/ vector at
1m height.

1any ques-
irection as
g. 3-22):

3-22), so

35m.

found

nd, we use

int, y,), and

& lotal distance traveled in the x direction is found by applying
b with x; = 0,a, = 0,v,, = 16.0m/s:

v = = (16.0m/s)(2.45s) = 39.2 m. ’

i the highest point, there is no vertical component to the velocity.
I only the horizontal component (which remains constant through-
flight), so v = v,5 = v, cos 37.0° = 16.0m/s.
0 nceeleration vector is the same at the highest point as it is
ot the flight, which is 9.80 m/s?> downward.

' [ UAL EXAMPLE 3-5| Where does the apple land? A child
] llghl in a wagon which is moving to the right at constant speed as
M In Fig. 3-23. The child extends her hand and throws an apple
{ upward (from her own point of view, Fig. 3-23a), while the
I} continues to travel forward at constant speed. If air resistance is

#lod, will the apple land (a) behind the wagon, (b) in the wagon, or
ffont of the wagon?

FONSE  The child throws the apple straight up from her own point
¥ with initial velocity v,, (Fig. 3-23a). But when viewed by someone
gt ound, the apple also has an initial horizontal component of veloc-
il 1o the speed of the wagon, v,,. Thus, to a person on the ground,
apple will follow the path of a projectile as shown in Fig. 3-23b. The
Uxperiences no horizontal acceleration, so v,, will stay constant and
{0 the speed of the wagon. As the apple follows its arc, the wagon
o dircctly under the apple at all times because they have the same
Jital velocity. When the apple comes down, it will drop right into the
W), ind into the outstretched hand of the child. The answer is (b).

CEPTUAL EXAMPLE 3-6| The wrong strategy. A boy on a small
s his water-balloon slingshot horizontally, straight at a second
linging from a tree branch a distance d away, Fig. 3-24. At the in-
| {he water balloon is released, the second boy lets go and falls from

v, hoping to avoid being hit. Show that he made the Wrong move.
o't studied physics yet.)

PONSE Both the water balloon and the boy in the tree start falling at
Sanie instant, and in a time ¢ they each fall the same vertical distance
141", In the time it takes the water balloon to travel the horizontal dis-
(l, the balloon will have the same y position as the falling boy. Splat. If
iy had stayed in the tree, he'd have saved himself the humiliation.

il
I

. ﬁﬁ{ S|

3
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Yoy

(a) Wagon reference frame

(b) Ground reference frame

FIGURE 3-23
Conceptual Example 3-5.

FIGURE 3-24
Conceptual Example 3-6.




WPHYSICS APPLIED Level horizontal range. (a) Derive a formula for the
Horizontal range of a projectile | izontal range R of a projectile in terms of its initial velocity v, and i) !

The horizontal range is defined as the horizontal distance the projectil¢

y els before returning to its original height (which is typically the grounl )
X=0 y=0Oagainhere | I8,y (final) = y,. See Fig. 3-25. (b) Suppose one of Napoleon’s canni .I
¥=0 ——>~_ (wherex=R) a muzzle velocity, vy, of 60.0m/s. At what angle should it have been I

'50 N / (ignore air resistance) to strike a target 320 m away?

R—J* SOLUTION (a) We set Xy =0and y, = 0at ¢ = 0. After the projé
(a) travels a horizontal distance R, it returns to the same level, y = ()

final point. So to find a general expression for R, we set both y=A

Y 60° Yo = 0in Eq. 2-10b for the vertical motion, and obtain
- 1_.2
e . “\\\ Vyot —58t°=0.

LT e~ *:\:i‘f" We solve for ¢, which gives two solutions: t=0andr=2v,/g The

* solution corresponds to the initial instant of projection and the SCCOM

(b) the time when the projectile returns to y = 0. Then the range, R, wil
€qual to x at the moment ¢ has this value, which we put into Eq. 2
FIGURE 3-25 Exa{npl.e 3-7 | for the horizontal motion (x = » t, with x;, = 0). Thus we have:
x0 0
(a) The range R of a projectile;

(b) shows how generally there 2v,, 20,00,  20Zsin 6, cos 6,

are two angles 6, that will give R=x=uv,= Uro (~) = s [y
the same range. Can you show § & &

that if one angle is 6,,, the other where we have written Yr0 = ¥y €08 6y and v, = v, sin 6. This is (¢

is 6, = 90° — 6,7 sult we sought, and it can be rewritten, using the trigonometric iy}

2sin@ cos 6 = sin 29 (Appendix A), as

Level range formula _ Vg sin 26,
- R __— Y, I); =
[y (final) = Yol g

We see that the maximum range, for a given initial velocity, v, Ix

tained when the sine takes on its maximum value of 1.0, which occurg
26, = 90° so

6 = 45° for maximum range, and R = v3/g.

[When air resistance is important, the range is less for a given v, il |
maximum range is obtained at an angle smaller than 45°] Note thal
maximum range increases by the square of Vp, 80 doubling the muzzl¢
locity of a cannon increases its maximum range by a factor of 4.

