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CHAPTER 9 

 
1. From the force diagram for the sapling we can write  

  ·Fx = F1 – F2 sin 20° – F3 cos α = 0; 

   282 N – (355 N) sin 20° – F3 cos α = 0,  or  

   F3 cos α = 161 N. 

  ·Fy = F2 cos 20° – F3 sin α = 0; 

   F3 sin α = 334 N. 

 Thus we have 

  F3 = [(161 N)2 + (334 N)2]1/2 =      370 N. 

  tan α = (334 N)/(161 N) = 2.08,  α = 64°.   

 So  θ = 180° – α =      116°. 
 
 
 
2. We choose the coordinate system shown, with the y-axis in the  
 direction of the net force.  From symmetry we know that the two  
 tensions will be at the same angle from the y-axis.   
 We write ·Fy = may from the force diagram for the tooth: 

  Fnet = 2FT cos (!θ); 

  0.75 N = 2FT cos 77.5°, which gives FT =          1.7 N. 

 
 
 
 
3. We choose the coordinate system shown, with positive torques  
 clockwise.  For the torque from the person’s weight about the  
 point B we have 

  τB = MgL = (60 kg)(9.80 m/s2)(3.0 m) =        1.8 × 103 m · N. 

 
 
 
 
4. We choose the coordinate system shown, with positive torques  
 clockwise.  For the torque from the person’s weight about the  
 point A we have 

  τA = Mgx;  

  1000 m · N = (60 kg)(9.80 m/s2)x, which gives x =        1.7 m. 
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5. From the force diagram for the junction we can write  
  ·Fx = FT1 – FT2 cos 45° = 0. 

 This shows that FT2 > FT1 
, so we take FT2 to be the maximum. 

  ·Fy = FT2 sin 45° – Mg = 0; 

  Mg = (1300 N) sin 45° =       9.2 × 102 N. 
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6. We choose the coordinate system shown, with  

 positive torques clockwise.  We write ·τ = Iα about  
 the point A from the force diagram for the leg: 

  ·τA = MgD – FTL = 0; 

  (15.0 kg)(9.80 m/s2)(0.350 m) – FT(0.805 m),  

 which gives   FT = 63.9 N. 

 Because there is no acceleration of the hanging mass,  
 we have  

  FT = mg,  or   m = FT/g = (63.9 N)/(9.80 m/s2) =       6.52 kg. 

 
 
7. We choose the coordinate system shown, with positive torques  

 clockwise.  We write ·τ = Iα about the point A from the force  
 diagram for the beam and piano: 

  ·τA = Mg(L + mg!L – FN2L = 0, which gives 

  FN2  = (Mg + !mg  

   = ((300 kg)(9.80 m/s2) + !(160 kg)(9.80 m/s2)  

   = 1.52 × 103 N. 
 We write ·Fy = may from the force diagram for the beam and piano: 

  FN1 + FN2 – Mg – mg = 0, which gives 

  FN1 = Mg + mg – FN2 

   = (300 kg)(9.80 m/s2) + !(160 kg)(9.80 m/s2) – 1.52 × 103 N = 2.94 × 103 N. 
 The forces on the supports are the reactions to these forces: 

  2.94 × 103 N down,  and  1.52 × 103 N down. 
 
 
8. We choose the coordinate system shown, with positive torques  

 clockwise.  We write ·τ = Iα about the point A from the force  
 diagram for the two beams: 

  ·τA = mg(L + Mg!L – FN2L = 0, which gives 

  FN2  = (Mg + !mg  

    = ([!(1000 kg)](9.80 m/s2) + !(1000 kg)(9.80 m/s2)  

    =       6.13 × 103 N. 
 We write ·Fy = may from the force diagram for the two beams: 

  FN1 + FN2 – Mg – mg = 0, which gives 

  FN1 = Mg + mg – FN2 

   = (1000 kg)(9.80 m/s2) + !(1000 kg)(9.80 m/s2) – 6.13 × 103 N =       8.57 × 103 N. 
 
 
9. We must move the direction of the net force 10° to the right.   
 We choose the coordinate system shown, with the y-axis in the  
 direction of the original net force.  
 We write ·F from the force diagram for the tooth: 
  ·Fx = – FT1 cos 20° + FT2 cos 20° = Fnet sin 10°; 

   – (2.0 N) cos 20° + FT2 cos 20° = Fnet sin 10°; 

  ·Fy = + FT1 sin 20° + FT2 sin 20° = Fnet cos 10°; 

   + (2.0 N) sin 20° + FT2 sin 20° = Fnet cos 10°. 

 We have two equations for the two unknowns: Fnet 
, and FT2.   

 When we eliminate Fnet 
, we get FT2 =        2.3 N. 
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10. We choose the coordinate system shown, with positive torques  

 clockwise.  We write ·τ = Iα about the support point A from  
 the force diagram for the board and people: 

  ·τA = – m1g(L – d) + m2gd = 0; 

  – (30 kg)(10 m – d) + (70 kg)d = 0,  
 which gives d =         3.0 m from the adult. 
 
 
11. We choose the coordinate system shown, with positive torques  

 clockwise.  We write ·τ = Iα about the support point A from  
 the force diagram for the board and people: 

  ·τA = – m1g(L – d) – Mg(!L – d) + m2gd = 0; 

  – (30 kg)(10 m – d) – (15 kg)(5.0 m – d) + (70 kg)d = 0,  
 which gives d =         3.3 m from the adult. 
 
 
12. From the force diagram for the mass we can write  

  ·Fx = FT1 – FT2 cos θ = 0,  or   

  FT1 = FT2 cos 30°. 

  ·Fy = FT2 sin θ – mg = 0,  or   

  FT2 sin 30° = mg = (200 kg)(9.80 m/s2),  
 which gives FT2 =         3.9 × 103 N. 

 Thus we have 

  FT1 = FT2 cos 30° = (3.9 × 103 N) cos 30° =       3.4 × 103 N. 

 
 
 
 
13. From the force diagram for the hanging light and junction we can write  

  ·Fx = FT1 cos θ1 – FT2 cos θ2 = 0;  
   FT1 cos 37° = FT2 cos 53°; 

  ·Fy = FT1 sin θ1 + FT2 sin θ2 – mg = 0; 

   FT1 sin 37° + FT2 sin 53° = (30 kg)(9.80 m/s2). 

 When we solve these two equations for the two unknowns, FT1 
, and FT2 

,  

 we get        FT1 = 1.8 × 102 N,  and FT2 = 2.4 × 102 N. 

 
 
 
 
 
14. From the force diagram for the seesaw and children we can write  
  ·Fy = FN – m1g – m2g – Mg = 0,  or  
  FN = (m1 + m2 + M)g  

   = (30 kg + 25 kg + 2.0 kg)(9.80 m/s2) =       5.6 × 102 N. 
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15. We choose the coordinate system shown, with positive torques  

 clockwise.  We write ·τ = Iα about the support point A from  
 the force diagram for the cantilever: 

  ·τA = – F2d + Mg!L = 0; 

  – F2(20.0 m) + (1200 kg)(9.80 m/s2)(25.0 m) = 0,  

 which gives F2 =         1.47 × 104 N. 

 For the forces in the y-direction we have 
  ·Fy = F1 + F2 – Mg  = 0,  or 

  F1 = Mg – F2 = (1200 kg)(9.80 m/s2) – (1.47 × 104 N) =       – 2.94 × 103 N (down). 

