
Solutions to Physics: Principles with Applications, 5/E, Giancoli  Chapter 7 

CHAPTER 7 
 
1. p = mv = (0.022 kg)(8.1 m/s) =        0.18 kg · m/s. 
 
 
2. During the throwing we use momentum conservation for the one-dimensional motion: 
  0 = (mboat + mchild)vboat  + mpackagevpackage ; 
  0 = (55.0 kg + 20.0 kg)vboat + (5.40 kg)(10.0 m/s), which gives        
  vboat  =       – 0.720 m/s (opposite to the direction of the package). 
 
 
3. We find the force on the expelled gases from 
  F = Æp/Æt = (Æm/Æt)v = (1300 kg/s)(40,000 m/s) = 5.2 × 107 N. 
 An equal, but opposite, force will be exerted on the rocket:       5.2 × 107 N, up. 
 
 
4. For this one-dimensional motion, we take the direction of the halfback for the positive direction. 
 For this perfectly inelastic collision, we use momentum conservation: 
  M1v1 + M2v2 = (M1 + M2)V; 
  (95 kg)(4.1 m/s) + (85 kg)(5.5 m/s) = (95 kg + 85 kg)V, which gives        V= 4.8 m/s. 
 
 
5. For the horizontal motion, we take the direction of the car for the positive direction. 
 The load initially has no horizontal velocity.  For this perfectly inelastic collision,  
 we use momentum conservation: 
  M1v1 + M2v2 = (M1 + M2)V; 
  (12,500 kg)(18.0 m/s) + 0 = (12,500 kg + 5750 kg)V, which gives       V= 12.3 m/s. 
 
 
6. For the one-dimensional motion, we take the direction of the first car for the positive direction. 
 For this perfectly inelastic collision, we use momentum conservation: 
  M1v1 + M2v2 = (M1 + M2)V; 
  (9500 kg)(16 m/s) + 0 = (9500 kg + M2)(6.0 m/s), which gives       M2 = 1.6 × 104 kg. 
 
 
7. We let V be the speed of the block and bullet immediately after the  

m

M

v

m+MV

 

 embedding and before the two start to rise.   
 For this perfectly inelastic collision, we use momentum conservation:  
  mv + 0 = (M + m)V; 
  (0.021 kg)(210 m/s) = (0.021 kg + 1.40 kg)V, which gives V = 3.10 m/s. 
 For the rising motion we use energy conservation, with the potential  
 reference level at the ground: 
  KEi + PEi = KEf + PEf ; 
  !(M + m)V 

2 + 0 = 0 + (m + M)gh,   or    
  h = V 

2/2g = (3.10 m/s)2/2(9.80 m/s2) =       0.491 m. 
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8. On the horizontal surface after the collision, the normal  

m
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 force is FN = (m + M)g.  We find the common speed of the  
 block and bullet immediately after the embedding by  
 using the work-energy principle for the sliding motion: 
  Wfr = ÆKE; 
  – µk(m + M)gd = 0 – !(M + m)V2; 
  0.25(9.80 m/s2)(9.5 m) = !V2, which gives V = 6.82 m/s. 
 For the collision, we use momentum conservation: 
  mv + 0 = (M + m)V; 
  (0.015 kg)v = (0.015 kg + 1.10 kg)(6.82 m/s), which gives        v = 5.1 × 102 m/s. 
 
 
9. The new nucleus and the alpha particle will recoil in opposite directions.   
 Momentum conservation gives us 
  0 = MV – mαvα , 
  0 = (57mα)V – mα(3.8 × 105 m/s),  which gives  V =       6.7 × 103 m/s. 
 
 
10. Because mass is conserved, the mass of the new nucleus is M2 = 222 u – 4.0 u = 218 u. 
 Momentum conservation gives us 
  M1V1 = M2V2 + mαvα , 
  (222 u)(420 m/s) = (218 u)(350 m/s) + (4.0 u)vα ,  which gives vα =       4.2 × 103 m/s. 
 
 
11. Momentum conservation gives us 

m
M

v1

M m

v2′ v1′v2 = 0

 

  mv1 + Mv2 = mv1′ + Mv2′, 
  (0.013 kg)(230 m/s) + 0 = (0.013 kg)(170 m/s) + (2.0 kg)v2′,  
 which gives v2′ =       0.39 m/s. 
 