(b) From the equation we just derived, Napoleon’s cannon should
aimed (assuming, unrealistically, no air resistance) at an angle 6, givell

. Rg _ (320 m)(9.80 m/s?)
=—= = 0.871.
sin 26, 2 (60.0 m/s)? 871
We want to solve for an angle 6, that is between 0° and 90°, which nig
28, in this equation can be as large as 180°. Thus, 26, = 60.6° is a solull

but 26, = 180° — 60.6° = 119.4° is also a solution (see Appendix A H)
general we will have two solutions, which in Napoleon’s case are givel

6, = 30.3° or 59.7°.

Either angle gives the same range. Only when sin 26, = 1 (s0 6, = 48
there a single solution (that is, both solutions are the same).
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for the hor-
nd angle 6,
yjectile trav-
round); thal
:annons had
been aimed % - o S

€ projectilc
, ¥ =0, the
1y = 0and

Ground :

/g. The first
1€ second is
e, R, will be
> Eq. 2-10b
ve:

virLe 3-8 [ punt. Suppose the football in Example 3-4 was a
Wil left the punter’s foot at a height of 1.00m above the ground.
fir did the football travel before hitting the ground? Set x, = 0,
),

JTION We cannot use the range formula from Example 3—7 be-
It i¥ valid only if y (final) = y,, which is not the case here. Now we
¥}, 0, and the football hits the ground where y = —1.00m (see
-} 20). We can get x from Eq. 2-10b, x = v,,t, since we know that
16,0 m/s. But first we must find ¢, the time at which the ball hits the
i, With y = —1.00m and v,y = 12.0m/s (see Example 3-4), we
(e cquation

y = vl

iis is the re-
tric identity

[y =yl 1 s
y=YO+’vy0t_§gt s
ty, vg, is ob-

1 obtain
:h occurs for

1.00m = 0 + (120 m/s)t — (4.90 m/s?)¢2.

" fuimrange this equation into standard form so we can use the quad-
e lormula (Appendix A-4):

(4.90 m/s*)t* — (120 m/s)t — (1.00 m) = 0.

It the quadratic formula gives

0 v, and the
[ote that the
e muzzle ve-
4.

n should be
e 6, given by

- 120m/s & V(12.0 m/s)* — 4(4.90 m/s%)(—1.00 m)
a 2(4.90 m/s?%)

=253s or —0.081s.

i nucond solution would correspond to a time previous to the kick, so it
W'l apply here. With ¢ = 2.53 s for the time at which the ball touches
firound, the distance the ball traveled is (putting v,, = 16.0 m/s, from
mple 3-4):

x = vt = (16.0m/s)(2.53 s) = 40.5m.

which means
is a solution,
1dix A-8). In
are given by

ilo that our assumption in Example 3—4 that the ball leaves the foot at
il level results in an underestimate of about 1.3 m in the distance

> 6, = 45%) is
' yeled,

FIGURE 3-26

Example 3-8: the football leaves
the punter’s foot at y = 0, and
reaches the ground where

y = —1.00m.

™ pPHYSICS APPLIED

Sports

= PROBLEM SOLVING

Do not use any formula unless you
are sure its range of validity fits the
problem. The range formula does
notapply here because y # y,
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* E¥UA Projectile Motion Is Parabolic

We now show that the path followed by any projectile is a parabola, If
can ignore air resistance and can assume that g is constant. To do s,
need to find y as a function of x by eliminating  between the two equal|
for horizontal and vertical motion (Eq. 2-10b), and we set x, = y, = (i

X = Vot
= 1.2
y= y0 _igt'

From the first equation, we have ¢ = x/v,,, and we substitute this inlo
second one to obtain

_ (YN _ [ 8 ).
g ('Uxo)x (zvio)x )

If we write v, = v, c0s 6, and v,, = v,sin 6,, we can also write

= Y 2
y = (tan 6y)x ( 202 cos? oo)x .

In either case, we see that y as a function of x has the form
y = ax — bx?,

where a and b are constants for any specific projectile motion. This {§
well-known equation for a parabola. See Figs. 3-17 and 3-27.
(b) The idea that projectile motion is parabolic was, in Galileo’s di
the forefront of physics research. Today we discuss it in Chapter 3 of
FIGURE 3-27 Examples troductory physics!
of projectile motion—sparks
(small hot glowing pieces of
metal) and fireworks. Both * .
exhibit the parabolic path Relative VCIOCltY
characteristic of projectile
motion, altifough the effects We now consider how observations made in different reference framey
of air resistance can be seen related to each other. For example, consider two trains approaching {
to alter the path of some another, each with a speed of 80km/h with respect to the Earth, €
trajectories. servers on the Earth beside the tracks will measure 80 km/h for the i)
of each of the trains. Observers on either of the trains (a different ¢
ence frame) will measure a speed of 160km/h for the other train
proaching them. Similarly, when one car traveling 90 km/h passes a sef
[ car traveling in the same direction at 75 km/h, the first car has a speed
ative to the second car of 90km/h — 75km/h = 15km/h.

When the velocities are along the same line, simple addition or i
; traction is sufficient to obtain the relative velocity. But if they are
along the same line, we must make use of vector addition. We emphi
as mentioned in Section 2-1, that when specifying a velocity, it is ini
tant to specify what the reference frame is.