 
 
16. From the force diagram for the sheet we can write 

  ·Fx = FT2 cos θ – FT1 cos θ = 0, which gives  
  FT2 = FT1.  

  ·Fy = FT1 sin θ + FT2 sin θ – mg = 0; 

  2FT1 sin θ = mg; 

  2FT1 sin 3.5°= (0.60 kg)(9.80 m/s2),  

 which gives FT1 =       48 N; 

 The tension is so much greater than the weight 
because  

 only the vertical components balance the weight. 
 
 
17. We choose the coordinate system shown, with positive torques  

 clockwise.  We write ·τ = Iα about the lower hinge B from the  
 force diagram for the door: 

  ·τB = FAx(H – 2D) – Mg!w = 0; 

  FAx[2.30 m – 2(0.40 m)] – (13.0 kg)(9.80 m/s2)!(1.30 m),  

 which gives FAx = 55.2 N. 

 We write ·F = ma from the force diagram for the door: 
  ·Fx = FAx + FBx = 0; 

   55 N + FBx = 0, which gives FBx = – 55.2 N. 

 The top hinge pulls away from the door, and the bottom  
 hinge pushes on the door. 
  ·Fy = FAy + FBy – Mg = 0. 

 Because each hinge supports half the weight, we have 

  FAy = FBy = !(3.0 kg)(9.80 m/s2) = 63.7 N. 

 Thus we have       top hinge: FAx = 55.2 N, FAy = 63.7 N;  bottom hinge: FAx = – 55.2 N, FAy = 63.7 N. 

 
 
18. We choose the coordinate system shown, with positive torques  

 clockwise.  We write ·τ = Iα about the support point A from  
 the force diagram for the seesaw and boys: 

  ·τA = + m2g!L + m3gx – m1g!L = 0; 

  + (35 kg)!(3.6 m) + (25 kg)x – (50 kg)!(3.6 m) = 0,  
 which gives x = 1.1 m. 
 The third boy should be       1.1 m from pivot on side of lighter boy. 
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19. We choose the coordinate system shown, with positive torques  
 clockwise.  For the torques about the point B we have  
  ·τB = F1d + MgD = 0; 

  F1(1.0 m) + (60 kg)(9.80 m/s2)(3.0 m) = 0,  

 which gives        F1 = – 1.8 × 103 N (down). 

 For the torques about the point A we have 

  ·τA = – F2d + Mg(D + d)= 0; 

  F2(1.0 m) = (60 kg)(9.80 m/s2)(4.0 m + 1.0 m),  

 which gives        F2 = 2.4 × 103 N (up). 

 
 
20. We choose the coordinate system shown, with positive torques  
 clockwise.  For the torques about the point B we have  
  ·τB = F1d + MgD + mg[!(D + d) – d] = 0; 

  F1(1.0 m) = – (60 kg)(9.80 m/s2)(3.0 m) – (35 kg)(9.80 m/s2)(1.0 m), 

 which gives        F1 = – 2.1 × 103 N (down). 

 For the torques about the point A we have 

  ·τA = – F2d + MgD + mg!(D + d) = 0; 

  F2(1.0 m) = (60 kg)(9.80 m/s2)(3.0 m) + (35 kg)(9.80 m/s2)(2.0 m), 

 which gives        F2 = 3.0 × 103 N (up). 

 
 
21. From Example 7–16 we have 
  D = (20.4/100)(1.60 m) = 0.326 m. 
 From Table 7–1, we have 
  L = [(52.1 – 4.0)/100](1.60 m) = 0.770 m; 

  M = ![(21.5 + 9.6 + 3.4)/100](60.0 kg) = 10.35 kg.  
 We choose the coordinate system shown, with  

 positive torques clockwise.  We write ·τ = Iα about  
 the hip joint from the force diagram for the leg: 

  ·τ = MgD – FTL = 0; 

  (10.35 kg)(9.80 m/s2)(0.326 m) – FT(0.770 m) = 0.  

 which gives FT = 42.9 N. 

 Because there is no acceleration of the hanging mass, we have  

  FT = mg,  or   m = FT/g = (42.9 N)/(9.80 m/s2) =       4.38 kg. 

 
 
22. We choose the coordinate system shown, with positive torques  

 clockwise.  We write ·τ = Iα about the support point B from  
 the force diagram for the beam: 

  ·τB = + F1(d1 + d2 + d3 + d4) – F3(d2 + d3 + d4) –  

      F4(d3 + d4) – F5d4 – Mg!(d1 + d2 + d3 + d4) = 0; 

  F1(10.0 m) – (4000 N)(8.0 m) – (3000 N)(4.0 m) –  

     (2000 N)(1.0 m) – (250 kg)(9.80 m/s2)(5.0 m) = 0,  

 which gives         F1 = 5.8 × 103 N. 

 We write ·τ = Iα about the support point A from  
 the force diagram for the beam: 

  ·τA = – F2(d1 + d2 + d3 + d4) + F3d1 – F4(d1 + d2) –  

      F5(d1 + d2 + d3) – Mg!(d1 + d2 + d3 + d4) = 0; 

  – F2(10.0 m) – (4000 N)(2.0 m) – (3000 N)(6.0 m) –  
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     (2000 N)(9.0 m) – (250 kg)(9.80 m/s2)(5.0 m) = 0,  

 which gives         F2 = 5.6 × 103 N. 
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23. We choose the coordinate system shown, with positive torques  

 clockwise.  We write ·τ = Iα about the point A from the  
 force diagram for the beam: 

  ·τA = – (FT sin α)L + Mg!L = 0; 

  – FT sin 50° + (30 kg)(9.80 m/s2)! = 0,  

 which gives      FT = 1.9 × 102 N. 

 Note that we find the torque produced by the tension by finding  
 the torques produced by the components. 
 We write ·F = ma from the force diagram for the beam: 

  ·Fx = FWx – FT cos α = 0; 

   FWx – (1.9 × 102 N) cos 50° = 0, which gives FWx = 123 N. 

  ·Fy = FWy + FT sin α – Mg = 0; 

   FWy + (1.9 × 102 N) sin 50° – (30 kg)(9.80 m/s2) = 0, which gives FWy = 147 N. 

 For the magnitude of FW we have 

  FW = (FWx
2 + FWy

2)1/2 = [(123 N)2 + (147 N)2]1/2 = 1.9 × 102 N. 

 We find the direction from 

  tan θ = FWy/FWx = (147 N)/(123 N) = 1.19, which gives θ = 50°. 

 Thus the force at the wall is       FW = 1.9 × 102 N, 50° above the horizontal. 

 
 
24. Because the backpack is at the midpoint of the rope, the  
 angles are equal.  The force exerted by the backpacker is  
 the tension in the rope.  From the force diagram for the  
 backpack and junction we can write  

  ·Fx = FT1 cos θ – FT2 cos θ = 0,  or  FT1 = FT2 = F; 

  ·Fy = FT1 sin θ + FT2 sin θ – mg = 0,  or   

   2F sin θ = mg. 
 (a) We find the angle from 

   tan θ = h/!L = (1.5 m)/!(7.6 m) = 0.395,  or  θ = 21.5°. 
  When we put this in the force equation, we get 

   2F sin 21.5° = (16 kg)(9.80 m/s2), which gives F =       2.1 × 102 N. 
 (b) We find the angle from 

   tan θ = h/!L = (0.15 m)/!(7.6 m) = 0.0395,  or  θ = 2.26°. 
  When we put this in the force equation, we get 

   2F sin 2.26° = (16 kg)(9.80 m/s2), which gives F =       2.0 × 103 N. 
 
