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DESCRIBING MOTION:

Space shuttle Discovery landing
on Earth. The parachute helps it
to reduce its speed quickly. The
directions of Discovery’s velocity
and acceleration are shown by
the green () and gold (a) arrows.
Note that they (v and a) point in
opposite directions.

KINEMATICS IN ONE DIMENSION

the Sun and Moon—is an obvious part of everyday life. Although

the ancients acquired significant insight into motion, it was not
until comparatively recently, in the sixteenth and seventeenth centuries,
that our modern understanding of motion was established. Many con-
tributed to this understanding, but, as we shall soon see, two individuals
stand out above the rest: Galileo Galilei (1564-1642) and Isaac Newton
(1642-1727).

The study of the motion of objects, and the related concepts of force
and energy, form the field called mechanics. Mechanics is customarily di-
vided into two parts: kinematics, which is the description of how objects
move, and dynamics, which deals with force and why objects move as they
do. This chapter and the next deal with kinematics.

We start by discussing objects that move without rotating (Fig. 2-1a).
Such motion is called translational motion. In the present chapter we will
be concerned with describing an object that moves along a straight-line
path, which is one-dimensional motion. In Chapter 3 we will study how to
describe translational motion in two (or three) dimensions.

The motion of objects—baseballs, automobiles, joggers, and even

& w»
%
s »

FIGURE 2-1 The pinecone
in (a) undergoes pure translation
as it falls, whereas in (b) it is
rotating as well as translating.
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All measurements are
made relative to
a frame of reference

+y

=Yy

+x

FIGURE 2-3 Standard set

of xy coordinate axes.
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Displacement

CHAPTER 2

meference Frames and Displacement

Any measurement of position, distance, or speed must be made with respect
to a frame of reference. For example, while you are on a train traveling at
80 km/h, you might notice a person who walks past you toward the front of
the train at a speed of, say, 5 km/h (Fig. 2-2). Of course this is the person’s
speed with respect to the train as frame of reference. With respect to the
ground that person is moving at a speed of 80 km/h + 5km/h = 85km/h.
It is always important to specify the frame of reference when stating a
speed. In everyday life, we usually mean “with respect to the Earth” without
even thinking about it, but the reference frame should be specified whenever
there might be confusion.

FIGURE 2-2 A person walks toward the front of a train at Skm/h. The
train is moving 80 km/h with respect to the ground, so the walking person’s
speed, relative to the ground, is 85 km/h.

Even distances depend on the frame of reference. For example, there is
no point in telling you that Yosemite National Park is 300 km away unless I
specify 300km from where. Furthermore, when specifying the motion of an
object, it is important to specify not only the speed but also the direction of
motion. Often we can specify a direction by using the cardinal points, north,
east, south, and west, and by “up” and “down.” In physics, we often draw a
set of coordinate axes, as shown in Fig. 2-3, to represent a frame of reference.
We can always place the origin 0, and the directions of the x and y axes,
as we like for convenience. Objects positioned to the right of the origin of
coordinates (0) on the x axis have an x coordinate which we usually choose to
be positive; then points to the left of 0 have a negative x coordinate. The posi-
tion along the y axis is usually considered positive when above 0, and negative
when below 0, although the reverse convention can be used if convenient.
Any point on the plane can be specified by giving its x and y coordinates. In
three dimensions, a z axis perpendicular to the x and y axes is also used.

For one-dimensional motion, we often choose the x axis as the line
along which the motion takes place. Thus the position of an object at any
moment is given by its x coordinate.

We need to make a distinction between the distance an object has
traveled, and its displacement, which is definied as the change in position
of the object. That is, displacement is how far the object is from its starting
point. To see the distinction between total distance and displacement,
imagine a person walking 70 m to the east and then turning around and
walking back (west) a distance of 30 m (see Fig. 2-4). The total distance

Describing Motion: Kinematics in One Dimension
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{raveled is 100 m, but the displacement is only 40 m since the person is now
only 40 m from the starting point.

Displacement is a quantity that has both magnitude and direction.
Such quantities are called vectors, and are represented in diagrams by ar-
rows. For example, in Fig. 2—4, the blue arrow represents the displacement
whose magnitude is 40 m and whose direction is to the right.

We will deal with vectors more fully in Chapter 3. For now, we deal
only with motion in one dimension, along a line, and in this case, vectors
which point in one direction will have a positive sign, whereas vectors that
point in the opposite direction will have a negative sign.

Let’s see how this works. Consider the motion of an object over a par-
ticular time interval. Suppose that at some initial moment in time, callit ¢,
{he object is on the x axis at the point x, in the coordinate system shown in
Iy, 2-5. At some later time, ¢,, suppose the object is at point x,. The dis-
plicement of our object is x, — x;, and is represented by the arrow point-
ing to the right in Fig. 2-5. It is convenient to write

Ax =x, — x4

where the symbol A (Greek letter delta) means “change in.” Then Ax means
“{he change in x,” which is the displacement. Note that the “change in” any
(uantity means the final value of that quantity, minus the initial value.

To be concrete, suppose x; = 10.0m and x, = 30.0m. Then

Ax = x, — x, = 300m — 10.0m = 20.0 m.

Hoe Fig. 2-5.

Now consider a different situation, that of an object moving to the left
s shown in Fig. 2—6. Here an object, say a person, starts at x; = 30.0m
ni walks to the left to the point x, = 10.0 m. In this case

Ax =x,—x;,=100m — 300m = —20.0m

ind the blue arrow representing the vector displacement points to the left.
I'his Example illustrates that when dealing with one-dimensional motion,
i vector pointing to the right has a positive value, whereas one pointing to
the left has a negative value.

m Average Velocity

I'he most obvious aspect of the motion of a moving object is how fast it
{s moving—its speed or velocity.

The term “speed” refers to how far an object travels in a given time in-
terval. If a car travels 240 kilometers (km) in 3 hours, we say its average speed
wis 80 km/h. In general, the average speed of an object is defined as the dis-
tunce traveled along its path divided by the time it takes to travel this distance:

distance traveled

average speed = -1

time elapsed
The terms velocity and speed are often used interchangeably in ordinary
language. But in physics we make a distinction between the two. Speed is
simply a positive number, with units. Velocity, on the other hand, is used to
signify both the magnitude (numerical value) of how fast an object is moving
ind the direction in which it is moving. (Velocity is therefore a vector.) There

SECTION 2-2

Wost O] 40m  30m  East
;_V_/

Displacement

FIGURE 2-4 A person walks

70 m east, then 30 m west. The total
distance traveled is 100 m (path is shown
in black); but the displacement, shown
as a blue arrow, is 40 m to the east.

y
X 1 X 2
0 — + +— x
10 20 30 40
Distance (m)

FIGURE 2-5 The arrow
represents the displacement
x, — x;. Distances are in meters.

FIGURE 2-6 For the displacement
Ax = x, — x; = 10.0m — 30.0 m, the
displacement vector points to the left.
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Average velocity

™ PROBLEM SOLVING

+ or — sign can signify the
direction for linear motion

FIGURE 2-7 Example 2-1.

A person runs from x; = 50.0 m

to x, = 30.5 m. The displacement
is —19.5m.

y

Finish  Start
(x2) - (xp

— bk

10 20 30 40 50 60
Distance (m)

is a second diffe'rence between speed and velocity: namely, the average veloc- |
ity is defined in terms of displacement, rather than total distance traveled:

displacement

average velocity = time elapsed :

Average speed and average velocity often have the same magnitude,
but sometimes they don’t. As an example, recall the walk we described ear-
lier, in Fig. 2—-4, where a person walked 70 m east and then 30 m west. The
total distance traveled was 70m + 30m = 100 m, but the displacement was
40 m. Suppose this walk took 70's to complete. Then the average speed was:

distance 100 m
time 70s

The magnitude of the average velocity, on the other hand, was:

= 14 m/s.

displacement 40 m
time 70s

= 0.57 m/s.

This discrepancy between the speed and the magnitude of the velocity oc-
curs in some cases, but only for the average values, and we rarely need be
concerned with it.

To discuss one-dimensional motion of an object in general, suppose
that at some moment in time, call it 4, the object is on the x axis at point
x, in a coordinate system, and at some later time, ¢,, suppose it is at point
X;. The elapsed time is ¢, — ¢,, and during this time interval the displace-
ment of our object was Ax = x, — x;. Then the average velocity, defined
as the displacement divided by the elapsed time, can be written

tz - tl - At
where v stands for velocity and the bar (7) over the v is a standard symbol
meaning “average.”

Notice that if x, is less than ), the object is moving to the left, and
then Ax = x, — x, is less than zero. The sign of the displacement, and thus
of the velocity, indicates the direction: the average velocity is positive for
an object moving to the right along the x axis and negative when the ob-
ject moves to the left. The direction of the velocity is always the same as
the direction of the displacement.

Xy — X1 Ax,

v= 2-2)

Runner’s average velocity. The position of a runner as
a function of time is plotted as moving along the x axis of a coordinate
system. During a 3.00-s time interval, the runner’s position changes from
X; = 50.0m to x, = 30.5m, as shown in Fig. 2-7. What was the runner’s
average velocity?

SOLUTION Average velocity is the displacement divided by the elapsed
time. The displacement is Ax = X, =% =305m - 500m = —19.5m.
The time interval is At = 3.00s. Therefore the average velocity is

__Ax —-195m
V= A_t = TOS = —6.50 m/s.

The displacement and average velocity are negative, which tells us (if we
didn’t already know it) that the runner is moving to the left along the x axis,
as indicated by the arrow in Fig. 2-7. Thus we can say that the runner’s
average velocity is 6.50 m/s to the left.
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]XAMPLE y2v] Distance a cyclist travels. How far can a cyclist travel
I 2.5 h along a straight road if her average speed is 18 km/h?

NOILUTION We want to find the distance traveled, so we use Eq. 21 let-
flng Ax be the distance and v be the average speed, and then rewrite it as

Ax = v At = (18 km/h)(2.5 h) = 45 km.