 
 
12. (a) With respect to the Earth after the explosion, one section will have a speed v1′ and the other  
  will have a speed v2′ = v1′ + vrelative.  Momentum conservation gives us 
   mv = !mv1′ + !mv2′,  or 
   v = !v1′ + !(v1′ + vrelative) = v1′ + !vrelative; 
   5.80 × 103 m/s =  v1′ + !(2.20 × 103 m/s), which gives v1′ =       4.70 × 103 m/s. 
  The other section will have 
   v2′ = v1′ + vrelative = 4.70 × 103 m/s + 2.20 × 103 m/s =       6.90 × 103 m/s. 
 (b) The energy supplied by the explosion increases the kinetic energy: 
   E = ÆKE = [!(!m)v1′2 + !(!m)v2′2] – !mv2   
    = [!(!975 kg)(4.70 × 103 m/s)2 + !(!975 kg)(6.90 × 103 m/s)2] – !(975 kg)(5.80 × 103 m/s)2  
    =      5.90 × 108 J. 
 
 

 Page 7 – 2 



Solutions to Physics: Principles with Applications, 5/E, Giancoli  Chapter 7 

θ
v0

Before

v2

v1

After

x

y gas

 

13. If M is the initial mass of the rocket and m2 is the mass of the  
 expelled gases, the final mass of the rocket is m1 = M – m2.  
 Because the gas is expelled perpendicular to the rocket in the  
 rocket’s frame, it will still have the initial forward velocity,  
 so the velocity of the rocket in the original direction will not  
 change.  We find the perpendicular component of the rocket’s  
 velocity after firing from 
  v1⊥ = v0 tan θ = (115 m/s) tan 35° = 80.5 m/s. 
 Using the coordinate system shown, for momentum  
 conservation in the perpendicular direction we have 
  0 + 0 = m1v1⊥ – m2v2⊥ ,   or 
  (M – m2)v1⊥ = m2v2⊥ ; 
  (3180 kg – m2)(80.5 m/s) = m2(1750 m/s), which gives m2 =       140 kg. 
 
 
14. We find the average force on the ball from 
  F = Æp/Æt = (Æmv/Æt) =[(0.0600 kg/s)(65.0 m/s) – 0]/(0.0300 s) =      130 N. 
 Because the weight of a 60-kg person is ≈ 600 N, this force is       not large enough. 
 
 
15. We find the average force on the ball from 
  F = Æp/Æt = m Æv/Æt =(0.145 kg)[(52.0 m/s) – (– 39.0 m/s)]/(1.00 × 10–3 s) =      1.32 × 104 N. 
 
 
16. (a) We find the impulse on the ball from 
   Impulse = Æp = m Æv =(0.045 kg)(45 m/s – 0) =      2.0 N · s. 
 (b) The average force is  
   F = Impulse/Æt = (2.0 N · s)/(5.0 × 10–3 s) =      4.0 × 102 N. 
 
 
17. The momentum parallel to the wall does not change, therefore the  

v θ

v

 

 impulse will be perpendicular to the wall.  With the positive  
 direction toward the wall, we find the impulse on the ball from 
  Impulse  = Æp⊥ = m Æv⊥ = m[(– v sin θ) – (v sin θ)] 
     = – 2mv sin θ = 2(0.060 kg)(25 m/s) sin 45° = – 2.1 N · s. 
 The impulse on the wall is in the opposite direction:      2.1 N · s. 
 
 
 
 
18. (a) With the positive direction in the direction of the fullback (East), the momentum is 
   p = mfullbackvfullback = (115 kg)(4.0 m/s) =        4.6 × 102 kg · m/s (East). 
 (b) We find the impulse on the fullback from 
   Impulsefullback  = Æpfullback  
       = 0 – 4.6 × 102 kg · m/s =       – 4.6 × 102 kg · m/s (West). 
 (c) We find the impulse on the tackler from 
   Impulsetackler = – Impulsefullback =       + 4.6 × 102 kg · m/s (East). 
 (d) We find the average force on the tackler from 
   Ftackler = Impulsetackler/Æt = (+ 4.6 × 102 kg · m/s)/(0.75 s) =      6.1 × 102 N (East). 
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19. (a) The impulse is the area under the F vs. t curve.   
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  The value of each block on the graph is 
   1 block = (50 N)(0.01 s) = 0.50 N · s.  
  We estimate there are 10 blocks under the curve,  
  so the impulse is 
   Impulse = (10 blocks)(0.50 N · s/block)      ≈ 5.0 N · s. 
 (b) We find the final velocity of the ball from 
   Impulse = Æp = m Æv; 
   5.0 N · s = (0.060 kg)(v – 0), which gives v =      83 m/s. 
 
 
20. The maximum force that each leg can exert without breaking is 
  (170 × 106 N/m2)(2.5 × 10–4 m2) = 4.25 × 104 N, 
 so, if there is an even landing with both feet, the maximum force allowed on the  body is 8.50 × 104 N. 
 We use the work-energy principle for the fall to find the landing speed: 
  0 = ÆKE + ÆPE; 
  0 = !mvland

2 – 0 + (0 – mghmax),  or  vland
2 = 2ghmax . 