When determining relative velocity, it is easy to make a mistak¢
adding or subtracting the wrong velocities. It is important, therefor
draw a diagram and use a careful labeling process that makes things ¢
Each velocity is labeled by two subscripts: the first refers to the objecl
second to the reference frame in which it has this velocity. For exuij
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A hoat is to cross a river to the opposite side, as shown in Fig. 3-28.
¥y be the velocity of the Boat with respect to the Water. (This is

Ml lhe boat’s veloc1ty would be relative to the shore if the water
all.) hlmllarly, vps is the velocity of the Boat with respect to the
M vy is the velocity of the Water with respect to the Shore (this is
i thrent). Note that g,y is what the boat’s motor produces (against
I81), whereas vig is equal to vy plus the effect of the current. There-
b volocity of the boat relative to the shore is (see vector diagram,

)

-abola, if we
‘0 do so, we
70 equations
=Y =0

Vis = Vpw T Vys. (3-6)

iling the subscripts via the convention above, we see that the inner
(L) (the two W’s) on the right-hand side of Eq. 3-6 are the same,
{he outer subscripts on the right of Eq. 3—6 (the B and the S) are
0 it the two subscripts for the sum vector on the left, vgg. By fol-
{hix convention (first subscript for the object, second for the refer-
Mv), one can write down the correct equation relating velocities in
Wl telerence frames.” Equation 3-6 is valid in general and can be
il 1o three or more velocities. For example, if a fisherman on the
Wlky with a velocity vgg relative to the boat, his velocity relative to
0 I8 vpg = veg + ¥y + Vys. The equations involving relative ve-
Wil be correct when adjacent inner subscripts are identical and
¢ outermost ones correspond exactly to the two on the velocity on
0l Ihe cquation. But this works only with plus signs (on the right),
N nigns.

Il I8 often useful to remember that for any two objects or reference
/A and B, the velocity of A relative to B has the same magnitude,
inlte direction, as the velocity of B relative to A:

Voa = ~Vap 3N

Siple, if a train is traveling 100 km/h relative to the Earth in a cer-
dijuction, objects on the Earth (such as trees) appear to an observer
f1iin 10 be traveling 100 km/h in the opposite direction.

this into the

n. This is the

ileo’s day, at
pter 3 of in-

ce frames arc
roaching onc
e Earth. Ob-
for the speed
fferent refer-
her train ap-
1sses a second
i1s a speed rel-

l UAL EXAMPLE 3-9| Crossing a river. A man in a rowboat
A (o cross a river that flows due west with a strong current. The
strty on the south bank and is trying to reach the north bank di-
forth from his starting point. He should:

. liend due north.

L hend due west.

. liead in a northwesterly direction.

dition or sub- hond in a northeasterly direction.
they are not
Ve emphasize,

y, it is impor-

PONSE The current will drag the boat westward, so to counteract
tion the boat must head in a northeasterly direction (see Fig. 3-28).
Aetunl angle depends on the strength of the current and how fast the
L iloves relative to the water. If the current is weak and the rower is
W, thun the boat can head almost, but not quite, due north.

a mistake by
, therefore, to
s things clear.
the object, the

would know by inspection that (for example) the equation vgy = vgg + Vyyg is
For example,

@ PROBLEM SOLVING

Subscripts for adding velocities:
first subscript for the object;
second for the reference frame

Follow the subscripts

FIGURE 3-28 The boat
must head upstream at an angle
0 if it is to move directly across
the river. Velocity vectors are
shown as green arrows:
vgs = velocity of Boat with
respect to the Shore,

vgw = velocity of Boat with
respect to the Water,
vws = velocity of the Water

with respect to the
Shore (river current).
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River current

. Vws

i

FIGURE 3-29
Example 3-10.

FIGURE 3-30 Example
3-11: a boat heading directly
across a river whose current
moves at 1.20m/s.

Current (Vys)

Vws

Heading upstream. A boat’s speed in still wal
vgw = 1.85m/s. If the boat is to travel directly across a river whoig:

rent has speed vyg = 1.20 m/s, at what upstream angle must the
head? (See Fig. 3-29.)

SOLUTION Figure 3-29 has been drawn with vgg, the velocity (i
Boat relative to the Shore, pointing directly across the river since
how the boat is supposed to move. (Note that vgg = Vpw + vys)
complish this, the boat needs to head upstream to offset the ¢l
pulling it downstream. Thus, Vgw points upstream at an angle 6 as )
From the diagram,

Vys _ 1.20m/s
vgw 1.85m/s

Thus 6 = 40.4°, so the boat must head upstream at a 40.4° angle.

sin 6 = = 0.6486.

Heading across the stream. The same boat (I}
1.85m/s) now heads directly across the stream whose current |
1.20 m/s. () What is the velocity (magnitude and direction) of the
relative to the shore? (b) If the river is 110 m wide, how long will if
to cross and how far downstream will the boat be then?

SOLUTION (a) As shown in Fig. 3-30, the boat is pulled downs{§
by the current. The boat’s velocity with respect to the shore, vy, '
sum of its velocity with respect to the water, Vgw, plus the velocity @
water with respect to the shore, vys:

Vps = Vaw T Vws,
just as before. Since gy is perpendicular to Vyg, we can get Vgg unlil
theorem of Pythagoras:
vgs = Vhy + Vs = V(1.85m/s)? + (1.20 m/s)* = 2.2{
We can obtain the angle (note how 8 is defined in diagram) from:
tan 0 = vyg/Vgw = (1.20 m/s)/(1.85 m/s) = 0.6486.