 
25. We choose the coordinate system shown, with positive torques  
 clockwise.  For the torques about the CG we have  
  ·τCG = FN1(L – x) – FN2x = 0; 

  (35.1 kg)g(170 cm – x) – (31.6 kg)gx = 0,  
 which gives x =       89.5 cm from the feet. 
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26. We choose the coordinate system shown, with positive torques  

 clockwise.  We write ·τ = Iα about the point A from the  
 force diagram for the beam and sign: 

  ·τA = – (FT sin θ)D + MgL + mg!L = 0; 

  – FT (sin 41.0°)(1.35 m) + (215 N)(1.70 m) + (135 N)!(1.70 m) = 0,  
 which gives       FT = 542 N. 

 Note that we find the torque produced by the tension by finding  
 the torques produced by the components. 
 We write ·F = ma from the force diagram for the beam and sign: 

  ·Fx = Fhingex – FT cos θ = 0; 

   Fhingex – (542 N) cos 41.0° = 0, which gives Fhingex =       409 N. 

  ·Fy = Fhingey + FT sin θ – Mg – mg = 0; 

   Fhingey + (542 N) cos 41.0° – 215 N – 135 N = 0,  

 which gives Fhingey =       – 6 N (down). 

 
 
27. We choose the coordinate system shown, with positive torques  

 clockwise.  We write ·τ = Iα about the point A from the  
 force diagram for the pole and light: 

  ·τA = – FTH + MgL cos θ + mg!L cos θ = 0; 

  – FT (3.80 m) + (12.0 kg)(9.80 m/s2)(7.5 m) cos 37° +  

       (8.0 kg)(9.80 m/s2)!(7.5 m) cos 37° = 0,  

 which gives       FT = 2.5 × 102 N. 

 We write ·F = ma from the force diagram for the pole and light: 
  ·Fx = FAH – FT = 0; 

   FAH – 2.5 × 102 N = 0, which gives FAH =       2.5 × 102 N. 

  ·Fy = FAV – Mg – mg = 0; 

   FAV – (12.0 kg)(9.80 m/s2) – (8.0 kg)(9.80 m/s2) = 0, which gives FAV =       2.0 × 102 N. 

 
 
28. We choose the coordinate system shown, with positive torques  

 counterclockwise.  We write ·τ = Iα about the point A from the  
 force diagram for the ladder: 

  ·τA = mg(!L) cos θ – FN2L sin θ = 0, which gives 

  FN2 = mg/2 tan θ. 

 We write ·Fx = max from the force diagram for the ladder: 

  Ffr – FN2 = 0, which gives Ffr = FN2 = mg/2 tan θ.  
 We write ·Fy = may from the force diagram for the ladder: 

  FN1 – mg = 0, which gives FN1 = mg. 

 For the bottom not to slip, we must have 

  Ffr ² µFN1 
,   or  mg/2 tan θ ² µmg,  

 from which we get tan θ ³ 1/2µ. 

 The minimum angle is        θmin = tan–1(1/2µ). 
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29. Because the backpack is at the midpoint of the rope, the  
 angles are equal.  From the force diagram for the  
 backpack and junction we can write  

  ·Fx = FT1 cos θ – FT2 cos θ = 0,  or  FT1 = FT2 = F; 

  ·Fy = FT1 sin θ + FT2 sin θ – mg – Fbear = 0. 

 When the bear is not pulling, we have 

  2F1 sin θ = mg; 

  2F1 sin 15° = (23.0 kg)(9.80 m/s2), which gives F1 = 435 N. 

 When the bear is pulling, we have 

  2F2 sin θ = mg + Fbear; 

  2(2)(435 N) sin 30° = (23.0 kg)(9.80 m/s2) + Fbear 
,  

 which gives Fbear =      6.5 × 102 N. 

 
 
30. We choose the coordinate system shown, with positive torques clockwise.   
 (a) For the torques about the point B we have 

   ·τB = FT1(!L + D) – MgD = 0; 

   FT1(0.500 m + 0.400 m) – (0.230 kg)(9.80 m/s2)(0.400 m) = 0,  

  which gives FT1 =        1.00 N. 

 (b) For the torques about the point A we have 

   ·τA = – FT2(!L + D) + Mg!L = 0; 

   – FT2(0.500 m + 0.400 m) + (0.230 kg)(9.80 m/s2)(0.500 m),  

  which gives FT2 =        1.25 N. 

 
 
 
 
31. We choose the coordinate system shown, with positive torques  

 clockwise.  We write ·τ = Iα about the point A from the force  
 diagram for the ladder and painter: 

  ·τA = mg(!dL) + MgdP – FWhL = 0; 

  (12.0 kg)(9.80 m/s2)!(3.0 m) + (60.0 kg)(9.80 m/s2)(2.1 m) –  
            FW(4.0 m) = 0,  

 which gives  FW = 353 N.  

 We write ·Fx = max from the force diagram: 

  FGx – FW = 0, which gives  

  FGx = FW = 353 N.   
 We write ·Fy = may from the force diagram: 

  FGy – mg – Mg = 0, which gives  

  FGy = (m + M)g = (12.0 kg + 60.0 kg)(9.80 m/s2) = 706 N. 

 Because the ladder is on the verge of slipping, we must have 

  FGx = µFGy ,   or  µ = FGx/FGy = (353 N)/(706 N) =       0.50. 
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32. We choose the coordinate system shown, with positive torques clockwise.   
 We write ·Fx = max from the force diagram for the lamp:  
  FP – Ffr = 0, which gives FP = Ffr. 

 We write ·Fy = may from the force diagram for the lamp: 

  FN – mg = 0, which gives FN = mg. 

 (a) If we assume that the lamp slides, we have FP = Ffr = µFN = µmg. 

  The normal force would have to be inside the base, so we find the  

  distance from the pole at which it acts.  We write ·τ = Iα about  
  the center of the base from the force diagram for the lamp: 

   ·τ = FPH – FNx = µmgH – mgx = 0; 

   (0.20)(0.60 m) –  x = 0, which gives x = 0.12 m. 
  Because this is greater than 0.10 m, the lamp will      tip over. 

 (b) If the lamp slides, we have FP = Ffr = µFN = µmg. 

  We write ·τ = Iα about the center of the base from the force  
  diagram for the lamp: 

   ·τ = FPH – FNx = µmgH – mgx = 0,  or  H = x/µ. 

  The maximum height will be when x is maximum, which is d: 

   Hmax = d/µ = (0.10 m)/(0.20) = 0.50 m =       50 cm. 

 
 
33. From the symmetry of the wires, we see that the angle between a  
 horizontal line on the ground parallel to the net and the line from  

 the base of the pole to the anchoring point is θ = 30°.  We find the  
 angle between the pole and a wire from 

  tan α = d/H = (2.0 m)/(2.6 m) = 0.769, which gives α = 37.6°. 

 Thus the horizontal component of each tension is FT sin α. 