PP Instantaneous Velocity

If you drive a car along a straight road for 150 km in 2.0 h, the magnitude
Wl your average velocity is 75 km/h. It is unlikely, though, that you were
flloving at precisely 75 km/h at every instant. To deal with this situation we
fived the concept of instantaneous velocity, which is the velocity at any in-
slint of time. (This is the magnitude that a speedometer is supposed to in-

(lleate.) More precisely, the instantaneous velocity at any moment is

ilelined as the average velocity over an infinitesimally short time interval.
I'hut is, starting with Eq. 2-2

Ax

At
we define instantaneous velocity as the average velocity in the limit of Az

hiecoming extremely small, approaching zero. We can write the definition
ol instantaneous velocity, v, for one-dimensional motion as

b

v=

. Ax
v=Ilm —

A0 At 2-3)

I'h¢ notation lim,, ,, means the ratio Ax/At is to be evaluated in the
limit of At approaching zero. But we do not simply set At = 0 in this de-
linition, for then Ax would also be zero, and we would have an undefined
number. Rather, we are considering the ratio Ax/At, as a whole. As we
lot Ar approach zero, Ax approaches zero as well. But the ratio Ax/At ap-
proaches some definite value, which is the instantaneous velocity at a
glven instant.'

For instantaneous velocity we use the symbol v, whereas for average
velocity we use v, with a bar. In the rest of this book, when we use the
lerm “velocity” it will refer to instantaneous velocity. When we want to
spcak of the average velocity, we will make this clear by including the
word “average.” Note that the instantaneous speed always equals the mag-
nitude of the instantaneous velocity. Why? Because distance and displace-
ment become the same when they become infinitesimally small.

If an object moves at a uniform (that is, constant) velocity over a
particular time interval, then its instantaneous velocity at any instant is
the same as its average velocity (see Fig. 2—8a). But in many situations
(his is not the case. For example, a car may start from rest, speed up to
50 km/h, remain at that velocity for a time, then slow down to 20km/h
in a traffic jam, and finally stop at its destination after traveling a total
of 15km in 30 min. This trip is plotted on the graph of Fig. 2—-8b. Also
shown on the graph is the average velocity (dashed line), which is
v = Ax/At = 15km/0.50 h = 30 km/h.

'More on this in Section 2-8.

SECTION 2-3

Instantaneous velocity

Eso--
29T
220+
[¥] .
>0 —
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Time (h)
(a)

Average velocity

[=let=TwTel)

0 01 02 03 04 05
Time (h)
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FIGURE 2-8 Velocity of a car as
a function of time: (a) at constant velocity;

(b) with varying velocity.

Velocity (km/h)
—bD W pth
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mcceleration

An object whose velocity is changing is said to be accelerating. A ¢

whose velocity increases in magnitude from zero to 80 km/h is acceleruf

ing. If one car can accomplish this change in velocity in less time than u))

other, it is said to undergo a greater acceleration. That is, acceleratio|
specifies how rapidly the velocity of an object is changing. Average accol!
eration is defined as the change in velocity divided by the time taken (8
make this change:

change of velocity
time elapsed

average acceleration =

In symbols, the average acceleration, @, over a time interval At = t, = |
during which the velocity changes by Av = v, — vy, is defined as
. - vV — D1 A'U
Average acceleration a= =7

L—t At -4

Acceleration is also a vector, but for one-dimensional motion, we nco(l
only use a plus or minus sign to indicate direction relative to a chosen ¢(
ordinate system.

The instantaneous acceleration, 4, can be defined in analogy to instiu
taneous velocity, for any specific instant:

. . Av
Instantaneous acceleration a=lim—-

Art—0 At

Here Av represents the very small change in velocity during the very shor|
time interval Ar.

road from rest to 75km/h in 5.0, Fig. 2-9. What is the magnitude of (&
average acceleration?

SOLUTION The car starts from rest, so v; = 0. The final velocity {§
v, = 75km/h. Then from Eq. 2-4, the average acceleration is

75 km/h — 0 km/h km/h
=15
5.0s S

a=

This is read as “fifteen kilometers per hour per second” and means thid
on average, the velocity changed by 15 km/h during each second. That Ihg
assuming the acceleration was constant, during the first second the cui'y
velocity increased from zero to 15km/h. During the next second i§
velocity increased by another 15km/h up to 30 km/h, and so on, Fig. 2- 4.
(Of course, if the instantaneous acceleration was not constant, these nun)
bers could be different.)

Careful: ~Note carefully that acceleration tells us how fast the velocity changes, wherciik
Do not confuse  welocity tells us how fast the position changes. In this last Example, the calcy
velocity with acceleration  lated acceleration contained two different time units: hours and seconds. We
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km/h
=155 ,
at t = 1.0s
v = 15km/h
S -
at t = 20s
v = 30 km/h

:

at =1t = 5.0s
v = vy = 75km/h

. =y . . —

iimnlly prefer to use only seconds. To do so we can change km/h to m/s (see
Huction 1-6, and Example 1-4):

B km) (1000 m 1h \
75km/h = (75 N )( 1 ks ) (3600s) =21 m/s.
I'hen we get
;. 2imis—00mis _omis_ o

50s S S

We almost always write these units as m/s® (meters per second squared),
it done here, instead of m/s/s. This is possible because:
m/s m m

=1 =

S S§S §

According to the above calculation, the velocity in Example 2-3 (Fig. 2-9)
¢hanged on the average by 4.2 m/s during each second, for a total change
ol 21 m/s over the 5.0s.

TCONCEPTUAL EXAMPLE 2-4 | Velocity and acceleration. (a) If the
velocity of an object is zero, does it mean that the acceleration is zero?
(b) If the acceleration is zero, does it mean that the velocity is zero?
Think of some examples.

RESPONSE A zero velocity does not necessarily mean that the accel-
cration is zero, nor does a zero acceleration mean that the velocity is
rzero. (a) For example, when you put your foot on the gas pedal of your
car which is at rest, the velocity starts from zero but the acceleration is
not zero since the velocity: of the car changes. (How else could your car
start forward if its velocity weren’t changing—that is, if the acceleration
were zero?) (b) As you cruise along a straight highway at a constant ve-
locity of 100 km/h, your acceleration is zero.

FIGURE 2-9 Example 2-3.
The car is shown at the start with
v, = 0 at#; = 0. It is shown three
more times, at = 1.0s,¢ = 2.0s,
and t, = 5.0 s. We assume the
acceleration is constant and
equals 15km/h/s. The green
arrows represent the velocity
vectors; the length of each
represents the magnitude of

the velocity at that moment.

The acceleration vector is the
orange arrow.
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Acceleration

—2.0 m/s?

at tl =0
vy = 15.0m/s

at t2 =50s
vy = 5.0m/s

FIGURE 2-10 Example 2-5, showing
the position of the car at times ¢ and ¢,,

as well as the car’s velocity represented

by the green arrows. The acceleration
vector (orange) points to the left.

FIGURE 2-11 The same carasin
Example 2-5, but now moving to the left
and decelerating. The acceleration is
v, —v _ —50m/s — (—15.0m/s)
At 50s
_ —50m/s + 150m/s
- 50s

a=

= +2.0m/s.

v9 = -5.0m/s

vy = -15.0 m/s

Let a = constant

26 CHAPTER 2

Car slowing down. An automobile is moving to f}
right along a straight highway, which we choose to be the positive A (i)}
(Fig. 2-10), and the driver puts on the brakes. If the initial velocity
v, = 15.0m/s and it takes 5.0s to slow down to v, = 5.0m/s, what \
the car’s average acceleration?

SOLUTION The average acceleration is equal to the change in velogll
divided by the elapsed time, Eq. 2-4. Let us call the initial time !
then ¢, = 5.0s. (Note that our choice of ¢, = 0 doesn’t affect the calcil
tion of a because only At = 1, — 1, appears in Eq. 2-4.) Then

—_50m/s —150m/s _ _ 2
a= 505 = —2.0m/s%

The negative sign appears because the final velocity is less than the ififs
tial velocity. In this case the direction of the acceleration is to the lef {1l
the negative x direction)—even though the velocity is always pointing (§
the right. We say that the acceleration is 2.0m/s? to the left, and il
shown in Fig. 2-10 as an orange arrow.

When an object is slowing down, we sometimes say it is decelerating
But be careful: deceleration does not mean that the acceleration is nccok

2

same car moving to the left (decreasing x) and slowing down has positive
acceleration that points to the right, as shown in Fig. 2-11. We have a decol:
eration whenever the velocity and acceleration point in opposite directiony

mMotion at Constant Acceleration

Many practical situations occur in which the acceleration is constant of
close enough that we can assume it is constant. That is, the acceleratiol
doesn’t change over time. We now treat this situation when the magnitude
of the acceleration is constant and the motion is in a straight line (somu:
times called uniformly accelerated motion). In this case, the instantaneouy
and average accelerations are equal.

To simplify our notation, let us take the initial time in any discus:
sion to be zero: t; = 0. We can then let ¢, = ¢ be the elapsed time. Thy
initial position (x;) and initial velocity (v,) of an object will now b
represented by x, and v,; and at time ¢ the position and velocity will b
called x and v (rather than x, and v,). The average velocity during the
time ¢ will be (from Eq. 2-2)

since ¢, = 0. And the acceleration, which is assumed constant in time, will
be (from Eq. 2-4)

’U—’UO
{

a =

A common problem is to determine the velocity of an object after i
certain time, given its acceleration. We can solve such problems by solving

Describing Motion: Kinematics in One Dimension
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{01 v in the last equation: we multiply both sides by ¢ and get
at=v — v,
#hd then add v, to both sides to obtain:
=y, + at. [constant acceleration] (2-6)

l'or cxample, it may be known that the acceleration of a particular motor-
(yele is 4.0 m/s?, and we wish to determine how fast it will be going after,
Hiry, 6.0 s. Assuming it starts from rest (v, = 0), after 6.0s the velocity will
he v = at = (4.0m/s?)(6.0s) = 24 m/s.