A calculator with an INV TAN or TAN ! key gives 6 = tan~! (0.6486) =
Note that this angle is not equal to the angle calculated in Exampl¢
(b) Given the river’s width D = 120 m and using the definition of

ity, we solve for t = D/vgy » where we use the velocity componcil

direction of D; so t = 110m/1.85 m/s = 60s. The boat will have
carried downstream, in this time, a distance

d = vyst = (120m/s)(60s) = 72 m.

Airplane with crosswind. A plane whose airf

200 km/h heads due north. But a 100-km/h northeast wind (thal %

ing from the northeast) suddenly begins to blow. What is the resulll
locity of the plane with respect to the ground?

SOLUTION The two velocity vectors, and their components, (1¢
in Fig. 3-31a. They are drawn with a common origin for convel
vp Tepresents the velocity of the plane with respect to the air; (il
wind velocity is v,g, the velocity of the air with respect to the (8
The resultant velocity, Ve, the velocity of the plane with respedl |




ill water is I given by:

* whose cur-

ist the boat Vi = Vea T Vag-

| hus only a y component:
”l’l\.\‘ =0 km/h
Upay = Vpa = 200 km/h.

ocity of the
since this is
Vys.) To ac-
the current
0 as shown,
flugntive x axis):

¢ tive of our subscript rule, Eq. 3—6 above. Since vy, is along the

Hiponents of v, are (note unconventional choice of 45° angle,

UAGy = ~Uag €08 45° = — (100 km/h)(0.707) = —70.7 km/h
Uacy = ~Vag SIn45° = — (100 km/h)(0.707) = —70.7 km/h.

’

1gle. 41 nd v, are negative because their directions are, respectively, y

{he negative x and negative y axes. The components of the resultant
yoat (vaw = 'y e vPG_ vmy
rrent is still by = Okm/h —70.7km/h = —70.7 km/h, |
) of the boat |
g will it take Upay = 200 km/h — 70.7 km/h = +129 km/h. l g

it} the magnitude of the resultant velocity using the Pythagorean VpGx *
downstream UL
'€, Vs, is the Do = Ve, + vhg, = 147 km/h,
slocity of the ) )

Uil the angle 6 that vy makes with the x axis (Fig. 3-31b), we use (b)
un o= v 129km/h ) o0 FIGURE 3-31

~ —707km/h
vgs Using the Vrox m/

Il we nlrcady know from the diagram.) Then
0 = tan"' (—1.825) = —61.3°.

' =221 m/s.
from:
186.

¥86) = 33.0°,

I MMARY

Example 3-12.

lupitive sign results because 6 is with respect to the negative x axis,

xample 3-10.
tion of veloc-
ponent in the
ill have been

ANty that has both a magnitude and a direc-
thlled a vector. A quantity that has only a
Wi is called a scalar.

tlilition of vectors can be done graphically by
i the Lail of each successive arrow at the tip
jiovious one. The sum, or resultant vector, is
10w drawn from the tail of the first to the tip
list. 1wo vectors can also be added using the
lopram method.

Clors can be added more accurately by
{heir components along chosen axes with
Il of trigonometric fupctions. A vector of
Hiile V making an angle 6 with the x axis has
oty

se airspeed is
(that is, com-
: resulting ve-

ats, are shown
convenience;
e air; and the
o the ground.
respect to the

V.=Vcos 8 V, = Vsin 6.

Given the components, we can find the magni-
tude and direction of a vector from

V=VVi+VZ, tan0=%-
Projectile motion of an object moving in an
arc near the Earth’s surface can be analyzed as two
separate motions if air resistance can be ignored.
The horizontal component of motion is at constant
velocity, whereas the vertical component is at con-
stant acceleration, g, just as for a body falling verti-
cally under the action of gravity.

The velocity of an object relative to one frame of
reference can be found by vector addition if its veloc-
ity relative to a second frame of reference, and the rel-
ative velocity of the two reference frames, are known.

Summary 69



J_ QUESTIONS

1. Does the odometer of a car measure a scalar or a
vector quantity? What about the speedometer?

2. Two vectors are added together, and their vector
sum is zero. What can you say about the magnitude
and direction of the two initial vectors?

3. Can the displacement vector for an object moving in
two dimensions ever be longer than the length of
path traveled by the object over the same time inter-
val? Can it ever be less? Discuss.

4. During baseball practice, a batter hits a very high fly
ball, and then runs in a straight line and catches it.
Which had the greater displacement, the player or
the ball?

S.If V=V, +V,, is V necessarily greater than V;
and/or V,? Discuss.

6. Two vectors have magnitudes V; = 3.5km and
V, = 40km. What are the maximum and minimum
magnitudes of their vector sum?

7. Can two vectors, of unequal magnitude, ever add up
to give the zero vector? Can three unequal vectors?
Under what conditions?

8. Can the magnitude of a vector ever (a) equal, or (b) be
less than, one of its components?

. PROBLEMS

9.

10.

11.

12.

13.

14.

Can a vector of magnitude zero have a nony

component?