 We write ·τ = Iα about the horizontal axis through the base A  
 perpendicular to the net from the force diagram for the pole: 

  ·τA = FnetH – 2(FT sin α cos θ)H = 0,  or   

  Fnet = 2FT sin α cos θ = 2(95 N) sin 37.6° cos 30° =      1.0 × 102 N. 

 
 
 
34. We choose the coordinate system shown, with positive torques  

 clockwise.  We write ·τ = Iα about the elbow joint from the force  
 diagram for the lower arm: 

  ·τ = mgD + MgL – FMd = 0; 

  (2.0 kg)(9.80 m/s2)(0.15 m) + M(9.80 m/s2)(0.35 m) – 
           (400 N)(0.060 m) = 0,  
 which gives M =        6.1 kg.  
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35. We choose the coordinate system shown, with positive torques  

 clockwise.  We write ·τ = Iα about the elbow joint from the force  
 diagram for the lower arm: 

  ·τ = mgD + MgL – FMd = 0; 

  (2.8 kg)(9.80 m/s2)(0.12 m) + (7.3 kg)(9.80 m/s2)(0.300 m) – 
           FM(0.025 m) = 0,  

 which gives FM =        9.9 × 102 N. 
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36. We choose the coordinate system shown, with positive torques  

 clockwise.  We write ·τ = Iα about the shoulder joint A from  
 the force diagram for the arm: 

  ·τA = mgD – (FM sin θ)d = 0; 

  (3.3 kg)(9.80 m/s2)(0.24 m) – (FM sin 15°)(0.12 m) = 0,  

 which gives FM =        2.5 × 102 N. 

 
 
 
37. We choose the coordinate system shown, with positive torques  

 clockwise.  We write ·τ = Iα about the shoulder joint A from  
 the force diagram for the arm: 

  ·τA = mgD + MgL – (FM sin θ)d = 0; 

  (3.3 kg)(9.80 m/s2)(0.24 m) + (15 kg)(9.80 m/s2)(0.52 m) –  
          (FM sin 15°)(0.12 m) = 0,  

 which gives FM =        2.7 × 103 N. 

 Note that this is more than 10 times the result from Problem 36. 
 
 
38. We write ·Fx = max from the force diagram: 

  FJx – FM cos θ  = 0, which gives FJx = FM cos θ.  
 We write ·Fy = may from the force diagram: 

  FJy + FM sin θ – mg – Mg = 0, 

  which gives FJy = (m + M)g – FM sin θ. 

 For Problem 36, M = 0, so we have 

  FJx = FM cos θ = (2.5 × 102 N) cos 15° = 241 N. 

  FJy  = (m + M)g – FM sin θ  

   = (3.3 kg)(9.80 m/s2) – (2.5 × 102 N) sin 15° = – 32 N. 

  FJ = (FJx
2 + FJy

2)1/2 = [(241 N)2 + (– 32 N)2]1/2 =        2.4 × 102 N. 

 For Problem 37, M = 15 kg, so we have 

  FJx = FM cos θ = (2.7 × 103 N) cos 15° = 2.61 × 103 N. 

  FJy = (m + M)g – FM sin θ = (3.3 kg + 15 kg)(9.80 m/s2) – (2.7 × 103 N) sin 15° = – 517 N. 

  FJ = (FJx
2 + FJy

2)1/2 = [(2.61 × 103 N)2 + (– 517 N)2]1/2 =        2.7 × 103 N. 

 
 
39. Because the person is standing on one foot, the normal force on the  
 ball of the foot must support the weight: FN = Mg.  We choose the  

 coordinate system shown, with positive torques clockwise.  We write  

 ·τ = Iα about the point A from the force diagram for the foot: 

  ·τA = FTd – FND = 0; 

  FTd – FN(2d) = 0, which gives  

  FT = 2FN = 2(70 kg)(9.80 m/s2) =       1.4 × 103 N (up). 

 We write ·Fy = may from the force diagram: 

  FT + FN – Fbone = 0, which gives  

  Fbone = FT + FN = 3FN = 3(70 kg)(9.80 m/s2) =       2.1 × 103 N (down). 
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40. We choose the coordinate system shown, with positive torques  

 clockwise.  We write ·τ = Iα about the point A from the force  
 diagram for the torso: 

  ·τA = w1(d1 + d2 + d3) cos θ + w2(d2 + d3) cos θ +  

          w3d3 cos θ – (FM sin α)(d2 + d3) = 0; 

  0.07w(24 cm + 12 cm + 36 cm) cos 60° + 0.12w(12 cm + 36 cm) cos 60° +  
       0.46w(36 cm) cos 60° – FM(sin 12°)(12 cm + 36 cm) = 0,  

 which gives FM = 1.37w. 

 We write ·Fx = max from the force diagram: 

  FVx – FM cos (θ  – α) = 0, which gives  

  FVx = FM cos (θ  – α) = (1.37w) cos 48° = 0.917w. 
 We write ·Fy = may from the force diagram: 

  FVy – FM sin (θ  – α) – w1 – w2 – w3 = 0, which gives  

  FVy = FM sin (θ  – α) + w1 + w2 + w3 = (1.37w) sin 48° + 0.07w + 0.12w + 0.46w = 1.67w. 

 For the magnitude we have 

  FV = (FVx
2 + FVy

2)1/2 = [(0.917w)2 + (1.67w)2]1/2 =        1.9w. 

 
 
41. We choose the coordinate system shown, with positive torques  

 clockwise.  We write ·τ = Iα about the point A from the force  
 diagram for the torso: 

  ·τA = w1(d1 + d2 + d3) cos θ + (w2 + mg)(d2 + d3) cos θ +  

         w3d3 cos θ – (FM sin α)(d2 + d3) = 0; 

  0.07(70 kg)(9.80 m/s2)(24 cm + 12 cm + 36 cm) cos 30° +  

   [0.12(70 kg) + 20 kg](9.80 m/s2)(12 cm + 36 cm) cos 30° +  

        0.46(70 kg)(9.80 m/s2)(36 cm) cos 30° –  
          FM(sin 12°)(12 cm + 36 cm) = 0,  

 which gives FM = 2.45 × 103 N. 

 We write ·Fx = max from the force diagram: 

  FVx – FM cos (θ  – α) = 0, which gives  

  FVx = FM cos (θ  – α) = (2.45 × 103 N) cos 18° = 2.33 × 103 N. 
 We write ·Fy = may from the force diagram: 

  FVy – FM sin (θ  – α) – w1 – w2 – w3 – mg = 0, which gives  

  FVy = FM sin (θ  – α) + w1 + w2 + w3 + mg  

   = (2.45 × 103 N) sin 18° + (0.07 + 0.12 + 0.46)(70 kg)(9.80 m/s2) + (20 kg)(9.80 m/s2) = 1.40 × 103 N. 
 For the magnitude we have 

  FV = (FVx
2 + FVy

2)1/2 = [(2.33 × 103 N)2 + (1.40 × 103 N)2]1/2 =        2.7 × 103 N. 

 
 
42. If the tower is of uniform composition, the center of gravity will be at the center  

 of the tower.  Because the top is 4.5 m off center, the CG will be !(4.5 m) = 2.25 m  
 off center.  This is less than the radius of the tower, 3.5 m, so the line of the  
 weight is inside the base and the tower is in       stable equilibrium.         
 The tower will become unstable when the CG is off center by half the diameter,  
 or the top is off center by the diameter.  Thus the tower can lean an additional  
  7.0 m – 4.5 m =       2.5 m. 
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43. (a) The maximum distance for the top brick to  
  remain on the next brick will be reached  
  when its center of mass is directly over the  
  edge of the next brick.  Thus the top brick  
  will overhang by x1 = L/2.  