Next, let us see how to calculate the position of an object after a time ¢
when it is undergoing constant acceleration. The definition of average ve-
locity (Eq. 2-2) is

x—xo
t

b

V=

which we can rewrite (solving for x) as

x =x, + vt

Hecause the velocity increases at a uniform rate, the average velocity, v,
will be midway between the initial and final velocities:

Yyt v

e

(Careful: this is not usually valid if the acceleration is not constant.) We
combine the last two equations with Eq. 2-6 and find

YtV
)

V= [constant acceleration] (2-7)

x=x0+5t=x0+<

v+ Y t+at
=x0+(ft

X =x,+ vyt + 5 at’ [constant acceleration] (2-8)

or

Equations 2-6, 2-7, and 2-8 are three of the four most useful equa-
lions for motion at constant acceleration. We now derive the fourth equa-
tion, which is useful in situations where the time ¢ is not known. We begin
ns above, with Eq. 2-7 and the equation just before it:

v+
O)t

x=x0+5t=x0+<

Next we solve Eq. 2-6 for ¢, obtaining
v — ’vo

t =

b

a
and substituting this into the equation above we have
v+, v—vo) v — )
X =Xxy+ = x5+ :
() e

We solve this for v* and obtain

2 = v} + 2a(x — x,), [constant acceleration] (2-9)

which is the useful equation we sought.

vrelated to a and t
(a = constant)

Average velocity
(when acceleration is constant)

x related to a and t

(a = constant)

v related to a and x
(a = constant)
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Kinematic equations
for constant acceleration

(we’ll use them a lot)

™ PROBLEM SOLVING

Equations 2-10 are valid only
when the acceleration is constant,
’ Which we assume in this Example

CHAPTER 2

We now have four equations relating position, velocity, acceleratio
and time, when the acceleration a is constant. We collect them here in o

place for further reference (the tan background screen is to emphasis
their usefulness):

V=19, +at [ = constant] (2-10u)
x =Xy + vyt + Jar? [a = constant] (2-10)
v’ = 0} + 2a(x — x,) [a = constant] (2-10¢)
SO

DR a [a = constant] (2-10d)

These useful equations are not valid unless g is a constant. In many casel
we can set x, = 0, and this simplifies the above equations a bit. Note thaf
X represents position, not distance, and x — X, is the displacement.

m Runway design. You are designing an airport for sml|
planes. One kind of airplane that might use this airfield must reach a speul
before takeoff of at least 27.8 m/s (100km/h), and can accelerate il

2.00m/s% (a) If the runway is 150 m long, can this airplane reach the propel
speed to take off? (b) If not, what minimum length must the runway havc!

SOLUTION  (a) We are given the airplane’s acceleration (@ = 2.00m/s"),
and we know the plane can travel a distance of 150 m. We want to find ity
velocity, to determine if it will be at least 27.8 m/s. We want to find
when we are given:

Known Wanted
xy =0 v

v, =0

x =150m

a =2.00m/s?

Of the above four equations, Eq. 2-10c will give us v, when we know 1
a, x, and x,:

L1
v =% + 2a(x - Xp)

=0+ 2(2.0 m/s%)(150 m) = 600 m?/s?
v = V600 m?/s> = 24.5 m/s.

This runway length is not sufficient.

(b) Now we want (x ~ x,) given v = 27.8 m/s and a = 2.0m/s2 So we
use Eq. 2-10c, rewritten as

v -}
2a

_(278m/s)* - 0
© 220m/s?)

(x —xp) = =193 m.

Describing Motion: Kinematics in One Dimension




eleration, Solving Problems

sre in one
‘mphasize "lie kolving of problems, such as the Examples we have alreaciy given, serves
W0 purposes. First, solving problems is useful and practical in itself. Second,
Silving problems makes you think about the ideas and concepts, and applying
(2-10a) llie concepts helps you to understand them. But knowing how to do a prob-
(2-10b) Il -cven to begin it—may not always seem easy. First, it is most important
1) fund the problem through carefully, and more than once. Spend a moment
(2-10¢) {lilnking and trying to understand what physics principles, ideas, laws, and de-
lihitions might be involved. Up to this point in the book, we have been con-
teined mainly with the definitions of velocity and acceleration, and the
(2-10d) “kincmatic equations for constant acceleration,” Eqs. 2-10, that we derived
fiom those definitions. For now it is important to note that physics is not a col-
\any cases leution of equations to be memorized. (In fact, rather than memorizing the
Note that vory useful Egs. 2-10, it is better to understand how to derive them from the

1t ilelinitions of velocity and acceleration as we did above.) Simply searching for
W) equation that might work can be disastrous and can lead you to a wrong
jesuilt (and will surely not help you understand physics). A better approach is
{1) e the following (rough) procedure, which we put in a special “box” (other

t for small lich Problem Solving boxes, as an aid, will be found throughout the book):
ch a speed N
f&:?:gp:: | = PROBLEM SOLVING
ray have? ;:’? I, Read and reread the whole problem carefully needed. It is often preferable to solve alge-
2.00 m/s?), before trying to solve it. braically for the desired unknown before putting
to find its m 2, Draw a diagram or picture of the situation, in numerical values.
to find v with coordinate axes wherever applicable. [You . Carry out the calculation if it is a numerical
cun choose to place the origin of coordinates problem. Keep one or two extra digits during
und the axes wherever you like, so as to make the calculations, but round off the final an-
your calculations easier. You also choose which swers to the correct number of significant fig-
direction is positive and which is negative. Usu- ures (Section 1-4).
ally we choose the x axis to the right as posi- . Think carefully about the result you obtain: Is it
live, but you could choose positive to the left.] reasonable? Does it make sense according to your
3. Write down what quantities are “known” or own intuition and experience? A good check is to
: know v, “given,” and then what you want to know. do a rough estimate using only powers of ten, as
4, 'I'hink about which principles of physics apply discussed in Section 1-7. Often it is preferable to
in this problem. do a rough estimate at the start of a numerical
8, Consider which equations (and/or definitions) problem because it can help you focus your atten-
rclate the quantities involved. Before using tion on finding a path toward a solution.
them, be sure their range of validity includes . A very important aspect of doing problems is
your problem (for example, Egs. 2-10 are valid keeping track of units. Note that an equals sign
only when the acceleration is constant). If you implies the units on each side must be the same,
/s2. So we find an applicable equation that involves only just as the numbers must. If the units do not
known quantities and one desired unknown, balance, a mistake has no doubt been made.
solve the equation algebraically for the un- This can serve as a check on your solution (but
known. In many instances several sequential cal- it only tells you if you’re wrong, not if you’re
culations, or a combination of equations, may be right). And: always use a consistent set of units.
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™ PROBLEM SOLVING

Note that “starting from rest”
meansv = Qatt = 0[ie, v, = 0]

FIGURE 2-12 Example 2-7.

= PROBLEM SOLVING

Check your answer

W PHYSICS APPLIED

Braking distances

FIGURE 2-13
Example 2-8: stopping
distance for a braking car.
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LN IIE Acceleration of car. How long does it take a car |
cross a 30.0-m-wide intersection after the light turns green, if it accelef
ates from rest at a constant 2.00 m/s??

SOLUTION First we make a sketch, Fig. 2-12. Next we make a ‘tablf
choosing x, = 0 and assume the car moves to the right along the positive
axis, and noting that “starting from rest” means v = Q at ¢ = 0 [i.e., v, = ()

Known Wanted
x, =0 t

x =30.0m

a =2.00m/s?

v, =0

Since a is constant, we can use Egs. 2-10. Equation 2-10b is perfect sing
the only unknown quantity is ¢. Setting v, = 0 and x, = 0, we can solv
Eq. 2-10b for ¢

=1,.2
x=jat

. 2x

t
a
_ 2 _ [2(30.0m) _
b \/:_ V2.00m/s ~ >48s

This is our answer. Note that the units come out correctly. We can check
the reasonableness of the answer by calculating the final velocil
v = at = (2.00m/s?)(5.48s) = 10.96 m/s, and then finding x = x, + vt =

0 + 3(10.96 m/s + 0)(5.485s) = 30.0 m, which is our given distance.

Braking distances. Estimate the mini:
mum stopping distances for a car, which are important for traffic safcly
and traffic design. The problem is best dealt with in two parts: (1) the tim¢
between the decision to apply the brakes and their actual application (th¢
“reaction time”), during which we assume a = 0; and (2) the actual braks
ing period when the vehicle slows down (a # 0). The stopping distance de
pends on the reaction time of the driver, the initial speed of the car (the
final speed is zero), and the acceleration of the car. For a dry road and
good tires, good brakes can decelerate a car at a rate of about 5m/s? 1
8m/s. Calculate the total stopping distance for an initial velocity of
100km/h (28 m/s = 62 mph) and assume the acceleration of the car I

t=0.50s v decreases from 28 m/s to zero
a=0



e a car to
it acceler-

ke a table,
e positive x
€,7, = 0].

2rfect since
2 can solve

: can check

al velocity

2Xg t 0t =
tance.

the mini-
-affic safety
(1) the time
ication (the
ictual brak-
distance de-
the car (the
7y road and
1t Sm/s? to
velocity of
£ the car is

fil) m/s? (the minus sign appears because the velocity is taken to be in
0 positive x direction and its magnitude is decreasing). Reaction time for
il drivers varies from perhaps 0.3 s to about 1.0s; take it to be 0.50s.

O1L.UTION The car is moving to the right in the positive x direction.
0 lnke x, = O for the first part of the problem, in which the car travels

'_It n constant speed of 28 m/s during the time the driver is reacting
{) 50 %). See Fig. 2—-13. Thus:

Known Wanted
t =0.50s X

v, =28 m/s

v =28m/s

a =0

x, =0

Part 1:

11 find x we can use Eq. 2-10b (note that Eq. 2-10c isn’t useful because
\ I multiplied by a, which is zero):

x =yt + 0= (28m/s)(0.50s) = 14 m.