 The impulse from the maximum force changes the momentum on landing.  If we take down as the 
positive direction and assume the landing lasts for a time t, we have 

  – Fmaxt = m Æv = m(0 – vland),  or  t = mvland/Fmax . 
 We have assumed a constant force, so the acceleration will be constant.  For the landing we have 
  y = vlandt +  !at2 = vland(mvland/Fmax) + !(– Fmax/m)(mvland/Fmax)2 = !mvland

2/Fmax = mghmax/Fmax ; 
  0.60 m = (75 kg)(9.80 m/s2)hmax/(8.50 × 104 N), which gives hmax =      69 m. 
 
 
21. For the elastic collision of the two balls, we use momentum conservation: 
  m1v1 + m2v2 = m1v1′ + m2v2′; 
  (0.440 kg)(3.70 m/s) + (0.220 kg)(0) = (0.440 kg)v1′ + (0.220 kg)v2′. 
 Because the collision is elastic, the relative speed does not change: 
  v1 – v2 = – (v1′ – v2′),    or    3.70 m/s – 0 = v2′ – v1′. 
 Combining these two equations, we get  
  v1′ = 1.23 m/s,       and      v2′ = 4.93 m/s. 
 
 
22. For the elastic collision of the two pucks, we use momentum conservation: 
  m1v1 + m2v2 = m1v1′ + m2v2′; 
  (0.450 kg)(3.00 m/s) + (0.900 kg)(0) = (0.450 kg)v1′ + (0.900 kg)v2′. 
 Because the collision is elastic, the relative speed does not change: 
  v1 – v2 = – (v1′ – v2′),    or    3.00 m/s – 0 = v2′ – v1′. 
 Combining these two equations, we get  
  v1′ = – 1.00 m/s (rebound),       and      v2′ = 2.00 m/s. 
 
 
23. For the elastic collision of the two billiard balls, we use momentum conservation: 
  m1v1 + m2v2 = m1v1′ + m2v2′; 
  m(2.00 m/s) + m(– 3.00 m/s) = mv1′ + mv2′. 
 Because the collision is elastic, the relative speed does not change: 
  v1 – v2 = – (v1′ – v2′),    or    2.00 m/s – (– 3.00 m/s) = v2′ – v1′. 
 Combining these two equations, we get  
  v1′ = – 3.00 m/s (rebound),       and      v2′ = 2.00 m/s. 
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 Note that the two billiard balls exchange velocities. 
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24. For the elastic collision of the two balls, we use momentum conservation: 
  m1v1 + m2v2 = m1v1′ + m2v2′; 
  (0.060 kg)(2.50 m/s) + (0.090 kg)(1.00 m/s) = (0.060 kg)v1′ + (0.090 kg)v2′. 
 Because the collision is elastic, the relative speed does not change: 
  v1 – v2 = – (v1′ – v2′),    or    2.50 m/s – 1.00 m/s = v2′ – v1′. 
 Combining these two equations, we get  
  v1′ = 0.70 m/s,       and      v2′ = 2.20 m/s. 
 
 
25. (a) For the elastic collision of the two balls, we use momentum conservation: 
   m1v1 + m2v2 = m1v1′ + m2v2′; 
   (0.220 kg)(5.5 m/s) + m2(0) = (0.220 kg)(– 3.7 m/s) + m2v2′. 
  Because the collision is elastic, the relative speed does not change: 
   v1 – v2 = – (v1′ – v2′),    or    5.5 m/s – 0 = v2′ – (– 3.7 m/s), which gives v2′ = 1.8 m/s. 
 (b) Using the result for v2′ in the momentum equation, we get        m2 = 1.1 kg. 
 
 
26. (a) For the elastic collision of the two bumper cars, we use momentum conservation: 
   m1v1 + m2v2 = m1v1′ + m2v2′; 
   (450 kg)(4.50 m/s) + (550 kg)(3.70 m/s) = (450 kg)v1′ + (550 kg)v2′. 
  Because the collision is elastic, the relative speed does not change: 
   v1 – v2 = – (v1′ – v2′),    or    4.5 m/s – 3.7 m/s = v2′ – v1′. 
  Combining these two equations, we get  
   v1′ = 3.62 m/s,       and      v2′ = 4.42 m/s. 
 (b) r the change in momentum of each we have 
   Æp1 = m1(v1′ – v1) = (450 kg)(3.62 m/s – 4.50 m/s) =       – 396 kg · m/s; 
   Æp2 = m2(v2′ – v2) = (550 kg)(4.42 m/s – 3.70 m/s) =       + 396 kg · m/s. 
  As expected, the changes are equal and opposite. 
 