  The maximum distance for the top two bricks to  
  remain on the next brick will be reached when  
  the center of mass of the top two bricks is  
  directly over the edge of the third brick.   
  If we take the edge of the third brick as the  
  origin, we have 
   xCM = [m(x2 – L/2) + mx2]/2m = 0, which gives  x2 = L/4. 

  The maximum distance for the top three bricks to remain on the next brick will be reached when  
  the center of mass of the top three bricks is directly over the edge of the fourth brick.  If we take the  
  edge of the fourth brick as the origin, we have 
   xCM = [m(x3 – L/2) + 2mx3 ]/3m = 0, which gives  x3 = L/6. 

  The maximum distance for the four bricks to remain on the table will be reached when the center of  
  mass of the four bricks is directly over the edge of the table.  If we take the edge of the table as the  
  origin, we have 
   xCM = [m(x4 – L/2) + 3mx4 ]/3m = 0, which gives  x4 = L/8. 

 (b) With the origin at the table edge, we find the position of the left edge of the top brick from 
   D = x1 + x2 + x3 + x4 – L = (L/2) + (L/4) + (L/6) + (L/8) – L = L/24, which is       beyond the table. 

 (c) We can generalize our results by recognizing that the ith brick is a distance L/2i beyond the edge of  
  the brick below it.  The total distance spanned by n bricks is 

      D = L 1
2iΣ

i = 1

n

.  

 (d) Each side of the arch must span 0.50 m.  From our general result, we have 

      0.50 m = (0.30 m) 1
2iΣ

i = 1

n

.  

  If we evaluate this numerically, such as by using a spreadsheet, we find that 16 bricks will create a  
  span of 0.507 m, so a minimum of        32 bricks       is necessary, not counting the one on top.  If the  
  bottom brick is flush with the opening, as shown in Fig. 9–32, then two more bricks will be needed. 
 
 
44. We find the increase in length from the elastic modulus: 
  E = Stress/Strain = (F/A)/(ÆL/L0); 

  5 × 109 N/m2 = [(250 N)/¹(0.50 × 10–3 m)2]/[ÆL/(30.0 cm)], which gives ÆL =       1.91 cm. 
 
 
45. (a) We find the stress from 

   Stress = F/A = (25,000 kg)(9.80 m/s2)/(2.0 m2) =       1.2 × 105 N/m2. 
 (b) We find the strain from 

   Strain = Stress/E = (1.2 × 105 N/m2)/(50 × 109 N/m2) =      2.4 × 10–6. 
 
 
46. We use the strain to find how much the column is shortened: 
  Strain = ÆL/L0; 

  2.4 × 10–6 = ÆL/(12 m), which gives ÆL = 2.9 × 10–5 m =       0.029 mm. 
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47. (a) We find the stress from 

   Stress = F/A = (2000 kg)(9.80 m/s2)/(0.15 m2) =       1.3 × 105 N/m2. 
 (b) We find the strain from 

   Strain = Stress/E = (1.3 × 105 N/m2)/(200 × 109 N/m2) =      6.6 × 10–7. 
 (c) We use the strain to find how much the girder is lengthened: 
   Strain = ÆL/L0; 

   6.5 × 10–7 = ÆL/(9.50 m), which gives ÆL = 6.2 × 10–6 m =       0.0062 mm. 
 
 
48. The tension in each wire produces the stress.  We find the strain from 
  Strain = Stress/E = FT/EA. 

 For wire 1 we have 

  Strain1 = (1.8 × 102 N)/(200 × 109 N/m2)¹(0.50 × 10–3 m)2 = 1.15 × 10–3 =       0.12%. 

 For wire 2 we have 

  Strain2 = (2.4 × 102 N)/(200 × 109 N/m2)¹(0.50 × 10–3 m)2 = 1.53 × 10–3 =       0.15%. 

 
 
49. We find the volume change from 
  ÆP = – B ÆV/V0 ;  

  (2.6 × 106 N/m2 – 1.0 × 105 N/m2) = – (1.0 × 109 N/m2)ÆV/(1000 cm3),  

 which gives ÆV = – 2.5 cm3. 

 The new volume is V0 + ÆV = 1000 cm3 + (– 2.5 cm3) =       997 cm3. 

 
 
50. We find the elastic modulus from 
  E  = Stress/Strain = (F/A)/(ÆL/L0) 

   = [(13.4 N)/(¹(8.5 × 10–3 m)2]/[(0.37 cm)/(15 cm)] =       9.6 × 106 N/m2. 
 
 
51. The pressure needed is determined by the bulk modulus: 

  ÆP = – B ÆV/V0 = – (90 × 109 N/m2)(– 0.10 × 10–2) =       9.0 × 107 N/m2. 

 This is (9.0 × 107 N/m2)/(1.0 × 105 N/m2 · atm) =       9.0 × 102 atm. 
 
 
52. We will take the change in pressure to be 200 atm.  We find the volume change from 
  ÆP = – B ÆV/V0 ;  

  (200 atm)(1.0 × 105 N/m2 · atm) = – (90 × 109 N/m2)ÆV/V0 ,  

 which gives ÆV/V0 = – 2.2 × 10–4 =       – 0.022%. 

 
 
53. If we treat the abductin as an elastic spring, we find the effective spring constant from 

  k = F/ÆL = EA/L0 = (2.0 × 106 N/m2)(0.50 × 10–4 m2)/(3.0 × 10–3 m) = 3.33 × 104 N/m. 

 We find the elastic potential energy stored in the abductin from 

  PE = !kx2 = !(3.33 × 104 N/m)(1.0 × 10–3 m)2 =       0.017 J. 
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54. (a) For the torque from the sign’s weight about the  
  point A we have 

   τA = Mgd = (5.1 kg)(9.80 m/s2)(2.2 m) =      1.1 × 102 m · N.  
 (b) The balancing torque must be exerted by the       wall,        
  which is the only other contact point.  Because the torque from  
  the sign is clockwise, this torque must be counterclockwise. 
 (c) If we think of the torque from the wall as a pull on the top of  
  the pole and a push on the bottom of the pole, there is tension  
  along the top of the pole and compression along the bottom.   
  There must also be a vertical force at the wall which, in  
  combination with the weight of the sign, will create a  shear  
  stress in the pole.  Thus      all three       play a part. 
 
 
55. We find the maximum compressive force from the compressive strength of bone: 

  Fmax = (Compressive strength)A = (170 × 106 N/m2)(3.0 × 10–4 m2) =      5.1 × 104 N. 

 
 
56. We find the maximum tension from the tensile strength of nylon: 
  FTmax  = (Tensile strength)A  

    = (500 × 106 N/m2)¹(0.50 × 10–3 m)2 =      3.9 × 102 N.  
 We can increase the maximum tension by increasing the area,  
 so we use       thicker strings. 
 The impulse on the ball that changes its momentum must be provided by  
 an increased tension,       so that the maximum strength is exceeded. 
 