I'he car travels 14 m during the driver’s reaction time, until the moment
Ihe brakes are applied. Now for the second part, during which the brakes

o applied and the car is brought to rest. We now take x, = 14 m (result
Ol the first part):

Part2:  Known Wanted
x,=14m x
v, =28 m/s
v =0
a =—60m/s?

llyuation 2~10a doesn’t contain x; Eq. 2-10b contains x but also the un-

known . Equation 2-10c is what we want; we solve for x (after setting
\" l4m):

v — v =2a(x — xp)

=14m+L8n1/S)2=14m+:_7_84L2/52
2(—6.0 m/s?) —12m/s?

=14m+65m="79m.

‘I'he car traveled 14 m while the driver was reacting and another 65m
(uring the braking period before coming to a stop. The total distance
{ruveled was then 79 m. Under wet or icy conditions, the value of a may
he only one third the value for a dry road since the brakes cannot be ap-
plicd as hard without skidding, and hence stopping distances are much
gireater. Note also that the stopping distance during braking increases
with the square of the speed, not just linearly with speed. If you are trav-
uling twice as fast, it takes four times the distance to stop.

SECTION 2-6
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EXAMPLE 2-9 The fastball. A baseball pitcher thro
a fastball with a speed of 44 m/s. Estimate the average acceleration
the ball during the throwing motion. It is observed that in throwing {
baseball, the pitcher accelerates the ball through a displacement of abl
3.5m from behind the body to the point where it is released (Fig. 2- |4

3.5m

SOLUTION We want to find the acceleration a given that x = 3.5
v, = 0,and v = 44 m/s. We use Eq. 2-10c and solve for a:

¥ — 2

FIGURE 2-14 A baseball a= 0

pitcher accelerates the ball 2x

through a displacement of about

35m. _ @Am/sy — Om/s) _ e e
2(3.5m) )

This is a very large acceleration!

W PHYSICS APPLIED N8I3 Dl ESTIMATE | Air bags. Suppose you want to desi

Car safety—air bags | An air-bag system that can protect the driver in a head-on collision

speed of 100 km/h (60 mph). Estimate how fast the air bag must inflatc |
effectively protect the driver. Assume the car crumples upon impact ovf
a distance of about 1 m. How does the use of a seat belt help the drivef

SOLUTION The car decelerates from 100 km/h to zero in a v¢|

short time and a very short distance (1 m). Noting that 100 km/h

100 X 10°m/3600s = 28 m/s, we can get the acceleration from Eq.2-1(}
v (28 m/s)*

— = —— T — 2
a o 2 om 390 m/s*.

This enormous acceleration takes place in a time given by (Eq. 2-104)]

VT % 0—28m/s — 007
a4 -390m/s? .

To be effective, the air bag would need to inflate faster than this.

What does the air bag do? First, it spreads the force over a larpg
area of the chest. This is better than being punctured by the stecrii
column. Also, the pressure in the bag is controlled to minimize the head}
maximum deceleration. The seat belt keeps the person in the corref
position against the expanding air bag,.

FIGURE 2-15 . . . L .
Galileo Galilei (1564-1642). The analysis of motion we have been discussing in this chapter is busl

cally algebraic. It is sometimes helpful to use a graphical interpretation |
well, and this is discussed in the optional Section 2-8.

Falling Objects

One of the most common examples of uniformly accelerated motion |
that of an object allowed to fall freely near the Earth’s surface. Thut
falling object is accelerating may not be obvious at first. And beware (
thinking, as was widely believed until the time of Galileo (Fig. 2-15), thi
heavier objects fall faster than lighter objects and that the speed of fall |
proportional to how heavy the object is.
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Mileo's analysis made use of his new and creative technique of imag-
What would happen in idealized (simplified) cases. For free fall, he
Mliled that all objects would fall with the same constant acceleration in
ISice of air or other resistance. He showed that this postulate predicts
01 i object falling from rest, the distance traveled will be proportional

her throws
leration of
rowing the
nt of about

Fig. 2-14). suare of the time (Fig. 2-16); that is, d « t2. We can see this from
x=35m, [0y, but Galileo was the first to derive this mathematical relation. In
Caong Gialileo’s great contributions to science was to establish such
W lintical relations, and to insist on their importance. Another great
hition of Galileo was to propose theories with specific experimental
fjlienices that could be quantitatively checked (such as d « ¢2).
) siipport his claim that the speed of falling objects increases as they
lilileo made use of a clever argument: a heavy stone dropped from a
il 0l 2 m will drive a stake into the ground much further than will the
slone dropped from a height of only 0.2 m. Clearly, the stone must be
it tusler in the former case.
. 4 we saw, Galileo also claimed that all objects, light or heavy, fall
it to design

B e same acceleration, at least in the absence of air. If you hold a
% 0l puper horizontally in one hand and a heavier object—say, a base-
il the other, and release them at the same time as in Fig. 2-17a, the
Blii object will reach the ground first. But if you repeat the experi-
L thin time crumpling the paper into a small wad (see Fig. 2-17b), you

sllision at a
st inflate to
mpact over
the driver?

»in a very fiel thint the two objects reach the floor at nearly the same time.
J0km/h = Linlileo was sure that air acts as a resistance to very light objects that
1 Eq. 2-10c: B0 0 linge surface area. But in many ordinary circumstances this air resist-
W nepligible. In a chamber from which the air has been removed, even
hjucts like a feather or a horizontally held piece of paper will fall with
e nceeleration as any other object (see Fig. 2-18). Such a demon-
q. 2-10a): 00 in vacuum was of course not possible in Galileo’s time, which makes
ili0'n nchicvement all the greater. Galileo is often called the “father of
M1 weience,” not only for the content of his science (astronomical dis-
Lies, nertia, free fall), but also for his style or approach to science (ide-
hi Wlon and simplification, mathematization of theory, theories that have

n this.

able consequences, experiments to test theoretical predictions).
ser a larger

he steering
2 the head’s
the correct

FIGURE 2-17 (a) A ball and
a light piece of paper are dropped
at the same time. (b) Repeated,
with the paper wadded up.

pter is basi-
pretation as

d motion is
‘ace. That a
1 beware of
. 2-15), that
sed of fall is

FIGURE 2-16 Multiflash
photograph of a falling apple, photo-
graphed at equal time intervals. Note
that the apple falls farther during each
successive time interval, which means
it is accelerating.

FIGURE 2-18 Arockanda
feather are dropped simultaneously
(a) in air, (b) in a vacuum.

B A - ——

Air-filled tube Evacuated tube

(a) (b)
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Galileo’s hypothesis: free fall
is at constant acceleration g

TABLE 2-1
Acceleration Due to Gravity
at Various Locations on Earth

Elevation g
m)  (m/s?)
New York 0 9.803
100 9.800
Denver 1650 9.796
Pikes Peak 4300 9.789
Equator 0 9.780

North Pole 0 9.832
(calculated)

Location

San Francisco

FIGURE 2-19 Example 2-11.
When an object is dropped from

a tower, it falls with progressively
greater speed and covers greater
distance with each successive
second. (See also Fig. 2-16.)

Acceleration
due to

gravity [

————y=0
l_yl =490 m

(After 1.00 s)

¥2=19.6 m
(After 2.00 s)

y3=441m
(After 3.00 s)
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Galileo’s specific contribution to our understanding of the moti(
falling objects can be summarized as follows:

at a given location on the Earth and in the absence of air resist
all objects fall with the same constant acceleration.

We call this acceleration the acceleration due to gravity on the Eartl),
we give it the symbol g. Its magnitude is approximately

g = 9.80 m/s%

In British units g is about 32 ft/s% Actually, g varies slightly accordii
latitude and elevation (see Table 2—1), but these variations are so smal| |
we will ignore them for most purposes. The effects of air resistance
often small, and we will neglect them for the most part. However, air 1¢#
ance will be noticeable even on a reasonably heavy object if the vuli
becomes large.’

When dealing with freely falling objects we can make use of
2-10, where for a we use the value of g given above. Also, since the mo
is vertical we will substitute y in place of x, and y, in place of x,. Wu |
¥o = O unless otherwise specified. It is arbitrary whether we choose y [
positive in the upward direction or in the downward direction; but we |
be consistent about it throughout a problem’s solution.

RGN REN Falling from a tower. Suppose that a ball is dropg
from a tower 70.0 m high. How far will it have fallen after 1.00s, 2,
and 3.00s? Assume y is positive downward. Neglect air resistance,

SOLUTION We are given the acceleration,a = g = +9.80m/s’, w '.
is positive because we have chosen downward as positive. Since wo

to find the distance fallen given the time, ¢, Eq. 2-10b is the appropil
one, with vy = 0 and y, = 0. Then, after 1.00s, the position of the hull

v = 2at? = 1(9.80 m/s%)(1.00 5)? = 4.90 m,

so the ball has fallen a distance of 4.90m after 1.00s. Similarly, after 2§
y, = 2at* = 1(9.80 m/s%)(2.00 s)?> = 19.6 m,

and after 3.00s,
y; = 3at? = 1(9.80 m/s%)(3.00 5)? = 44.1 m.

See Fig. 2-19.

Thrown down from a tower. Suppose the ball in Exa
2-11 is thrown downward with an initial velocity of 3.00 m/s, instci#
being dropped. (@) What then would be its position after 1.00s and 2 {!
(b) What would its speed be after 1.00's and 2.00s? Compare to the uf)

of a dropped ball.