 
27. (a) For the elastic collision of the two balls, we use momentum conservation: 
   m1v1 + m2v2 = m1v1′ + m2v2′; 
   (0.280 kg)v1 + m2(0) = (0.280 kg)v1′ + m2(!v1). 
  Because the collision is elastic, the relative speed does not change: 
   v1 – v2 = – (v1′ – v2′),    or    v1 – 0 = !v1 – v1′, which gives       v1′ = – !v1. 
  Using this result in the momentum equation, we get        m2 = 0.840 kg. 
 (b) The fraction transferred is  
   fraction  = ÆKE2/KE1 = !m2(v2′2 – v2

2)/!m1v1
2   

      = !m2[(!v1)2 – 0]/!m1v1
2 = (m2/m1 = ((0.840 kg)/(0.280 kg) =        0.750. 

 
 

 Page 7 – 6 



Solutions to Physics: Principles with Applications, 5/E, Giancoli  Chapter 7 

28. We find the speed after falling a height h from energy  
 conservation: 

v

H

h

 

  !Mv2 = Mgh,  or  v = (2gh)1/2. 
 The speed of the first cube after sliding down the incline  
 and just before the collision is 
  v1 = [2(9.80 m/s2)(0.20 m)]1/2  = 1.98 m/s. 
 For the elastic collision of the two cubes, we use momentum  
 conservation: 
  Mv1 + mv2 = Mv1′ + mv2′; 
  M(1.98 m/s) + !M(0) = Mv1′ + !Mv2′. 
 Because the collision is elastic, the relative speed does not change: 
  v1 – v2 = – (v1′ – v2′),    or    1.98 m/s – 0 = v2′ – v1′. 
 Combining these two equations, we get  
  v1′ = 0.660 m/s,  and  v2′ = 2.64 m/s. 
 Because both cubes leave the table with a horizontal velocity, they will fall to the floor in the same time, 

which we find from 
  H = !gt2; 
  0.90 m = !(9.80 m/s2)t2, which gives  t = 0.429 s. 
 Because the horizontal motion has constant velocity, we have 
  x1 = v1′t = (0.660 m/s)(0.429 s) =       0.28 m; 
  x2 = v2′t = (2.64 m/s)(0.429 s) =       1.1 m. 
 
 
29. (a) For the elastic collision of the two masses, we use momentum conservation: 
   m1v1 + m2v2 = m1v1′ + m2v2′; 
   m1v1 + 0 = m1v1′ + m2v2′. 
  Because the collision is elastic, the relative speed does not change: 
   v1 – v2 = – (v1′ – v2′),   or   v1 – 0 = v2′ – v1′. 
  If we multiply this equation by m2 and subtract it from the momentum equation, we get  
   (m1 – m2)v1 = (m1 + m2)v1′,   or   v1′ = [(m1 – m2)/(m1 + m2)]v1 . 
  If we multiply the relative speed equation by m1 and add it to the momentum equation, we get  
   2m1v1 = (m1 + m2)v2′,   or   v2′ = [2m1/(m1 + m2)]v1 . 
 (b) When m1 « m2 we have 
   v1′ = [(m1 – m2)/(m1 + m2)]v1 ≈ [(– m2)/(m2)]v1 = – v1 ; 
   v2′ = [2m1/(m1 + m2)]v1  ≈ [(2m1/m2)v1 ≈ 0;  so 
  v1′ ≈ – v1 , v2′ ≈ 0;       the small mass rebounds with the same speed; the large mass does not move.   
  An example is throwing a ping pong ball against a concrete block. 
 (c) When m1 » m2 we have 
   v1′ = [(m1 – m2)/(m1 + m2)]v1 ≈ [(m1)/(m1)]v1 = v1 ; 
   v2′ = [2m1/(m1 + m2)]v1  ≈ (2m1/m1)v1 = 2v1 ;  so 
  v1′ ≈ v1 , v2′ ≈ 2v1;       the large mass continues with the same speed; the small mass acquires a  
  large velocity.  An example is hitting a light stick with a bowling ball. 
 (d) When m1 = m2 we have 
   v1′ = [(m1 – m2)/(m1 + m2)]v1 = 0; 
   v2′ = [2m1/(m1 + m2)]v1  = (2m1/2m1)v1 = v1 ;  so 
  v1′ ≈ 0, v2′ ≈ v1 ;       the striking mass stops; the hit mass acquires the striking mass’s velocity.   
  An example is one billiard ball hitting an identical one. 
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30. We let V be the speed of the block and bullet immediately  
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 after the collision and before the pendulum swings.  For this  
 perfectly inelastic collision, we use momentum conservation: 
  mv + 0 = (M + m)V; 
  (0.018 kg)(230 m/s) = (0.018 kg + 3.6 kg)V,  
 which gives V = 1.14 m/s. 
 Because the tension does no work, we can use energy conservation  
 for the swing: 
  !(M + m)V2 = (M + m)gh,  or  V = (2gh)1/2; 
  1.14 m/s = [2(9.80 m/s2)h]1/2, which gives h = 0.0666 m. 
 We find the horizontal displacement from the triangle: 
  L2 = (L – h)2 + x2; 
  (2.8 m)2 = (2.8 m – 0.0666 m)2 + x2, which gives x =        0.61 m. 
 