One car travels due east at 50km/h, and a sce
car travels north at 50km/h. Are their velocil
equal? Explain.

A projectile has the least speed at what point in its pil
What physical factors are important for an athl¢
doing the long jump? What about the high jump?

A child wishes to determine the speed a sling¥

imparts to a rock. How can this be done using ol

meter stick, a rock, and the slingshot?

If you are riding on a train that speeds past anoil
train moving in the same direction on an adjug
track, it appears that the slower moving train is ni
ing backwards. Why?

. Two rowers, who can row at the same speed in M

water, set off across a river at the same time. €
heads straight across and is pulled downstream soif§
what by the current. The other one heads upstrea
an angle so as to arrive at a point opposite the staf(j
point. Which rower reaches the opposite side first/

SECTIONS 3-2 TO 3-4

1. (I) A car is driven 125km west and then 65km
southwest. What is the displacement of the car from
the point of origin (magnitude and direction)? Draw
a diagram.

2. (I) A delivery truck travels 14 blocks north, 16 blocks
east, and 26 blocks south. What is its final displacement
from the origin? Assume the blocks are equal length.

3. (I) The three vectors in Fig. 3-32 can be added in six
different orders (V; + V, + V;, V; + V, + V,, etc.).
Show on a diagram that the same resultant is ob-
tained no matter what the order.

4. () If V, = 18.80 units and V, = —16.40 {mits, deter-
mine the magnitude and direction of V.

5. (I1) Graphically determine the resultant of the follow-
ing three vector displacements: (1) 24 m, 30° north of
east; (2) 28 m, 37° east of north; and (3) 20ym, 50° west
of south.

FIGURE 3-32°
Problem 3.

10

/1 A +

FIGURE 3-33 Problem?7.

. (I) V is a vector 24.3 units in magnitude and point

an angle of 54.8° above the negative x axis. (@) Sk¢
this vector. (b) Find V, and V. (c) Use V, and V, to §
tain (again) the magnitude and direction of V. |N¢
Part (c) is a good way to check if you've resolved yi
vector correctly.]

. (IT) Figure 3-33 shows two vectors, A and B, wl|

magnitudes are A = 8.31 units and B = 5.55 ul -'
Determine Cif @) C=A+ B, (b)) C=A =
(c) C = B — A. Give the magnitude and dircoll
for each.

\£)

e = Vv,




vy 38.5°
5 km/h)

Ve a nonzero

and a second
heir velociticy

oint in its path!
for an athlety
high jump?
ed a slingshot
1€ using only i

S

Is past another FIGURE 3-34
»m an adjacenl

ig train is mov-

Problem 9.

Nevlor V, is 8.08 units long and points along the
IIvo v uxis. Vector 'V, is 4.51 units long and points
190)" to the positive x axis. (¢) What are the x
¥ tonmponents of each vector? (b) Determine the
il the (wo vectors (magnitude and angle).

A# nirplane is traveling 785 km/h in a direction
wuit of north (Fig. 3-34). (a) Find the compo-
4 0l the velocity vector in the northerly and
{¢1ly dircctions. (b) How far north and how far
hiw the plane traveled after 3.00 h?

I he components of a vector V are often writ-
(V.. V,, V,). What are the components and
Il of o vector which is the sum of the two vec-
%, V, ind V,, whose components are (3.0, 2.7, 0.0)
(1Y, ~4.1, -1.4)?

} 1 e vectors are shown in Fig. 3-35. Their mag-
filon re given in arbitrary units. Determine the
| 0f the three vectors. Give the resultant in terms of
| Lumponents, (b) magnitude and angle with x axis.

y

e speed in still
ame time. Ong
/mstream some:
1ds upstream al
site the starting
te side first?

n7.

de and points al
- axis. (a) Sketcli

V, and V, to ob:
tion of V. [Note!
ve resolved your

6'\
2 N
) U

56.0°
28.0°

A and B, whos¢
B = 5.55 unity,
by C=A - B
le and directioi}

C(C=46.38)

RE 3-35 Problems 11,12,13, 14, and 15.
| ognitudes are given in arbitrary units.

12. (II) Determine the vector A — C, given the vectors
A and C in Fig. 3-35.

13. (II) (a) Given the vectors A and B shown in Fig, 3-35,
determine B — A. (b) Determine A — B without
using your answer in (a). Then compare your re-
sults and see if they are opposite.

14. (II) For the vectors given in Fig. 3-35, determine
@A-B+C,(b)A+B—C,and (¢) B — 2A.

15. (II) For the vectors shown in Fig. 3-35, determine
(@)C - A -B,(b)2A - 3B + 2C.

16. (IT) (a) A skier is accelerating down a 30.0° hill at
3.80m/s? (Fig. 3-36). What is the vertical compo-
nent of her acceleration? (b) How long will it take
her to reach the bottom of the hill, assuming she
starts from rest and accelerates uniformly, if the ele-
vation change is 335 m?

== S
‘h.\\;\

FIGURE 3-36 Problem 16.

17. (II) The summit of a mountain, 2085m above base
camp, is measured on a map to be 4580 m horizontally
from the camp in a direction 32.4° west of north. What
are the x, y, and z components of the displacement
vector from camp to summit? What is its length?
Choose the x axis east, y axis north, and z axis up.