"The speed of an object falling in air (or other fluid) does not increase indefinitely, I (|
ject falls far enough, it will reach a maximum velocity called the terminal velocity. Ac(
tion due to gravity is a vector (as is any acceleration), and its direction is downwaud, i(#
the center of the Earth.
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motion of 1LUTION (a) We can approach this in the same way as Example

{1, using Eq. 2-10b, but this time v, is not zero but is v, = 3.0m/s.
iiH, ut ¢ = 1.00s, the position of the ball is

y o nt + Sar? = (3.00m/s)(1.00s) + 3(9.80 m/s%)(1.00s) = 7.90 m,
Wl it ¢ = 2.00s
y = vt + Sar? = (3.00 m/s)(2.00s) + 3 (9.80 m/s?)(2.005)> = 25.6 m,

4 0xpected, the ball falls farther each second than if it were dropped
iih v, = 0.
1h) ‘I'he velocity is readily obtained from Eq. 2-10a:

resistance,

Earth, and

cording to
small that
stance are
", air resist-
1e velocity

V=1, t at
=300m/s + (9.80 m/s*)(1.00s) = 12.8m/s [at¢ = 1.005]
=3.00m/s + (9.80 m/s*)(2.00s) = 22.6 m/s. [att = 2.00s]

“Wiien the ball is dropped (v, = 0), the first term in the above equations
FUro, 80

se of Egs.
the motion r
‘o- We take |
ose y to be |
ut we must |

|

v=0+at
= (9.80m/s?) (1.00s) = 9.80m/s [at¢ = 1.005]
= (9.80 m/s?) (2.00s) = 19.6 m/s. [at¢ = 2.005]

1 Wo nee that the speed of a dropped ball increases linearly in time. (In
‘L iample 2-11 we saw that the distance fallen increases as the square of

is dropped
00s, 2.00s,

ince. | ie time.) The downwardly thrown ball also increases linearly in speed
2 - 'lAn 9.80m/s each second), but its speed at any moment is always

n/s*, which , A . .

B i i A () im/s (its initial speed) higher than a falling ball.

\ppropriate

the ball is YNVILZR K Ball thrown upward. A person throws a ball upward

4 Hilo the air with an initial velocity of 15.0 m/s. Calculate (a) how high it

ok, and (b) how long the ball is in the air before it comes back to his

after 2.00s, 4 i, We are not concerned here with the throwing action, but only with
L 1l motion of the ball after it leaves the thrower’s hand (Fig. 2-20).

1L UTION Let us choose y to be positive in the upward direction and
Aepntive in the downward direction. (Note: This is a different convention
hmn that used in Examples 2-11 and 2-12.) Then the acceleration due to
! Huvity will have a negative sign,a = —9.80 m/s? Note that as the ball rises,
\ #peed decreases until it reaches the highest point (B in Flg 2-20), where
!ll #peed is zero for an instant; then it descends with increasing speed.
| {) ‘1 determine the maximum height, we calculate the position of the ball

m Ei(argplei Ewhen its velocity equals zero (v = 0 at the highest point). At ¢ = 0 (point A
? m(si 62%0 o? 1) 11, 2-20) we have y, = 0,v, = 15.0m/s, and a = —9.80 m/s?. At time ¢
' iﬁ - ‘Sj inximum height), v = 0,a = —9.80m/s? and we wish to find y. We use
‘H R ). 2-10c (replacing x with y) and solve for y:
v = 1)(2, + 2ay
| -3 0- (15.0m/s) s
itely. If the ob- = = =115m
ity Accelorl YT 2 T a(-980m/s)

mward, toward

| ho ball reaches a height of 11.5 m above the hand.

FIGURE 2-20 An object thrown
into the air leaves the thrower’s hand
at A, reaches its maximum height at B,
and returns to the original height at C.
Examples 2-13,2-14, and 2-15.

B(v=0)
N
"
1]
i
il

o 1R
1
11
I
il

1 11l

v “ v
11
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I
1
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I
1

L&
A
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B(v=0)

_———

§ O e e e o o o o o e e o e e
B ]
=

QO-

FIGURE 2-21 Examples
2-13,2-14, and 2-15.

Careful:
Velocity and acceleration are not
always in the same direction

Careful:
a # 0 even at the highest
l point of a trajectory
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(b) Now we need to calculate how long the ball is in the air before it |

turns to his hand. We could do this calculation in two parts by first del(

mining the time required for the ball to reach its highest point, and tli¢
determining the time it takes to fall back down. However, it is simpley |
consider the motion from A to B to C (Fig. 2-21) in one step and
Eq. 2-10b. We can do this because y (or x) represents position or displi
ment, and not the total distance traveled. Thus, at both points A and {
y = 0. We use Eq.2-10b with a = —9.80 m/s? and find

y = vyt + at?
0 = (15.0 m/s)t + 3 (—9.80 m/s?)%

This equation is readily factored (we factor out one ?):
(150m/s — 490 m/s*f)t = 0.

There are two solutions:

t=0,
and
_ 150m/s _
£= 290 m/s 3.06s.

The first solution (¢ = 0) corresponds to the initial point (A) in Fig. 2-2
when the ball was first thrown and was also at y = 0. The second solj|
tion, ¢ = 3.06s, corresponds to point C, when the ball has returncd (§
y = 0. Thus the ball is in the air 3.06s.

CONCEPTUAL EXAMPLE 2-14 | Two common misconceptions. Explulf
the error in these two common misconceptions: (1) that acceleration nj
velocity are always in the same direction, and (2) that an object throw|
upward has zero acceleration at the highest point (B in Fig. 2-21).

RESPONSE Both are wrong. (1) Velocity and acceleration are nor ne(
essarily in the same direction. When the ball in Example 2-13 is movii
upward, its velocity is positive (upward), whereas the acceleration is nof
ative (downward). (2) At the highest point (B in Fig. 2-21), the ball hy
zero velocity for an instant. Is the acceleration also zero at this point? N(
Gravity does not stop acting,so a = —g = —9.80m/s” even there. Think
ing that ¢ = 0 at point B would lead to the conclusion that upon reachii
point B, the ball would hover there. For if the acceleration (=ratc (f
change of velocity) were zero, the velocity would remain zero, and il

ball could stay up there without falling.
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r before it re-
by first deter-
oint, and then
t is simpler to

step and use
m or displace-
ints A and C,

L2 EN Ball thrown upward, I Let us consider again the ball
| ipward of Example 2-13, and make three more calculations. Cal-
i (@) how much time it takes for the ball to reach the maximum
Il (point B in Fig. 2-21), (b) the velocity of the ball when it returns
i thiower’s hand (point C), and (c) at what time ¢ the ball passes a
it §.00 m above the person’s hand.

L UTION  Again we take y as positive upward. (a) Both Egs. 2-10a
! |b contain the time ¢ with other quantities known. Let us use Eq.
1 with « = —9.80m/s?, v, = 15.0m/s, and v = 0:

0= v, + at,
Vo 15.0m/s
L LI 1Y
a —9.80 m/s? 33s

i Iy Just half the time it takes the ball to go up and fall back to its original

Hilon 3,06, calculated in part (b) of Example 2-13]. Thus it takes the
18 tine to reach the maximum height as to fall back to the starting point.
) Wo use Eq. 2-10a with v, = 15.0m/s and ¢ = 3.06s (the time calcu-
il In 1ixample 2-13 for the ball to come back to the hand):

v =1vy+ at=150m/s — (9.80 m/s?)(3.06 s) = —15.0 m/s.

1) in Fig, 2-21,
e second solu-

& Iotlon is symmetrical about the maximum height. direction is opposite)
as returned to

We want ¢, given that y = 8.00m, Yo=0, v, =150m/s, and
.80 m/s%. We use Eq. 2-10b:

Y=Y+ vt + 3ar®
800m =0 + (15.0m/s)t + 3 (—9.80 m/s?) >

itions. Explain L wolve any quadratic equation of the form at? + bt + ¢ = 0, where a, b,

:celeration and il ¢ o constants, we can use the quadratic formula (see Appendix A—4):
object thrown

g.2-21).

e bill has the same magnitude of velocity when it returns to the start-  Note the symmetry: the speed at
§ [0l as it did initially, but in the opposite direction (this is the mean-  any height is the same when going
I 0l the negative sign). Thus, as we gathered from part (a), we see that  up as coming down (but the

’_—biVb2—4ac = PROBLEM SOLVING

on are not nec-
2-13 is moving
leration is neg-
1), the ball has
this point? No.
:n there. Think-
: upon reaching
tion (=rate of
a1 zero, and the

fewrite our equation in standard form:
(4.90 m/s*)#? — (15.0 m/s)¢ + (8.00 m) = 0.

\ the coclficient a is 4.90m/s?, b is —15.0m/s, and c is 8.00 m. Putting
10 Ino the quadratic formula, we obtain

,_150m/s & V(15.0 m/s)> — 4(4.90 m/s?)(8.00 m)
2(4.90 m/s?)
/ ~ 0.09s and t = 2.37s. Why are there two solutions? Are they both

MY Yes, because the ball passes y = 8.00 m when it goes up (¢ = 0.69s)
il hpnin when it comes down (¢ = 2.37s).

SECTION 2-7  Falling Objects
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Acceleration The acceleration of an object, particularly rockets and fast airplanes, is
expressed ing’s  often given as a multiple of g = 9.80 m/s?. For example, a plane pulling

out of a dive and undergoing 3.00g’s would have an acceleration of
(3.00)(9.80m/s?) = 29.4m/s%

* MrggMCal Analysis of Linear Motion'

Figure 2-8 showed the graph of the velocity of a car versus time for two
cases of linear motion: (a) constant velocity, and (b) a particular case in |
which the magnitude of the velocity varied. It is also useful to graph (or
“plot”) the position x as a function of time. The time ¢ is considered the in-
dependent variable and is measured along the horizontal axis. The posi-
tion, x, the dependent variable, is measured along the vertical axis.