 
 
 
 

57. (a) We determine if the compressive strength, 1.7 × 108 N/m2, is exceeded: 

   Stress = F/A = (3.6 × 104 N)/(3.6 × 10–4 m2) = 1.0 × 108 N/m2. 
  Because this is less than the compressive strength, the bone will       not break. 
 (b) We find the change in length from 
   Strain = ÆL/L0 = Stress/E,  or   

   ÆL = (Stress)L0/E = (1.0 × 108 N/m2)(0.20 m)/(15 × 109 N/m2) = 1.3 × 10–3 m =      1.3 mm. 

 
 
58. (a) We want the maximum stress to be (1/7.0) of the tensile strength: 
   Stressmax = F/Amin = (Tensile strength)/7.0; 

   (320 kg)(9.80 m/s2)/Amin = (500 × 106 N/m2)/7.0, which gives Amin =        4.4 × 10–5 m2. 

 (b) We find the change in length from 
   Strain = ÆL/L0 = Stress/E,  or   

   ÆL = (Stress)L0/E = [(500 × 106 N/m2)/7.0](7.5 m)/(200 × 109 N/m2) = 2.7 × 10–3 m =      2.7 mm. 
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59. We choose the coordinate system shown, with positive torques  

 clockwise.  We write ·τ = Iα about the support point A from  
 the force diagram for the cantilever: 

  ·τA = – F2d + Mg!L = 0; 

  – F2(20.0 m) + (2600 kg)(9.80 m/s2)(25.0 m) = 0,  

 which gives F2 = 3.19 × 104 N. 

 We assume the force is parallel to the grain.  We want the  
 maximum stress to be (1/8.5) of the compressive strength: 
  Stressmax2 = F/Amin2 = (Compressive strength)/8.5; 

  (3.19 × 104 N)/Amin2 = (35 × 106 N/m2)/8.5, which gives       Amin2 = 7.7 × 10–3 m2. 

 For the forces in the y-direction we have 
  ·Fy = F1 + F2 – Mg  = 0,  or 

  F1 = Mg – F2 = (2600 kg)(9.80 m/s2) – (3.19 × 104 N) = – 6.42 × 103 N. 

 We assume the force is parallel to the grain.  We want the  
 maximum stress to be (1/8.5) of the tensile strength: 
  Stressmax1 = F/Amin1 = (Tensile strength)/8.5; 

  (6.42 × 103 N)/Amin1 = (40 × 106 N/m2)/8.5, which gives       Amin1 = 1.4 × 10–3 m2. 

 
 
60. We want the maximum shear stress to be (1/6.0) of the shear strength: 
  Stressmax = F/Amin = (Shear strength)/6.0; 

  (3200 N)/(¹dmin
2 = (170 × 106 N/m2)/6.0, which gives dmin = 1.2 × 10–2 m =       1.2 cm. 

 
 
61. We find the required tension from ·Fy = may: 

  FT – mg = ma,  or   

  FT = m(a + g) = (3100 kg)(1.2 m/s2 + 9.80 m/s2) = 3.41 × 104 N.  
 We want the maximum stress to be (1/7.0) of the tensile strength: 
  Stressmax = F/Amin = (Tensile strength)/7.0; 

  (3.41 × 104 N)/(¹dmin
2 = (500 × 106 N/m2)/7.0,  

 which gives dmin = 2.5 × 10–2 m =       2.5 cm. 

 
 
 
 
 
62. In each arch the horizontal force at the base  
 must equal the horizontal force at the top.   
 Because the two arches support the same load,  
 we see from the force diagrams that the  
 vertical forces will be the same and have the  
 same moment arms.  Thus the torque about the  
 base of the horizontal force at the top must be  
 the same for the two arches: 

  τ = Froundhround = FroundR = Fpointedhpointed; 

  Fround(4.0 m) = @Froundhpointed 
,   

 which gives hpointed =         12 m. 
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63. We find the required tension from ·Fy = may: 

  2F sin θ – Fload = 0; 

  2F sin 5° – 4.3 × 105 N = 0, which gives F =        2.5 × 106 N.  
 
 
 
 
64. All elements are in equilibrium.  For the C-D pair,  

 we write ·τ = Iα about the point c from the force diagram:  
  ·τc = MCgL6 – MDgL5 = 0; 

  MC(5.00 cm) – MD(17.50 cm) = 0,  or  MC = 3.500MD. 

 The center of mass of C and D must be under the point c.    

 We write ·τ = Iα about the point b from the force diagram: 

  ·τb = MBgL4 – (MC + MD)gL3 = 0; 

  (0.735 kg)(5.00 cm) – (MC + MD)(15.00 cm) = 0,  or 

  MC + MD = 0.245 kg. 

 When we combine these two results, we get      MC = 0.191 kg,  and  MD = 0.0544 kg. 

 The center of mass of B, C, and D must be under the point b.   For the entire mobile, we write  

 ·τ = Iα about the point a from the force diagram: 

  ·τa = (MB + MC + MD)gL2 – MAgL1 = 0; 

  (0.735 kg + 0.245 kg)(7.50 cm) – MA(30.00 cm) = 0, which gives       MA = 0.245 kg. 

 
 
65. We choose the coordinate system shown, with positive torques clockwise. 

 We write ·τ about the rear edge from the force diagram: 

  ·τedge  = mg!L – FA!H  

    = (1.8 × 108 N)!(40 m) – (950 N/m2)(200 m)(70 m)!(200 m)  

    =        + 2.3 × 109 m · N. 
 Because the result is positive, the torque is clockwise, so the building 
       will not topple. 
 An alternative procedure is to find the location of the force FEy = mg. 

 We write ·τ = 0 about the middle of the base from the force diagram: 

  ·τC = FEyx – FA!H = 0; 

  (1.8 × 108 N)x – (950 N/m2)(200 m)(70 m)!(200 m) = 0,  
 which gives x = 11 m.  
 Because this is less than 20 m, the building will not topple. 
 
 
66. Because the walker is at the midpoint of the rope, the angles  
 are equal.  We find the angle from 

  tan θ = h/!L = (3.4 m)/!(46 m) = 0.148,  or  θ = 8.41°.  
 From the force diagram for the walker we can write  

  ·Fx = FT1 cos θ – FT2 cos θ = 0,  or  FT1 = FT2 = FT; 

  ·Fy = FT1 sin θ + FT2 sin θ – mg = 0,  or   

  2FT sin 8.41° = (60 kg)(9.80 m/s2), which gives  

  FT =       2.0 × 103 N. 

 No.       There must always be an upward component of the tension to balance the weight. 
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67. (a) The cylinder will roll about the contact point A.   

  We write Στ = Iα about the point A: 

   Fa(2R – h) + FN1[R2 – (R – h)2]1/2 – Mg[R2 – (R – h)2]1/2 = IAα.  
  When the cylinder does roll over the curb, contact with  
  the ground is lost and FN1 = 0.  Thus we get 

   Fa = {IAα + Mg[R2 – (R – h)2]1/2}/(2R – h)  

    = [IAα/(2R – h)] + [Mg(2Rh – h2)1/2/(2R – h)]. 

  The minimum force occurs when α = 0: 

   Famin = Mg[h(2R – h)]1/2/(2R – h) =       Mg[h/(2R – h)]1/2. 

 (b) The cylinder will roll about the contact point A.   