 
31. (a) The velocity of the block and projectile after the collision is 
   v′ = mv1/(m + M). 
  The fraction of kinetic energy lost is  
   fraction lost = – ÆKE/KE = – [!(m + M)v′2 – !mv1

2]/!mv1
2   

       = – {(m + M)[mv1/(m + M)]2 – mv1
2}/mv1

2  
       = – [m/(m + M)] + 1 =       + M/(m + M). 
 (b) For the data given we have 
   fraction lost = M/(m + M) = (14.0 g)/(14.0 g + 380 g) =       0.964. 
 
 
32. Momentum conservation gives  
  0 = m1v1′ + m2v2′; 
  0 = m1v1′ + 1.5m1v2′,   or  v1′ = – 1.5v2′. 
 The kinetic energy of each piece is 
  KE2 = !m2v2′2; 
  KE1 = !m1v1′2 = !(m2/1.5)(– 1.5v2′)2 = (1.5)!m2v2′2 = 1.5KE2 . 
 The energy supplied by the explosion produces the kinetic energy: 
  E = KE1 + KE2 = 2.5KE2; 
  7500 J = 2.5KE2 , which gives KE2 = 3000 J. 
 For the other piece we have 
  KE1 = E – KE2  = 7500 J – 3000 J = 4500 J. 
 Thus  
  KE(heavier) = 3000 J;  KE(lighter) = 4500 J. 
 
 
33. On the horizontal surface after the collision, the normal force on the joined cars is FN = (m + M)g.   
 We find the common speed of the joined cars immediately after the collision by using the  
 work-energy principle for the sliding motion: 
  Wfr = ÆKE; 
  – µk(m + M)gd = 0 – !(M + m)V2; 
  0.40(9.80 m/s2)(2.8 m) = !V2, which gives V = 4.68 m/s. 
 For the collision, we use momentum conservation: 
  mv + 0 = (m + M)V; 
  (1.0 × 103 kg)v = (1.0 × 103 kg + 2.2 × 103 kg)(4.68 m/s), which gives        v = 15 m/s        (54 km/h). 
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34. (a) For a perfectly elastic collision, we use momentum conservation:  
    m1v1 + m2v2 = m1v1′ + m2v2′,   or   m1(v1 – v1′) = m2(v2′ – v2). 
   Kinetic energy is conserved, so we have 
    !m1v1

2 + !m2v2
2 = !m1v1′2 + !m2v2′2,   or   m1(v1

2 – v1′2) = m2(v2′2 – v2
2), 

   which can be written as 
    m1(v1 – v1′)(v1 + v1′) = m2(v2′ – v2)(v2′ + v2). 
   When we divide this by the momentum result, we get 
    v1 + v1′ = v2′ + v2 ,   or   v1′ – v2′ = v2 – v1 . 
   If we use this in the definition of the coefficient of restitution, we get 
    e = (v1′ – v2′)/(v2 – v1) = (v2 – v1)/(v2 – v1) = 1. 
  For a completely inelastic collision, the two objects move together, so we have 
   v1′ = v2′, which gives e = 0. 
 (b) We find the speed after falling a height h from energy conservation: 
   !mv1

2 = mgh,  or  v1 = (2gh)1/2. 
  The same expression holds for the height reached by an object moving upward: 
   v1′ = (2gh′)1/2. 
  Because the steel plate does not move, when we take into account the directions we have 
   e = (v1′ – v2′)/(v2 – v1 ) = [(2gh′)1/2 – 0]/{0 – [– (2gh)1/2]}, so       e = (h′/h)1/2. 
 