We make a graph of x vs. ¢, and we make the choice that at ¢ = 0, the
position is x, = 0. First we consider a car moving at a constant velocity of
40 km/h, which is equivalent to 11 m/s. From Eq. 2-10b, x = ¢, and we
see that x increases by 11 m every second. Thus, the position increases lin-
early in time, so the graph of x vs. ¢ is a straight line, as shown in Fig. 2-22,
Each point on this straight line tells us the car’s position at a particular
time. For example, at ¢ = 3.0s, the position is 33m, and at ¢t = 4.0 S,
x = 44 m, as indicated by the dashed lines. The small triangle on the graph
indicates the slope of the straight line, which is defined as the change in
the dependent variable (Ax) divided by the corresponding change in the
independent variable (Af):

slope —A{-
P = At

We see, using the definition of velocity (Eq. 2-2), that the slope of the x |

vs. ¢ graph is equal to the velocity. And, as can be seen from the small tri- |

|
*Some sections of this book, such as this one, may be considered optional at the discretion of |
the instructor. See the Preface for more details. 1

FIGURE 2-22 Graph of 504
. position vs. time for an object
| moving at a uniform velocityof @ [T """ ——————-—
11m/s. 40+ : Ax=1lm
|
E 304 |W—-’1|
| g 105 |
" Z 20 ! I
' £ : |
L
10+ : [
I |
I |
0 : ; ! : -
0 1.0 20 3.0 40 5.0
Time, ¢ (s)
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le on the graph, Ax/At = (11m)/(1.0s) = 11 m/s, which is the given
Y.
Ihe slope of the x vs. ¢ graph is everywhere the same if the velocity
tonstant, as in Fig. 2-22. But if the velocity changes, as in Fig. 2-23,
i #lope of the x vs. ¢ graph also varies. Consider, for example, a car that
‘lerates uniformly from rest to 15 m/s in 15s, after which it remains
il tonstant velocity of 15m/s for the next 5.0s, then slows down uni-
fly to 5.0m/s during the following 5.0s, and then remains at this
Iistant velocity. The velocity as a function of time is shown in the graph
Fip. 2-23a. Now, to construct the x vs. ¢ graph, we can use Eq. 2-10b
Il constant acceleration for the intervals t = 0to ¢ = 15s and ¢ = 20s
)~ 255, and with constant velocity for the periods t = 15s to t = 20s
il nfter t = 255. The result is the x vs. ¢ graph of Fig. 2-23b.

I'rom the origin to point A on the plot, the x vs. ¢ graph is not a
Mfnight line, but a curve. The slope of the curve at any point is defined
W the slope of the tangent to the curve at that point. (The tangent is a
Minight line drawn so it touches the curve only at that one point, but
Alies not pass across or through the curve.) For example, the tangent to
o curve at the time ¢ = 10.0's is drawn on the graph (it is labeled “tan-
Jont"). A triangle is drawn with At chosen to be 4.0s; Ax can be mea-
Slhed off the graph for this chosen At and is found to be 40 m. Thus, the
Mlope of the curve at ¢t = 10.0's, which equals the instantaneous velocity
Al (hat instant, is ¥ = Ax/At = 40m/4.0s = 10m/s. In the region be-
Ween A and B (Fig. 2-23) the x vs. ¢ graph is a straight line and the
Mope can be measured using the triangle shown between ¢ = 17s and
|~ 20s, where the increase in x is 45 m: Ax/At = 45 m/3.0s = 15m/s.

Suppose we were given the x vs. ¢ graph of Fig. 2-23b. We could mea-
Sl the slopes at a number of points and plot these slopes as a function of

lime. Since the slope equals the velocity, we could thus reconstruct the v
¥, 1 graph! In other words, given the graph of x vs. ¢, we can determine the
Yolocity as a function of time using graphical methods, instead of using
f(uations. This technique is particularly useful when the acceleration is
liot constant, for then Eqgs. 2-10 cannot be used.

*SECTION 2-8

100 150 200 250 300

Time, ¢ (s)

(®)

(a) Velocity vs. time and (b) displacement vs. time for an object with variable velocity. (See text.)

Slope of a curve
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The reverse process is also possible. If we are given the v vs. ¢ grapl
we can determine the position, x, as a function of time. To do SO, we uy
the following procedure, which we apply to the v vs. ¢ graph of Fig. 2-24
(which is the same as Fig. 2-23a). We first divide the time axis into man|
| subintervals (in Fig. 2-24a, only six for simplicity), which are indicated if
the figure by the dashed vertical lines. In each interval, a horizoni(
dashed line is drawn to indicate the average velocity during that time i
terval. For example, in the first interval, the velocity increases at a constaif
rate from zero to 5.0m/s, so ¥ = 2.5m/s; and in the fourth interval the vd
locity is a constant 15m/s, so v = 15 m/s (no horizontal dashed line |
shown since it coincides with the curve itself). The displacement (chang|
in position) during any subinterval is Ax = vAr. Thus the displacemen
during each subinterval equals the product of v and At, and this is just th
area of the rectangle (base X height = At X v), shown shaded in rose, o
that interval. The total displacement after 25 s, say, will be the sum of thy
first five rectangles.

If the velocity varies a great deal, it may be difficult to estimate |
from the graph. To reduce this difficulty, more—but narrower—subinterval|

5.0

Velocity, v (m/s)

(a)

Velocity, v (m/s)

LTI
i
IR
NI
RIS
i1l

I I

|
]
T

0 50 10 15 20 25 30
Time, ¢ (s)

(b)

FIGURE 2-24 Determining
the displacement from the graph of
v vs. t is done by calculating areas.

are used. That is, we make each At smaller, as in Fig. 2-24b. The more i
tervals give a better approximation. Ideally, we could let At approac|
zero; this leads to the techniques of integral calculus, which we don’t diy

cuss here. The result, in any case, is that the rotal displacement betwecl

any two times is equal to the area under the v vs. t graph between thes|
two times.

Displacement = area
under v vs. t graph

2GRS N Displacement from graph. A space probe accelerate|

uniformly from 50m/s at ¢ = 0 to 150m/s at ¢t = 10s. How far did |
move between ¢t = 2.0s and t = 6.0s?

150 SOLUTION A graph of v vs. f can be drawn as shown in Fig. 2-25. W{

2 100 simply need to calculate the area of the shaded region shown in rosyd

g which is a trapezoid. The area will be the average of the heights (in unit|

T 50 i of velocity) times the width (which is 4.05). At t = 2.0s,v = 70 m/s; an¢
0 } att = 6.0s,v = 110 m/s. Thus the area, which equals Ax, is

0 20 40 60 80
t(s)

FIGURE 2-25 Example 2-16:

the rose-shaded area represents

the displacement during the time
interval t = 20stot = 6.0s.

+
Ay = (70 m/s 2110 m/s

For this case of constant acceleration, we could use Eqgs. 2-10 and we woul{
get the same result: a = Av/Ar = (150m/s — 50m/s)/10s = 10 m/s; il
t=20s, v =1 +at=50m/s + (10m/s?)(2.0s) = 70m/s, and 4
t =6.0s,v = 50m/s + (10m/s>)(6.0s) = 110 m/s; then, using Eq. 2-10¢

)(4.0 s) = 360 m.

i (@~
| Ax = on
' _ (110m/s) — (70m/s)* _
B 2(10 m/s?) = 360m

In cases where the acceleration is not constant, the area can be obtainud
by counting squares on graph paper.
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SUMMARY

ljo Summary that appears at the end of each chapter
{hix book gives a brief overview of the main ideas of

¢ ¢hapter. The Summary cannot serve to give an under-
iling of the material, which can be accomplished only
il detailed reading of the chapter.]

Kinematics deals with the description of how
uhjects move. The description of the motion of any
uhject must always be given relative to some partic-
Wi reference frame.

‘I'he displacement of an object is the change in

mition of the object.

Average speed is the distance traveled divided

the elapsed time. An object’s average velocity
Wver o particular time interval At is the displace-

Junt Ax divided by A

o x
At

‘I'hc instantaneous velocity, whose magnitude
Iy (e same as the instantaneous speed, is the aver-
W velocity taken over an infinitesimally short
{line interval.

] QUESTIONS

Acceleration is the change of velocity per unit
time. An object’s average acceleration over a time
interval At is

T A

where Av is the change of velocity during the time
interval Ar. Instantaneous acceleration is the aver-
age acceleration taken over an infinitesimally short
time interval.

If an object moves in a straight line with constant
acceleration, the velocity v and position x are related
to the acceleration a, the elapsed time ¢, and the ini-
tial position x, and initial velocity v, by Eqs. 2-10:

v=12,+ at, x =X, + vyt + jat?,
_ v+
V¥ = % + 2a(x — xp), v= 7

Objects that move vertically near the surface of
the Earth, either falling or having been projected
vertically up or down, move with the constant down-
ward acceleration due to gravity with magnitude of
about g = 9.80 m/s?,if air resistance can be ignored.

§, oces a car speedometer measure speed, velocity, or
both?

J, C'an an object have a varying velocity if its speed is
vonstant? If yes, give examples.

4, C'an an object have a varying speed if its velocity is
constant? If yes, give examples.

4, When an object moves with constant velocity, does
itn average velocity during any time interval differ
{yom its instantaneous velocity at any instant?

A, In drag racing, is it possible for the car with the greatest
speed crossing the finish line to lose the race? Explain.

6, 11 one object has a greater speed than a second ob-
jeet, does the first necessarily have a greater acceler-
ntion? Explain, using examples.

7, Compare the acceleration of a motorcycle that accel-
orates from 80 km/h to 90 km/h with the accelera-
flon of a bicycle that accelerates from rest to
10 km/h in the same time.

#, Ilow is speed represented on a speedometer? How
{8 ncceleration represented?

U, Can an object have a northward velocity and a
nouthward acceleration? Explain.

10. Can the velocity of an object be negative when its
acceleration is positive? What about vice versa?

11. Give an example where both the velocity and accel-
eration are negative.

12. Is it possible for an object to have a negative accel-
eration while increasing in speed? If so, provide an
example.

13. Two cars emerge side by side from a tunnel. Car A is
traveling with a speed of 60 km/hr and has an accel-
eration of 40 km/hr/min. Car B has a speed of
40 km/hr and has an acceleration of 60 km/hr/min.
Which car is passing the other as they come out of
the tunnel? Explain your reasoning.

14. Can an object be increasing in speed as its accelera-
tion decreases? If so, give an example. If not, explain.

15. As a freely falling object speeds up, what is happen-
ing to its acceleration due to gravity? Does it in-
crease, decrease, or stay the same?

16. How would you estimate the maximum height you
could throw a ball vertically upward? How would
you estimate the maximum speed you could give it?

Questions 41
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17. An object that is thrown vertically upward will re-
turn to its original position with the same speed as it ,
had initially if air resistance is negligible. If air resist-
ance is appreciable, will this result be altered, and if
s0, how? [Hint: The acceleration due to air resistance
is always in a direction opposite to the motion.]