  We write Στ = Iα about the point A: 

   Fb(R – h) + FN1[R2 – (R – h)2]1/2 – Mg[R2 – (R – h)2]1/2 = IAα.  

  When the cylinder does roll over the curb, contact with  
  the ground is lost and FN1 = 0.  Thus we get 

   Fb = {IAα + Mg[R2 – (R – h)2]1/2}/(R – h)  

    = [IAα/(R – h)] + [Mg(2Rh – h2)1/2/(R – h)]. 

  The minimum force occurs when α = 0: 

   Fbmin =       Mg[h(2R – h)]1/2/(R – h). 

 
 
68. If the vertical line of the weight falls within the base of the truck, it  
 will not tip over.  The limiting case will be when the line passes  
 through the corner of the base.  Thus we find the limiting angle from 

  tan θmax = !w/d = !(2.4 m)/(2.2 m) = 0.545,  or        θmax = 29°. 

 
 
 
 
 
 
 
 
69. (a) From Example 7–7, the force of the ground on one leg is  

   Fleg = !(2.1 × 105 N) = 1.05 × 105 N. 

  We find the stress in the tibia bone from 

   Stress = Fleg/A = (1.05 × 105 N)/(3.0 × 10–4 m) =       3.5 × 108 N/m2. 

 (b) The compressive strength of bone is 1.7 × 108 N/m2.  Thus the bone       will break. 
 (c) From Example 7–7, the force of the ground on one leg is  

   Fleg = !(4.9 × 103 N) = 2.45 × 103 N. 

  We find the stress in the tibia bone from 

   Stress = Fleg/A = (2.45 × 103 N)/(3.0 × 10–4 m) =       8.2 × 106 N/m2. 

  This is less than the compressive strength of bone, so the bone       will not break. 
 
 
70. The force is parallel to the grain.  We want the maximum stress to be (1/12) of the compressive strength.  

For N studs we have 
  Stressmax = (Mg/N)/A = (Compressive strength)/12; 

  (12,600 kg)(9.80 m/s2)/N(0.040 m)(0.090 m) = (35 × 106 N/m2)/12, which gives       N = 11.8. 
 Thus we need       6       studs on each side. 
 There are five spaces between the studs, so they will be  
  (10.0 m)/5 =        2.0 m apart. 
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71. From the force diagram for the section we can write  

  ·Fx = FT1 cos θ1 – FT2 sin θ2 = 0,  or  

   FT1 cos 19° – FT2 sin 60° = 0; 

  ·Fy = – FT1 sin θ1 + FT2 cos θ2 – mg = 0,  or   

   – FT1 sin 19° + FT2 cos 60° = mg.  

 When we combine these equations, we get 
  FT1 = 4.54mg, and FT2 = 4.96mg. 

 We write ·τ = Iα about the point A from the force diagram: 

  ·τA = – (FT2 sin θ2)h + (FT1 sin θ1)d1 + mg!d1 = 0; 

  – (4.96mg  sin 60°)h + (4.54mg sin19°)(343 m) + mg!(343 m) = 0, 
 which gives       h = 158 m. 
 
 
72. We choose the coordinate system shown, with positive torques clockwise. 
 (a) The maximum weight will cause the force FA to be zero.  

  We write ·τ = Iα about the support point B from  
  the force diagram for the beam and person: 

   ·τB = – W(!L – d2) + wd2 + FAD = 0; 

   – (600 N)[!(20.0 m) – 5.0 m] + wmax(5.0 m) + 0 = 0,  

  which gives wmax =         600 N. 

 (b) The maximum weight means the force       FA = 0.   

  We write ·τ = Iα about the support point A from  
  the force diagram for the beam and person: 

   ·τA = + W(!L – d1) + w(D – d2) – FBD = 0; 

   + (600 N)[!(20.0 m) – 3.0 m] + (600 N)(5.0 m) – FB(12.0 m) = 0,  

  which gives       FB = 1200 N. 

 (c) We write ·τ = Iα about the support point B from  
  the force diagram for the beam and person: 

   ·τB = – W(!L – d2) + wx + FAD = 0; 

   – (600 N)[!(20.0 m) – 5.0 m] + (600 N)(2.0 m) + FA(12.0 m) = 0,  

  which gives       FA = 150 N. 

  We write ·τ = Iα about the support point A from  
  the force diagram for the beam and person: 

   ·τA = + W(!L – d1) + w(D + x) – FBD = 0; 

   + (600 N)[!(20.0 m) – 3.0 m] + (600 N)(12.0 m + 2.0 m) – FB(12.0 m) = 0,  

  which gives       FB = 1050 N. 

 (d) We write ·τ = Iα about the support point B from  
  the force diagram for the beam and person: 

   ·τB = – W(!L – d2) + wx + FAD = 0; 

   – (600 N)[!(20.0 m) – 5.0 m] + (600 N)(– 2.0 m) + FA(12.0 m) = 0,  

  which gives       FA = 750 N. 

  We write ·τ = Iα about the support point A from  
  the force diagram for the beam and person: 

   ·τA = + W(!L – d1) + w(D + x) – FBD = 0; 

   + (600 N)[!(20.0 m) – 3.0 m] + (600 N)(12.0 m – 2.0 m) – FB(12.0 m) = 0,  

  which gives       FB = 450 N. 
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73. The minimum mass is placed symmetrically between  
 two of the legs of the table, so the normal force on the  
 opposite leg becomes zero, as shown in the top view of  

 the table.  We write ·τ = Iα about a horizontal axis that  
 passes through the two legs where there is a normal force:  

  ·τ = – MgR cos θ + mgR(1 – cos θ) = 0; 
  – (36 kg) cos 60° + m(1 – cos 60°) = 0,  
 which gives m =       36 kg. 
 
 
 
 
 
 
 
 
74. We select one-half of the cable for our system.  From  
 the force diagram for the section we can write  

  ·Fx = FT1 – FT2 cos θ = 0;  

   FT1 – FT2 cos 60° = 0. 

  ·Fy = + FT2 sin θ – !mg = 0; 

   FT2 sin 60° – !mg  = 0. 

 When we combine these equations, we get 
 (a) FT1 = mg/(2 tan 60°) =       0.289mg; 

  (b) FT2 = mg/(2 sin 60°) =       0.577mg. 

 (c) The direction of the tension in each case is tangent to the cable: 
   horizontal at the lowest point, and 60° above the horizontal at the attachment. 
 
 
75. Because there is no net horizontal  
 force on the tower, from the force  
 diagram for the tower we can write  

  ·Fx = FT2 sin θ2 – FT3 sin θ3 = 0,  or  

   FT3 = FT2 (sin θ2)/(sin θ3). 

 From the force diagram for the north  
 span we can write  

  ·Fx = FT1 cos θ1 – FT2 sin θ2 = 0,  or  

   FT1 = FT2 (sin θ2)/(cos θ1). 

  ·Fy = + FT2 cos θ2 – FT1 sin θ1 – mg  

   = 0,   or 

  mg = FT2 cos θ2 – FT1 sin θ1. 

 From the force diagram for one-half of  
 the center span we can write  

  ·Fy = + FT3 cos θ3 – !Mg = 0,  or 

   Mg = 2FT3 cos θ3. 