 
35. Momentum conservation for the explosion gives us 
  0 = m1v1′ + m2v2′; 
  0 = m1v1′ + 3m1v2′,   or  v1′ = – 3v2′. 
 On the horizontal surface after the collision, the normal force on a block is FN = mg.   
 We relate the speed of a block immediately after the collision to the distance it slides from the  
 work-energy principle for the sliding motion: 
  Wfr = ÆKE; 
  – µkmgd = 0 – !mv2,  or  d = !v2/µkg. 
 If we use this for each block and form the ratio, we get 
  d1/d2 = (v1/v2)2 = (– 3)2 =         9,        with the lighter block traveling farther. 
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36. For the  momentum conservation of this one-dimensional collision, we have 
  m1v1 + m2v2 = m1v1′ + m2v2′. 
 (a) If the bodies stick together, v1′ = v2′ = V: 
   (5.0 kg)(5.5 m/s) + (3.0 kg)(– 4.0 m/s) = (5.0 kg + 3.0 kg)V, which gives V =      v1′ = v2′ = 1.9 m/s. 
 (b) If the collision is elastic, the relative speed does not change: 
   v1 – v2 = – (v1′ – v2′),   or   5.5 m/s – (– 4.0 m/s) = 9.5 m/s = v2′ – v1′. 
  The momentum equation is 
   (5.0 kg)(5.5 m/s) + (3.0 kg)(– 4.0 m/s) = (5.0 kg)v1′ + (3.0 kg)v2′,  or 
   (5.0 kg)v1′ + (3.0 kg)v2′ = 15.5 kg · m/s. 
  When we combine these two equations, we get       v1′ = – 1.6 m/s, v2′ = 7.9 m/s. 
 (c) If m1 comes to rest, v1′ = 0. 
   (5.0 kg)(5.5 m/s) + (3.0 kg)(– 4.0 m/s) = 0 + (3.0 kg)v2′, which gives       v1′ = 0, v2′ = 5.2 m/s. 
 (d) If m2 comes to rest, v2′ = 0. 
   (5.0 kg)(5.5 m/s) + (3.0 kg)(– 4.0 m/s) = (5.0 kg)v1′ + 0, which gives       v1′ = 3.1 m/s, v2′ = 0. 
 (e) The momentum equation is 
   (5.0 kg)(5.5 m/s) + (3.0 kg)(– 4.0 m/s) = (5.0 kg)(– 4.0 m/s) + (3.0 kg)v2′,  
  which gives       v1′ = – 4.0 m/s, v2′ = 12 m/s. 
 The result for (c) is reasonable.       The 3.0-kg body rebounds. 
 The result for (d) is not reasonable.       The 5.0-kg body would have to pass through the 3.0-kg body. 
 To check the result for (e) we find the change in kinetic energy: 
  ÆKE  = (!m1v1′2 + !m2v2′2) – (!m1v1

2 + !m2v2
2) 

    = ![(5.0 kg)(5.5 m/s)2 + (3.0 kg)(– 4.0 m/s)2] – ![(5.0 kg)(– 4.0 m/s)2 + (3.0 kg)(12 m/s)2] 
    = + 156 J. 
 Because the kinetic energy cannot increase in a simple collision,      the result for (e) is not reasonable. 
 
 
37. Because the initial momentum is zero, the momenta of the three  

pnucleus

θpneutrino

pelectron

θ

 

 products of the decay must add to zero.  If we draw the vector  
 diagram, we see that 
  pnucleus = (pelectron

2 + pneutrino
2)1/2 

    = [(9.30 × 10–23 kg · m/s)2 + (5.40 × 10–23 kg · m/s)2]1/2  
    =         1.08 × 10–22 kg · m/s. 
 We find the angle from 
  tan θ  = pneutrino/pelectron  
    = (5.40 × 10–23 kg · m/s)/(9.30 × 10–23 kg · m/s)  
    = 0.581, so the angle is      30.1° from the direction opposite to the electron’s. 
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38. For the collision we use momentum conservation: 

p′

p2

p1
θ

x

y

 

  x-direction:  m1v1 + 0 = (m1 + m2)v′ cos θ; 
   (4.3 kg)(7.8 m/s) = (4.3 kg + 5.6 kg)v′ cos θ, which gives  
   v′ cos θ = 3.39 m/s. 
  y-direction:  0 + m2v2 = (m1 + m2)v′ sin θ; 
   (5.6 kg)(10.2 m/s) = (4.3 kg + 5.6 kg)v′ sin θ, which gives 
   v′ sin θ = 5.77 m/s. 
 We find the direction by dividing the equations: 
  tan θ = (5.77 m/s)/(3.39 m/s) = 1.70, so θ =       60°. 
 We find the magnitude by squaring and adding the equations: 
  v′ = [(5.77 m/s)2 + (3.39 m/s)2]1/2 =       6.7 m/s. 
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39. (a) Using the coordinate system shown, for momentum  

vA

Before

vB′

vA′

After

x

y

θA′

θB′

 

  conservation we have 
   x-momentum:  mAvA + 0 = mAvA′ cos θA′ + mBvB′ cos 

θB′; 
   y-momentum:  0 + 0 = mAvA′ sin θA′ – mBvB′ sin θB′. 
 (b) With the given data, we have 
   x: (0.400 kg)(1.80 m/s) =  
    (0.400 kg)(1.10 m/s) cos 30° + (0.500 kg)vB′ cos 

θB′, 
  which gives vB′ cos θB′ = 0.678 m/s; 
   y: 0 = (0.400 kg)(1.10 m/s) sin 30° – (0.500 kg)vB′ sin θB ′, 
  which gives vB′ sin θB ′= 0.440 m/s. 
  We find the magnitude by squaring and adding the equations: 
   vB′ = [(0.440 m/s)2 + (0.678 m/s)2]1/2 =       0.808 m/s. 
  We find the direction by dividing the equations: 
   tan θB′ = (0.440 m/s)/(0.678 m/s) = 0.649, so θB =       33.0°. 
 