18. (III) You are given a vector in the xy plane that has
a magnitude of 90.0 units and a y component of
— 55.0 units. (@) What are the two possibilities for its
x component? (b) Assuming the x component is
known to be positive, specify the vector which, if you
add it to the original one, would give a resultant vec-
tor that is 80.0 units long-and points entirely in the
— x direction.

Problems n



SECTIONS 3-5 AND 3-6
(neglect air resistance)

19.

20.

21.

22.

12

(I) A tiger leaps horizontally from a 7.5-m-high rock
with a speed of 4.5 m/s. How far from the base of
the rock will she land?

(I) A diver running 1.6 m/s dives out horizontally
from the edge of a vertical cliff and reaches the
water below 3.0s later. How high was the cliff and
how far from its base did the diver hit the water?

(II) A fire hose held near the ground shoots water at
a speed of 6.5 m/s. At what angle(s) should the noz-
zle point in order that the water land 2.0m away
(Fig. 3-37)? Why are there two different angles?

f 20m >

FIGURE 3-37 Problem 21.

(I1) Romeo is chucking pebbles gently up to Juliet’s
window, and he wants the pebbles to hit the win-
dow with only a horizontal component of velocity.
He is standing at the edge of a rose garden 8.0m
below her window and 9.0 m from the base of the
wall (Fig. 3-38). How fast are the pebbles going
when they hit her window?

f 9.0m +

FIGURE 3-38 Problem 22.

CHAPTER 3

23.

25.

26.

27.

29,

31.

32.

33.

34.

3s.

Kinematics in Two Dimensions; Vectors

(I1) Suppose the kick in Example 3-4 is attempl{
36.0 m from the goalposts, whose crossbar is 3.0
above the ground. If the football is directed corr(
ly between the goalposts, will it pass over the I
and be a field goal? Show why or why not. If 1
from what horizontal distance must this kick
made if it is to score?

. (II) A ball is thrown horizontally from the roof uff

building 56 m tall and lands 45m from the bil
What was the ball’s initial speed?

(II) Show that the speed with which a projecll
leaves the ground is equal to its speed just befor¢
strikes the ground at the end of its journey, assuri
the firing level equals the landing level.

(I1) A football is kicked at ground level with a sp
of 20.0m/s at an angle of 37.0° to the horizon(#
How much later does it hit the ground?

(II) A ball thrown horizontally at 22.2 m/s from |
roof of a building lands 36.0 m from the base ol {
building. How high is the building? '

. (IT) A shot-putter throws the shot with an initial s)¢

of 14 m/s at a 40° angle to the horizontal. Calculatu |
horizontal distance traveled by the shot if it leaves §
athlete’s hand at a height of 2.2 m above the grounf
(IT) Determine how much farther a person can juf
on the Moon as compared to the Earth if the tak

speed and angle are the same. The acceleration dug}

gravity on the Moon is one-sixth what it is on Eatl

. (II) An athlete executing a long jump leaves

ground at a 30° angle and travels 7.80 m. (a) What W
the takeoff speed? (b) If this speed were increasc(l
just 5.0 percent, how much longer would the jumy §
(II) The pilot of an airplane traveling 160 ki
wants to drop supplies to flood victims isolated o}
patch of land 160 m below. The supplies should
dropped how many seconds before the planc i
rectly overhead? '
(II) A hunter aims directly at a target-(on the il
level) 120 m away. (a) If the bullet leaves the gull
a speed of 250 m/s, by how much will it miss the §
get? (b) At what angle should the gun be aime(
the target will be hit?

(II) Show that the time required for a projectilg
reach its highest point is equal to the time for |
return from this highest point to its original heig
(II) A projectile is fired with an initial spcedt
40.0 m/s. Plot on graph paper its trajectory for il
projection angles of 6 = 15°, 30°, 45°, 60°, 75°,
90°. Plot at least 10 points for each curve. .
(I1) A projectile is fired with an initial speo(t
75.2 m/s at an angle of 34.5° above the horizonti|
a long flat firing range. Determine (a) the maxijil
height reached by the projectile, (b) the total tini
the air, (c) the total horizontal distance covercd (
is, the range), and (d) the velocity of the proji#
1.50 s after firing.
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FIGURE 3-39 Problem 36.

h a projectile
d just before il
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el with a speed
the horizontal,
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2m/s from the
the base of the

) A projectile is shot from the edge of a cliff
i nbove ground level with an initial speed of
/8 it an angle of 37.0° with the horizontal, as
Wit In Fig. 3-39. (a) Determine the time taken by

an initial specd
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FIGURE 3-40 Problem 37.

;. 1) A rescue plane wants to drop supplies to isolat-
jllountain climbers on a rocky ridge 235 m below.
{he plane is traveling horizontally with a speed of
) kin/h (69.4 m/s), (a) how far in advance of the
iIplems (horizontal distance) must the goods be

“Droppedn\ ~ ~
(Vy=0) N

~ «~ _ Thrown upward?
N (v,5>0)
\\)’0

~
~

235m  Thrown downward? ~~ 3 N
} 425 m

FIGURE 3-41 Problem 38.

dropped (Fig. 3—41a)? (b) Suppose, instead, that the
plane releases the supplies a horizontal distance of
425m in advance of the mountain climbers. What
vertical velocity (up or down) should the supplies be
given so that they arrive precisely at the climbers’
position (Fig. 3-41b)? (c) With what speed do the
supplies land in the latter case?