 Because the roadway is uniform, the  
 length of each roadway is proportional 

to the mass: 

  d2/d1 = M/m = (2FT3 cos θ3)/(FT2 cos θ2 – FT1 sin θ1) 

    = 2[FT2 (sin θ2)/(sin θ3)](cosθ3)/{FT2 cos θ2 – [FT2 (sin θ2)/(cos θ1)](sin θ1)} 
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    = 2(cot θ3)/(cot θ2 – tan θ1) 

    = 2(cot 66°)/(cot 60° – tan 19°) =        3.8. 
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76. We choose the coordinate system shown, with positive torques clockwise.   
 (a) We write ·Fx = max from the force diagram:  
   FGx – FW = 0,  or  FGx = FW.  
  We write ·Fy = may from the force diagram: 

   FGy – mg = 0, which gives  

   FGy = mg = (15.0 kg)(9.80 m/s2) = 147 N. 

  We write ·τ = Iα about the point A from the force  
  diagram for the ladder: 

   ·τA = mg(!L sin θ) – FWL cos θ = 0; 

   (15.0 kg)(9.80 m/s2)!(sin 20°) – FW(cos 20°) = 0, 

  which gives FW = 27 N.  

  Thus the components of the force at the ground are  
   FGx = 27 N, FGy = 147 N. 

 (b) We write ·Fx = max from the force diagram: 

   FGx – FW = 0,  or  FGx = FW.  

  We write ·Fy = may from the force diagram: 

   FGy – mg – Mg = 0, which gives FGy = (m + M)g = (15.0 kg + 70 kg)(9.80 m/s2) = 833 N. 

  We write ·τ = Iα about the point A from the force  
  diagram for the ladder and person: 

   ·τA = mg(!L sin θ) + Mg(d sin θ) – FWL cos θ = 0; 

   (15.0 kg)(9.80 m/s2)!(7.0 m)(sin 20°) + (70 kg)(9.80 m/s2)+(7.0 m)(sin 20°) – FW(7.0 m)(cos 20°) = 0,  

  which gives FW = 214 N = FGx. 

  Because the ladder is on the verge of slipping, we must have 

   FGx = µFGy ,   or  µ = FGx/FGy = (214  N)/(833 N) =       0.26. 

 
 
77. We have the same results from ·F = ma: 
  FGx = FW; FGy = (m + M)g = 833 N. 

 Because the ladder is on the verge of slipping, we must have 

  FGx = µFGy = (0.30)(833 N) = 250 N = FW. 

 We write ·τ = Iα about the point A from the force diagram for the ladder and person: 

  ·τA = mg(!L sin θ) + Mg(d sin θ) – FWL cos θ = 0; 

  (15.0 kg)(9.80 m/s2)!(7.0 m)(sin 20°) + (70 kg)(9.80 m/s2)d(sin 20°) – (250 N)(7.0 m)(cos 20°) = 0,  
  which gives d =        6.3 m. 
 
 
78. The maximum stress in a column will be at the bottom, caused by the weight of the material.  If the 

column has density ρ, height h, and area A, we have 

  Stress = F/A = mg/A = ρVg/A = ρAhg/A = ρgh, which is independent of area. 
 The column will buckle when this stress exceeds the compressive strength: 

  hmax = (Compressive strength)/ρg. 

 (a) For steel we have 

   hmax = (500 × 106 N/m2)/(7.8 × 103 kg/m3)(9.80 m/s2) =       6.5 × 103 m. 

 (b) For granite we have 

   hmax = (170 × 106 N/m2)/(2.7 × 103 kg/m3)(9.80 m/s2) =       6.4 × 103 m. 
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79. We assume when the brick strikes the floor there is an average force which produces an average stress in 
the brick, creating an average strain:  

  ÆL/L0 = (F/A)/E. 

 If we use this average strain for the distance the CM moves while the brick comes to rest, the work done 
by the average force is – F ÆL.  When we use the work-energy principle from the release point to the final 
resting point, we have 

  – F ÆL  = ÆKE + ÆPE = 0 + (0 – mgh),  or   

  h = F ÆL/mg = F(F/A)L0/Emg = A(F/A)2L0/Emg. 

 If we assume that the stress varies linearly from zero at the top of the brick to maximum at the bottom, the 
brick will break when the average stress exceeds one-half the compressive strength, so we have 

  hmin = (0.15 m)(0.060 m)[!(35 × 106 N/m2)]2(0.040 m)/(14 × 109 N/m2)(1.2 kg)(9.80 m/s2) =       1.3 m. 

 
 
80. We write ·Fx = max from the force diagram: 

  F – Ffr = 0,  or  F = Ffr.  

 We write ·Fy = may from the force diagram:  
  FN – Mg = 0,  or  FN = Mg. 

 We find the location of the force FN when the static  

 friction force reaches its maximum value:  
  F = Ffr = µsFN = µsMg.   

 We write ·τ = 0 about the edge A of the block from the  
 force diagram: 

  ·τA = – Mg!L + FNx – Fh = 0, which gives 

  x = (!MgL – Fh)/FN = (!MgL – µsMgh)/Mg = !L – µsh. 

 (a) For the block to slide, we must have x > 0, or 

   !L > µsh, which gives       µs < L/2h. 

 (b) For the block to tip, we must have x < 0, or 

   !L < µsh, which gives       µs > L/2h. 

 
 

81. (a) We write ·τ = 0 about the feet from the force diagram: 

   ·τfeet = 2Fhand(d1 + d2) – mgd2 = 0,  or   

   Fhand  = mgd2/2(d1 + d2)  

     = (70 kg)(9.80 m/s2)(0.73 m)/2(0.25 m + 0.73 m)  
     =      2.6 × 102 N. 

 (b) We write ·τ = 0 about the hands from the force diagram: 

   ·τhands  = – 2Ffoot(d1 + d2) + mgd1 = 0,  or   

   Ffoot  = mgd1/2(d1 + d2)  

     = (70 kg)(9.80 m/s2)(0.25 m)/2(0.25 m + 0.73 m) 
     =      88 N. 
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82. The ropes can only provide a tension, so the scaffold will be stable  
 if FT1 and FT2 are greater than zero.  The tension will be least in  

 the rope farthest from the painter.  To find how far the painter  
 can walk from the right rope toward the right end, we set FT1 = 0.  

 We write ·τ = 0 about B from the force diagram: 

  ·τB = Mgxright + FT1(D + 2d) – mpailg(D + d) – mgD = 0; 

  (60 kg)(9.80 m/s2)xright + 0 –  (4.0 kg)(9.80 m/s2)(2.0 m + 1.0 m) –  

                 (25 kg)(9.80 m/s2)(2.0 m) = 0, 
 which gives xright = 1.03 m.   

 Because this is greater than the distance to the end of the plank, 1.0 m,  
 walking to the       right end is safe. 
 To find how far the painter can walk from the right rope toward the right end, we set FT2 = 0.   

 We write ·τ = 0 about A from the force diagram: 

  ·τA = – Mgxleft – FT2(D + 2d) + mpailgd + mg2d = 0; 

  – (60 kg)(9.80 m/s2)(1.0 m) – 0 + (4.0 kg)(9.80 m/s2)(1.0 m) + (25 kg)(9.80 m/s2)2(1.0 m) = 0, 
 which gives xleft = 0.90 m.   

 Because this is less than the distance to the end of the plank, 1.0 m, walking to the  
       left end is not safe. 
 The painter can safely walk to within       0.10 m        of the left end.   
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