 
40. (a) Using the coordinate system shown, for momentum  

p1′

p1 θ
x

y

p2′

 

  conservation we have 
   x-momentum:   mv + 0 = 0 + 2mv2′ cos θ,  or  
       2v2′ cos θ = v; 
   y-momentum:   0 + 0 = – mv1′ + 2mv2′ sin θ,  or 
       2v2′ sin θ = v1′. 
  If we square and add these two equations, we get 
   v2 + v1′2 = 4v2′2. 
  For the conservation of kinetic energy, we have 
   !mv2 + 0 = !mv1′2 + !(2m)v2′2,   or    
   v2 – v1′2 = 2v2′2. 
  When we add this to the previous result, we get 
   v2 = 3v2′2. 
  Using this in the x-momentum equation, we get 
   cos θ = Ã3/2,  or   θ =        30°. 
 (b) From part (a) we have 
   v2′ = v/Ã3. 
  Using the energy result, we get 
   v1′2 = v2 – 2v2′2 = v2 – 2v2/3 = @v2,  or      v1′ = v/Ã3. 
 (c) The fraction of the kinetic energy transferred is  
   fraction  = KE2/KE1 = !(2m)v2′2/!mv2   
      = m(v2/3)/!mv2 =         %. 
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41. Using the coordinate system shown, for momentum  

p1

y

x

p2

p′θ1

θ1

 

 conservation we have 
  y-momentum:   – mv sin θ1 + mv sin θ2 = 0,  or  θ1 = 

θ2 .  
  x-momentum:   mv cos θ1 + mv cos θ2 = 2mv2′; 
      2mv cos θ1 = 2mv/3; 
      cos θ1 = @,  or  θ1 = 70.5° = θ2 . 
 The angle between their initial directions is 
  φ = θ1 + θ2 = 2(70.5°) =        141°. 
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42. Using the coordinate system shown, for momentum conservation we 
have 

m = 5M

M
mv1

mv1′ Mv2′
x

y

α θ2

 

  y-momentum:   – mv1 + 0 = mv1′ cos α + Mv2′ cos θ2 ; 
      5M(12.0 m/s) = 5Mv1′ cos α + Mv2′ cos 80°,  or  
      5v1′ cos α = v2′ cos 80° – 60.0 m/s. 
  x-momentum:   0 = – mv1′ sin α + Mv2′ sin θ2 ; 
      0 = – 5Mv1′ sin α + Mv2′ sin 80°,  or 
      5v1′ sin α = v2′ cos 80°. 
 For the conservation of kinetic energy, we have 
  !mv1

2 + 0 = !mv1′2 + !Mv2′2; 
  5M(12.0 m/s)2 = 5Mv1′2 + Mv2′2,  or  
  5v1′2 + v2′2 = 720 m2/s2. 
 We have three equations in three unknowns: α, v1′, v2′.  We eliminate α   
 by squaring and adding the two momentum results, and then combine  
 this with the energy equation, with the results: 
 (a) v2′ =        3.47 m/s. 
 (b) v1′ =        11.9 m/s. 
 (c) α  =          3.29°. 
 
 
43. Using the coordinate system shown, for momentum  

pn′
pn θ1′ x

y

pHe′

θ2′

 

 conservation we have 
  x:   mnvn + 0 = mnvn′ cos θ1′ + mHevHe′ cos θ2′; 
   mn(6.2 × 105 m/s) = mnvn′ cos θ1′ + 4mnvHe′ cos 45°,  or  
   vn′ cos θ1′ = (6.2 × 105 m/s) – 4vHe′ cos 45°. 
  y: 0 + 0 = – mnvn′ sin θ1′ + mHevHe′ sin θ2′;  
   0 = – mnvn′ sin θ1′ + 4mnvHe′ sin 45°,  or 
   vn′ sin θ1′ = 4vHe′ sin 45°. 
 For the conservation of kinetic energy, we have 
  !mnvn

2 + 0 = !mnvn′2 + !mHevHe′2; 
  mn(6.2 × 105 m/s)2 =  mnvn′2 + 4mnvHe′2,  or 
  vn′2 + 4vHe′2 = 3.84 × 1011 m2/s2. 
 We have three equations in three unknowns: θ1′, vn′, vHe′.  We eliminate θ1′ by squaring and adding the 

two momentum results, and then combine this with the energy equation, with the results: 
  θ1′ = 76°, vn′ = 5.1 × 105 m/s, vHe′ = 1.8 × 105 m/s. 
 