39. (III) A ball is thrown horizontally from the top of a
cliff with initial speed v, (at t = 0). At any moment,
its direction of motion makes an angle 8 to the hori-
zontal (Fig. 3-42). Derive a formula for 6 as a func-
tion of time, ¢, as the ball follows a projectile’s path.

FIGURE 3-42 Problem 39.

*SECTION 3-8

* 40. (I) A person going for a morning jog on the deck of
a cruise ship is running toward the bow (front) of
the ship at 2.0 m/s while the ship is moving ahead at
8.5 m/s. What is the velocity of the jogger relative to
the water? Later, the jogger is moving toward the
stern (rear) of the ship. What is the jogger’s velocity
relative to the water now?

Problems 3




FIGURE 3-43

Problem 41.

* 41, (II) Huck Finn walks at a speed of 1.0 m/s across his

* 42,

* 43,

* 45,

* 46.

* 47,

* 48.

raft (that is, he walks perpendicular to the raft’s mo-
tion relative to the shore). The raft is traveling down
the Mississippi River at a speed of 2.7 m/s relative to
the river bank (Fig. 3-43). What is the velocity (speed
and direction) of Huck relative to the river bank?
(II) You are driving south on a highway at 25m/s
(approximately 55 mph) in a snowstorm. When you
last stopped, you noticed that the snow was coming
down vertically, but it is passing the windows of the
moving car at an angle of 30° to the horizontal. Esti-
mate the speed of the snowflakes relative to the car
and relative to the ground.

(I1) A boat can travel 2.30 m/s in still water. (a) If the
boat points its prow directly across a stream whose
current is 1.20 m/s, what is the velocity (magnitude and
direction) of the boat relative to the shore? (b) What
will be the pesition of the boat, relative to its point of
origin, after 3.00s? (See Fig. 3-30.)

. (IT) Two planes approach each other head-on. Each

has a speed of 835km/h, and they spot each other
when they are initially 10.0 km apart. How much
time do the pilots have to take evasive action?

(II) An airplane is heading due south at a speed of
500 km/h. If a wind begins blowing from the southwest
at a speed of 100 km/h (average), calculate: (a) the
velocity (magnitude and direction) of the plane rela-
tive to the ground, and (b) how far off course it will
be after 10 min if the pilot takes no corrective action.
[Hint: First draw a diagram.]

(II) In what direction should the pilot aim the plane
in Problem 45 so that it will fly due south?

(1) Determine the speed of the boat with respect to
the shore in Example 3-10.

(1) A passenger on a boat moving at 1.50m/s on a
still lake walks up a flight of stairs at a speed of
0.50 m/s, Fig. 3-44. The stairs are angled at 45° point-
ing in the direction of motion as shown. What is the
velocity of the passenger relative to the water?

* 49.

* 50.

* 51,

* 52.

* 53,

* 54.

FIGURE 3-44

Problem 48.

(II) A motorboat whose speed in still watel
3.60 m/s must aim upstream at an angle of 27.5°
respect to a line perpendicular to the shore) in i
to travel directly across the stream. (¢) What I
speed of the current? (b) What is the resultant &j)
of the boat with respect to the shore? (See Fig. 3
(II) A boat, whose speed in still water is 2.200
must cross a 260-m-wide river and arrive at a |
110 m upstream from where it starts (Fig. 3- 45),
do so, the pilot must head the boat at a 45° upsti@
angle. What is the speed of the river’s current?

f—110 m—
e l ;
oot £ Finishag
; 4 VEbE T
U L ] =
g 4 _River
l;‘ 1 of—
: ~ current
; | e g
= |V;7‘ i ;l L i 4
g
FIGURE 3-45 Problem 50.

(II) A swimmer is capable of swimming 1.00 m/§
still water. (a) If she aims her body directly acios
150-m-wide river whose current is 0.80 m/s, how
downstream (from a point opposite her stu il
point) will she land? (b) How long will it take het
reach the other side?

(II) At what upstream angle must the swimmu|
Problem 51 aim, if she is to arrive at a point dire(
across the stream?

(III) An airplane, whose air speed is 600 km/I,
supposed to fly in a straight path 35.0° north of ¢l
But a steady 100km/h wind is blowing from |
north. In what direction should the plane head?

car traveling in the same direction at 75.0 km/h. Wi
the motorcycle is 60.0 m behind the car, the rider pu
es down on the accelerator and passes the car 1)
later. What was the acceleration of the motorcycle?




i approach a street corner at right angles
1 (I'1p. 3-46). Car 1 travels at 30 km/h and
kin/h. What is the relative velocity of car 1
L 27 What is the velocity of car 2 relative

1.50 m/s

—

[P, ilhirked police car, traveling a constant
' I piscd by a speeder traveling 140 km/h.

8. | 0 » nfter the speeder passes, the police-

i 1)) the accelerator. If the police car’s ac-

still water {j i 2.00 m/s?, how much time elapses after

of 27.5° (witli & (01 In passed until it overtakes the speeder

qore) in ordef I ioving at constant speed)?