20

E /
= 10

4
4/

0 10 20 30 40 50
t(s)

FIGURE 2-26 Question 18, Problems 51, 52, and 57.

B_PROBLEMS

* 18. Describe in words the motion plotted in Fiy, 2
terms of v, a, etc. [Hint: First try to duplicato 1l
tion plotted by walking or moving your hand,|

* 19. Describe in words the motion of the objccl B

in Fig. 2-27.

40 —

30 ™
20—

10 -

0
0 10 20 30 40 50 60 70 80 90
t(s)

1y

FIGURE 2-27 CQuestion 19, Problems 53, 50, ii

[The problems at the end of each chapter are ranked I, II,
or IIT according to estimated difficulty, with I problems
being easiest. The problems are arranged by Section, mean-
ing that the reader should have read up to and including
that Section, but not only that Section—problems often de-
pend on earlier material. Finally, there is a set of unranked
“General Problems” not arranged by Section number.]

SECTIONS 2-1 TO 2-3

1. (I) What must be your average speed in order to
travel 230 km in 3.25 h?

2. (I) A bird can fly 25 km/h. How long does it take to
fly 15 km?

3. (I) If you are driving 110 km/h along a straight road
and you look to the side for 2.0's, how far do you
travel during this inattentive period?

4. (I) 65 mph is how many (a) km/h, (b) m/s, and (c) ft/s?

5. (II) You are driving home from school steadily at
65 mph for 130 miles. It then begins to rain and you
slow to 55mph. You arrive home after driving 3 hours

and 20 minutes. (@) How far is your hometown from
school? (b) What was your average speed?

FIGURE 2-28 Problem 9.

42 CHAPTER 2

6. (II) According to a rule-of-thumb, every fivu y
onds between a lightning flash and the folluwy
thunder gives the distance of the storm in miley,
suming that the flash of light arrives in essen|i
no time at all, estimate the speed of sound in |
from this rule.

7. (II) A person jogs eight complete laps arowl
quarter-mile track in a total time of 12.5 min. Cil
late (a) the average speed and (b) the average voll
ity, in m/s.

8. (I) A horse canters away from its traincr i)
straight line, moving 130 m away in 14.0s. It (i
turns abruptly and gallops halfway back in 4.8 5, (!
culate (a) its average speed and (b) its averago
locity for the entire trip, using “away from |
trainer” as the positive direction.

9. (II) Two locomotives approach each other on il
lel tracks. Each has a speed of 95 km/h with rexp
to the ground. If they are initially 8.5 km apart, I\(

long will it be before they reach each other? (4§
Fig. 2-28.)

8.5km

Describing Motion: Kinematics in One Dimension
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. (I1) An airplane travels 2100km at a speed of
HOhkm/h, and then encounters a tailwind that
hoosts its speed to 1000 km/h for the next 1800 km.
What was the total time for the trip? What was the
nverage speed of the plane for this trip? [Hinr: Think
tnrefully before using Eq. 2-10d.]

{1, (I1) Calculate the average speed and average velocity
ol 1 complete round-trip in which the outgoing 200 km
I covered at 90 km/h, followed by a one-hour lunch
brenk, and the return 200 km is covered at 50 km/h.

{4, (111) A bowling ball traveling with constant speed hits
{he pins at the end of a bowling lane 16.5 m long. The
howler hears the sound of the ball hitting the pins
2,505 after the ball is released from his hands. What is
{he speed of the ball? The speed of sound is 340 m/s.

HHCTION 2-4

14, (1) A sports car accelerates from rest to 95 km/h in
012 5. What is its average acceleration in m/s??

I4, (1) At highway speeds, a particular automobile is ca-
pible of an acceleration of about 1.6 m/s% At this
rate, how long does it take to accelerate from
H) km/h to 110 km/h?

{4, (1) A sprinter accelerates from rest to 10.0 m/s in
1,35 s. What is her acceleration (a) in m/s?, and
(h) inkm/h??

16, (1) A sports car is advertised to be able to stop in a
istance of SO m from a speed of 90 km/h. What is
in acceleration in m/s*? How many g’s is this
(4 = 9.80 m/s%)?

I, (111) The position of a racing car, which starts from
1est at ¢+ = 0 and moves in a straight line, has been
measured as a function of time, as given in the fol-
lowing table. Estimate (a) its velocity and (b) its ac-
voleration as a function of time. Display each in a
{nble and on a graph.

() 0 025 050 075 1.00 1.50 2.00 2.50
v(m) 0 011 046 1.06 194 462 855 13.79

(s) 300 350 400 450 500 550 6.00
v(m) 20.36 28.31 37.65 48.37 60.30 73.26 87.16

HSILCTIONS 2-5 AND 2-6

{ll. (1) The principal kinematic equations, Eqs. 2-10a
through 2-10d, become particularly simple if the ini-
tinl speed is zero. Write down the equations for this
npecial case. (Also put x;, = 0.)

19, (I) A car accelerates from 12 m/s to 25m/s in 6.0s.
What was its acceleration? How far did it travel in
this time? Assume constant acceleration.

1), (1) A car slows down from 20 m/s to rest in a distance

of 85 m. What was its acceleration, assumed constant?

(I) A light plane must reach a speed of 30 m/s for

tnkeoff. How long a runway is needed if the (con-
stant) acceleration is 3.0 m/s??

'

22. (II) A world-class sprinter can burst out of the
blocks to essentially top speed (of about 11.5 m/s) in
,the first 15.0m of the race. What is the average ac-
celeration of this sprinter and how long does it take
her to reach that speed?

23. (IT) A car slows down from a speed of 25.0m/s to
rest in 5.00 s. How far did it travel in that time?

24. (II) In coming to a stop, a car leaves skid marks 80 m
long on the highway. Assuming a deceleration of
7.00 m/s?, estimate the speed of the car just before
braking.

25, (II) A car traveling 45 km/h slows down at a con-
stant 0.50 m/s? just by “letting up on the gas.” Cal-
culate (a) the distance the car coasts before it stops,
(b) the time it takes to stop, and (c) the distance it
travels during the first and fifth seconds.

26. (II) A car traveling at 90 km/h strikes a tree. The front
end of the car compresses and the driver comes to rest
after traveling 0.80 m. What was the average accelera-
tion of the driver during the collision? Express the an-
swer in terms of “g’s,” where 1.00 g = 9.80 m/s%

27. (II) Determine the stopping distances for an auto-
mobile with an initial speed of 90 km/h and human
reaction time of 1.0s: (4) for an acceleration
a = —40m/s% (b) fora = —8.0m/s%

28. (III) Show that the equation for the stopping dis-
tance of a car is dg = vty — v3/(2a), where v, is the
initial speed of the car, #y is the driver’s reaction time,
and a is the constant acceleration (and is negative).

29. (IIT) A speeding motorist traveling 120 km/h passes a
stationary police officer. The officer immediately be-
gins pursuit at a constant acceleration of 10.0 km/h/s
(note the mixed units). How much time will it take for
the police officer to reach the speeder, assuming that
the speeder maintains a constant speed? How fast will
the police officer be traveling at this time?

30. (IIT) A person driving her car at 50 km/h approaches
an intersection just as the traffic light turns yellow. She
knows that the yellow light lasts only 2.0 s before turn-
ing to red, and she is 30 m away from the near side of
the intersection (Fig. 2-29). Should she try to stop, or
should she make a run for it? The intersection is 15 m
wide. Her car’s maximum deceleration is —6.0m/s?,
whereas it can accelerate from 50 km/h to 70 km/h in
6.0 s. Ignore the length of her car and her reaction time.

FIGURE 2-29

Problem 30.



31.

(III) A runner hopes to complete the 10,000-m run
in less than 30.0 min. After exactly 27.0 min, there
are still 1100 m to go. The runner must then acceler-
ate at 0.20 m/s? for how many seconds in order to
achieve the desired time?

SECTION 2-7 [neglect air resistance]

32.

33.

34.

35.

36.

37.

38.

39.

41.

42.

43.

45.

(I) Calculate the acceleration of the baseball in Ex-
ample 2-9 in “g’s.”

(I) If a car rolls gently (v, = 0) off a vertical cliff, how
long does it take it to reach 90 km/h?

(I) A stone is dropped from the top of a cliff. It is
seen to hit the ground below after 3.50s. How high
is the cliff?

(I) Caiculate (a) how long it took King Kong to fall
straight down from the top of the Empire State
Building (380 m high), and (b) his velocity just be-
fore “landing”?

(II) A foul ball is hit straight up into the air with a
speed of about 25 m/s. (@) How high does it go?
(b) How long is it in the air?

(IT) A kangaroo jumps to a vertical height of 2.7m.
How long was it in the air before returning to Earth?
(II) A ballplayer catches a ball 3.3 s after throwing it
vertically upward. With what speed did he throw it,
and what height did it reach?

(II) Draw graphs of (a) the speed and (b) the dis-
tance fallen, as a function of time, for an object
falling under the influence of gravity from ¢ = 0 to
t = 5.00s. Ignore air resistance and assume vy = 0.

. (IT) The best rebounders in basketball have a verti-

cal leap (that is, the vertical movement of a fixed
point on their body) of about 120 cm. (¢) What is
their initial “launch” speed off the ground? (b) How
long are they in the air?

(II) A helicopter is ascending vertically with a speed
of 5.50 m/s. At a height of 105 m above the Earth, a
package is dropped from a window. How much time
does it take for the package to reach the ground?
(II) For an object falling freely from rest, show that
the distance traveled during each successive second in-
creases in the ratio of successive odd integers (1, 3, 5,
etc.). (This was first shown by Galileo.) See Figs. 2-16
and 2-19.

(ID) If air resistance is neglected, show (algebraically)
that a ball thrown vertically upward with a speed v,
will have the same speed, v,, when it comes back
down to the starting point.