) What is the Biiilie In the previous problem that the

esultant speci
See Fig. 3-28.)
or is 2.20m/y,
ive at a poinl
Fig. 3-45). T4
1 45° upstreani

% 4puod iv not known. If the police car accel-
Hlormly as given above, and overtakes the
lier 7.4 s, what was the speeder’s speed?

NIRAL PROBLEMS

FIGURE 3-46 Problem 55.

current? g
ull must split the apple atop his son’s head
Wllunce of 27 m. When he aims directly at
. the arrow is horizontal. At what angle
{11l it 1o hit the apple if the arrow travels at
LI RERTYAY
seloiw, V, and V,, add to a resultant
L 1V, Describe V; and W, if (a) V Vi + Vs,
Vi Vi@vi+V=V, -
i) Mleps out of his truck, walks 50m east
r lmulh. und then takes an elevator 10 m into
Aaumont of a building where a bad leak is
i Wht is the displacement of the plumber
1) hii truck? Give your answer in compo-
il #lkor in magnitude and angle notation. As-
& b 0iKt, y is north, and z is up.
fMuinous downhill roads, escape routes are

50. bide 4 placed to the side of the road for trucks
ng 1.00m/s i | ¥ 'ﬂkur’ n\;ght fail. Assummg a constant up-
irectly across i e ol 30° calculate the horizontal and verti-
0m/s, how fuf ionts of the acceleration of a truck that

s her startin i 120 km/h to rest in 12 s. See Fig, 3-47.
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wing from th¢
ane head?

h approaches |
5.0 km/h. Whei)
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FIOURE 3-47 Problem 61.
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Problem 63.

FIGURE 3-48

62. What is the y component of a vector in the xy
plane whose magnitude is 88.5 and whose x com-
ponent is 75.4? What is the direction of this vector
(angle it makes with the x axis)?

63. Raindrops make an angle 6 with the vertical when
viewed through a moving train window (Fig. 3-48).
If the speed of the train is vy, what is the speed of
the raindrops in the reference frame of the Earth in
which they are assumed to fall vertically?

64. A light plane is headed due south with a speed relative
to still air of 155 km/h. After 1.00 hour, the pilot notices
that they have covered only 125 km and their direction
is not south but southeast. What is the wind velocity?

65. An automobile traveling 95 km/h overtakes a 1.00-km-
long train traveling in the same direction on a track
parallel to the road. If the train’s speed is 75 km/h, how
long does it take the car to pass it and how far will the
car have traveled in this time? What are the results if
the car and train are traveling in opposite directions?

66. An Olympic long jumper is capable of jumping
8.0 m. Assuming his horizontal speed is 9.1 m/s as he
leaves the ground, how long is he in the air and how
high does he go? Assume that he lands standing up-
right—that is, the same way he left the ground.

General Problems 75




67.

68.

69.

70.

FIGURE 3-49 Problem 69.

Apollo astronauts took a “nine iron” to the Moon
and hit a golf ball about 180 m! Assuming that the
swing, launch angle, and so on, were the same as on
Earth where the same astronaut could hit it only
30 m, estimate the acceleration due to gravity on the
surface of the Moon. (Neglect air resistance in both
cases, but on the Moon there is none!)

When Babe Ruth hit a homer over the 12-m-high
right-field fence 95 m from home plate, roughly what
was the minimum speed of the ball when it left the
bat? Assume the ball was hit 1.0 m above the ground
and its path initially made a 40° angle with the ground.
The cliff divers of Acapulco push off horizontally
from rock platforms about 35 m above the water, but
they must clear rocky outcrops at water level that
extend out into the water 5.0 m from the base of the
cliff directly under their launch point. See Fig. 3-49.
What 'minimum pushoff speed is necessary to do
this? How long are they in the air?

At serve, a tennis player aims to hit the ball horizon-
tally. What minimum speed is required for the ball to
clear the 0.90-m-high net about 15.0m from the
server if the ball is “launched” from a height of
2.50m? Where will the ball land if it just clears the
net (and will it be “good” in the sense that it lands
within 7.0 m of the net)? How long will it be in the
air? See Fig. 3-50.

FIGURE 3-50 Problem 70.
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71. Agent Tim, flying a constant 185 km/h hoif

72. The speed of a boat in still water is ». Tho 1i

FIGURE 3-51 Problem 71,

in a low-flying helicopter, wants to drop u |
plosive onto a master criminal’s automobl|g
ing 145km/h on a level highway 88.0.-m ligh
what angle (with the horizontal) should (li¢ (%
his sights when the bomb is released (Fig, 1 &

make a round-trip in a river whose currcnl (|
speed u. Derive a formula for the time ey
make a round trip of total distance D Il |
makes the round-trip by moving (a) upnti¢l
back downstream, (b) directly across the |
back. We must assume « < v; why?
Landing

‘.'

[

Y

I 195 m -

FIGURE 3-52 Problem 73,

73. A projectile is launched from ground lovi!
top of a cliff which is 195 m away and |48
(see Fig. 3-52). If the projectile lands on (I
cliff 7.6 s after it is fired, find the initinl vel
the projectile (magnitude and direction). Ni|
resistance.