. (IT) A stone is thrown vertically upward with a speed

of 20.0 m/s. (a) How fast is it moving when it reaches
a height of 12.0 m? (b) How long is required to reach
this height? (c) Why are there two answers to (b)?
(IT) Estimate the time between each photoflash of the
apple in Fig. 2-16 (or number of photoflashes per sec-
ond). Assume the apple is about 10 cm in diameter.

To travel
> this distance
took 0.30 s

2.2m

| -

FIGURE 2-30 Problem 46.

46. (IT1) A falling stone takes 0.30 s to travel past a wi(
dow 2.2 m tall (Fig. 2-30). From what height aboy
the top of the window did the stone fall?

47. (ITII) A rock is dropped from a sea cliff and il
sound of it striking the ocean is heard 3.4 s later.
the speed of sound is 340 m/s, how high is the cliff!

48. (IIT) Suppose you adjust your garden hose nozzle f{
a hard stream of water. You point the nozzle ver|
cally upward at a height of 1.5 m above the groui|
(Fig. 2-31). When you quickly move the nozzle awi
from the vertical, you hear the water striking t!
ground next to you for another 2.0s. What is tl
water speed as it leaves the nozzle?

FIGURE 2-31 Problem 48.
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ik hottom of the cliff? (b) What is its speed just be-
¢ hitting? (c) What total distance did it travel?

4Hl) A baseball is seen to pass upward by a window
A 1 nbove the street with a vertical speed of 12 m/s.
f 1le bull was thrown from the street, (@) what was its
il speed, (b) what altitude does it reach, (c) when

4 Il thrown, and (d) when does it reach the street
Wiin?

{ "ION 2-8

t}) I'he position of a rabbit along a straight tunnel as
A lunction of time is, plotted in Fig. 2-26. What is its
Waluntancous velocity (a) at ¢+ = 10.0s and (b) at
I }00s? What is its average velocity (c) between
~ 0 ond t=50s, (d) between ¢ =250s and
i = W.0s,and (e) between ¢t = 40.0s and ¢ = 50.0s?
1_ ) In Fig. 2-26, (@) during what time periods, if any, is
10 ubject’s velocity constant? (b) At what time is its
lucity the greatest? (c) At what time, if any, is the ve-
Wity z¢ro? (d) Does the object run in one direction
I both along its tunnel during the time shown?

{1} Vigure 2-27 shows the velocity of a train as a
Widtion of time. (a) At what time was its velocity
Sluniest? (b) During what periods, if any, was the ve-
Luily constant? (c) During what periods, if any, was
e ncceleration constant? (d) When was the magni-
tlo of the acceleration greatest?

{1l) A high-performance automobile can accelerate
)proximately as shown in the velocity—time graph
Il 2-33. (The short flat spots in the curve repre-
S0 shifting of the gears.) (a) Estimate the average
Wi tuleration of the car in second gear and in fourth

it. (b) Estimate how far the car traveled while in
Wlith gear.

50 "

|
’ 40 7 4th gear
30 Aﬁear
// '
// 2nd gear
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{ Ist gem\
0

0 10 20 30 40
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20
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FIGURE 2-33 The velocity of a high-performance
automobile as a function of time, starting from a dead
stop. The jumps in the curve represent gear shifts.
(Problems 54 and 55.)

* 55. (II) Estimate the average acceleration of the car in
the previous problem (Fig. 2-33) when it is in (a) first,
(b) third, and (c) fifth gear. (d) What is its average
acceleration through the first four gears?

(II) In Fig. 2-27, estimate the distance the object
traveled during (a) the first minute and (b) the sec-
ond minute.

(II) Construct the v vs. ¢ graph for the object
whose displacement as a function of time is given
by Fig. 2-26.

(II) Construct an x vs. ¢ graph for the object whose
velocity as a function of time is given by Fig, 2-27.
(IT) Figure 2-34 is a position versus time graph for
the motion of an object along the x axis. As the object
moves from A to B: (a) Is the object moving in the
positive or negative direction? (b) Is the object speed-
ing up or slowing down? (c) Is the acceleration of the
object positive or negative? Next, for the time interval
from D to E: (d) Is the object moving in the positive
or negative direction? (e) Is the object speeding up or
slowing down? (f) Is the acceleration of the object
positive or negative? (g) Finally, answer these same
three questions for the time interval from C to D.

* 56.

* 57,

* 58.

* 59.

FIGURE 2-34 Problem 59.
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GENERAL PROBLEMS

’

60. A person jumps from a fourth-story window 15.0m

61.

62.

63.

46

above a firefighter’s safety net. The survivor stretches
the net 1.0 m before coming to rest, Fig. 2-35. (¢) What
was the average deceleration experienced by the sur-
vivor when slowed to rest by the net? (b) What
would you do to make it “safer” (that is, generate a
smaller deceleration): would you stiffen or loosen the
net? Explain.
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FIGURE 2-35

Problem 60.

The acceleration due to gravity on the Moon is
about one sixth what it is on Earth. If an object is
thrown vertically upward on the Moon, how many
times higher will it go than it would on Earth, as-
suming the same initial velocity?

A person who is properly constrained by an over-the-
shoulder seat belt has a good chance of surviving a car
collision if the deceleration does not exceed 30 “g’s”
(1.00 g = 9.80 m/s?). Assuming uniform deceleration
of this value, calculate the distance over which the
front end of the car must be designed to collapse if a
crash brings the car to rest from 100 km/h.

A race car driver must average 200.0 km/h over the
course of a time trial lasting ten laps. If the first nine

laps were done at 199.0 km/h, what average speed
must be maintained for the last lap?

CHAPTER 2

64. A car manufacturer tests its cars for front-end ¢{

65.

66.

by hauling them up on a crane and dropping (li¢}
a certain height. () Show that the speed just |
car hits the ground, after falling from rest a voi (i
tance H, is given by V' 2gH. What height corresji
a collision at (b) 50 km/h? (c) 100 km/h?

A first stone is dropped from the roof of i h
2.00 s after that, a second stone is thrown slrnlgll
with an initial speed of 30.0 m/s, and it is obsuy
the two stones land at the same time. (a) How |
it take the first stone to reach the ground? (/i
high is the building? (c) What are the speeds of |
stones just before they hit the ground?

A 90-m-long train begins uniform accel@
from rest. The front of the train has u Aj)
20m/s when it passes a railway workui
standing 180 m from where the front of (/i
started. What will be the speed of the last (i
passes the worker? (See Fig. 2-36.) \

90 m -

Jcmockromsclockackocme! F

Y

FIGURE 2-36 Problem 66.

67. A police car at rest, passed by a speeder (rivel

a constant 110 km/h, takes off in hot pursuil, ‘|
lice officer catches up to the speeder in 704} i),
taining a constant acceleration. (a) Qualitntivel
the position versus time graph for both carx [
police car’s start to the catch-up point. (b) (il
how long it took the police officer to ovuili
speeder, (c) calculate the required police i’ i
ation, and (d) calculate the speed of the pollu
the overtaking point.

. In the design of a rapid transit system, it ix ned

to balance out the average speed of a truli
the distance between stops. The more stops (lj
the slower the train’s average speed. To get i §
this problem, calculate the time it takes n i)
make a 36-km trip in two situations: (a) the ¢
at which the trains must stop are 0.80 km nji
(b) the stations are 3.0 km apart. Assume (hil
station the train accelerates at a rate of 1.1 n/!
it reaches 90 km/h, then stays at this speed {
brakes are applied for arrival at the next (il
which time it decelerates at —2.0 m/s% Auil
stops at each intermediate station for 20,

Describing Motion: Kinematics in One Dimension




llewnw tuck their wings and free fall straight down
oh diving for fish. Suppose a pelican starts its dive
i i height of 16.0 m and cannot change its path
o committed. If it takes a fish 0.20s to perform
4lve nction, at what minimum height must it spot

d collisions
them from

st b.ecgc;rgi 1 pelican to escape? Assume the fish is at the sur-
:::u s ts() ¢ of the water.
po putting, the force with which a golfer strikes a ball
buildin planned so that the ball will stop within some
'a' & inll distance of the cup, say 1.0 m long or short, in
aight down 40 Ihe putt is missed. Accomplishing this from an
rseriled tl;a(l! Il lic (that is, putting downhill, see Fig. 2-37) is
;,w(;)n%_k:w uie difficult than from a downhill lie. To see why,
’ ume that on a particular green the ball deceler-
s of the twg {0K constantly at 2.0m/s? going downhill, and con-
. {untly at 3.0 m/s® going uphill. Suppose we have an
ceeleration phill lic 7.0 m from the cup. Calculate the allowable
a speed (?f Ahgte of initial velocities we may impart to the ball
cer who i ) {hat it stops in the range 1.0 m short to 1.0 m long
f the train f (he cup. Do the same for a downhill lie 7.0 m from
ast car as il

1w cup. What in your results suggests that the down-
Hill putt is more difficult?

Buras e
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suit. The po-
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<m apart; and
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1.1 m/s? until
speed until ity
ext station, at
s%. Assume it
Os.

1.

72.

73.

A car is behind a truck going 25 m/s on the highway.
The driver looks for an opportunity to pass, guessing
that his car can accelerate at 1.0 m/s?, and he gauges
that he has to cover the 20-m length of the truck, plus
10m clear room at the rear of the truck and 10m
more at the front of it. In the oncoming lane, he sees
a car approaching, probably also traveling at 25 m/s.
He estimates that the car is about 400m away.
Should he attempt the pass? Give details.

A stone is dropped from the roof of a high building.
A second stone is dropped 1.50 s later. How far apart
are the stones when the second one has reached a
speed of 12.0 m/s?

Bond is standing on a bridge, 10 m above the road
below, and his pursuers are getting too close for
comfort. He spots a flatbed truck loaded with mat-
tresses approaching at 30 m/s, which he measures by
knowing that the telephone poles the truck is pass-
ing are 20m apart in this country. The bed of the
truck is 1.5 m above the road, and Bond quickly cal-
culates how many poles away the truck should be
when he jumps down from the bridge onto the truck,
making his getaway. How many poles is it?

FIGURE 2-37 Problem 70. Golf on Wednesday morning.
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