 
44. Using the coordinate system shown, for momentum conservation we have 
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  x: 0 + mv2 = mv1′ cos α + 0; 

mv1

mv1′mv2′

x

y

αmv2

 

   3.7 m/s = v1′ cos α; 
  y: mv1 + 0 = mv1′ sin α + mv2′; 
   2.0 m/s = v1′ sin α + v2′,  or 
   v1′ sin α = 2.0 m/s – v2′. 
 For the conservation of kinetic energy, we have  
  !mv1

2 + !mv2
2 = !mv1′2 + !mv2′2; 

  (2.0 m/s)2 + (3.7 m/s)2 = v1′2 + v2′2. 
 We have three equations in three unknowns: α , v1′, v2′.   
 We eliminate α  by squaring and adding the two momentum  
 results, and then combine this with the energy equation,  
 with the results: 
  α  = 0°, v1′ = 3.7 m/s, v2′ = 2.0 m/s. 
 The two billiard balls exchange velocities. 
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45. Using the coordinate system shown, for momentum conservation we have 
  x: mv1 + 0 = mv1′ cos θ1 + mv2′ cos θ2 ,  or 

mv1

mv1′

mv2′

x

y

θ1

m θ2

 

   v1 = v1′ cos θ1 + v2′ cos θ2 ; 
  y: 0 + 0 = mv1′ sin θ1 – mv2′ sin θ2 ,  or 
   0 = v1′ sin θ1 – v2′ sin θ2 . 
 For the conservation of kinetic energy, we have  
  !mv1

2 + 0 = !mv1′2 + !mv2′2; 
  v1

2 = v1′2 + v2′2. 
 We square each of the momentum equations: 
  v1

2 = v1′2 cos2 θ1 + 2v1′v2′ cos θ1 cos θ2 + v2′2 cos2 θ2 ; 
  0 = v1′2 sin2 θ1 – 2v1′v2′ sin θ1 sin θ2 + v2′2 sin2 θ2 . 
 If we add these two equations and use sin2 θ + cos2 θ = 1, we get 
  v1

2 = v1′2 + 2v1′v2′(cos θ1 cos θ2 – sin θ1 sin θ2) + v2′2 . 
 If we subtract the energy equation, we get 
  0 = 2v1′v2′(cos θ1 cos θ2 – sin θ1 sin θ2),  or  cos θ1 cos θ2 – sin θ1 sin θ2 = 0. 
 We reduce this with a trigonometric identity: 
  cos θ1 cos θ2 – sin θ1 sin θ2 = cos(θ1 + θ2) = 0, 
 which means that θ1 + θ2 = 90°. 
 
 
46. We choose the origin at the carbon atom.  The center of mass will lie along the line joining the atoms: 
  xCM  = (mCxC + mOxO)/(mC + mO)  
    = [0 + (16 u)(1.13 × 10–10 m)]/(12 u + 16 u) =      6.5 × 10–11 m        from the carbon atom. 
 
 
47. We choose the origin at the front of the car: 
  xCM  = (mcarxcar + mfrontxfront + mbackxback)/(mcar + mfront + mback)  
    = [(1050 kg)(2.50 m) + (140 kg)(2.80 m) + (210 kg)(3.90 m)]/(1050 kg + 140 kg + 210 kg)  
    =      2.74 m        from the front of the car. 
 
 
48. Because the cubes are made of the same material, their  y

¬0

x

2¬0

3¬0

 

 masses will be proportional to the volumes: 
  m1 , m2 = 23m1 = 8m1 , m3 = 33m1 = 27m1 . 
 From symmetry we see that yCM = 0. 
 We choose the x-origin at the outside edge of the small cube:  
  xCM  = (m1x1 + m2x2 + m3x3)/(m1 + m2 + m3)  
    = {m1(!¬0) + 8m1[¬0 + !(2¬0)] +  
     27m1[¬0 + 2¬0 + !(3¬0)]}/(m1 + 8m1 + 27m1)  
    = 138¬0/36  
    =       3.83¬0 from the outer edge of the small cube. 
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49. We choose the origin at the center of the raft, which is  

x

y

m1

m2m3

M

 

 the CM of the raft: 
  xCM  = (Mxraft + m1x1 + m2x2 + m3x3)/(M + m1 + m2 + m3)  
    = [0 + (1200 kg)(9.0 m) + (1200 kg)(9.0 m) +  
       (1200 kg)(– 9.0 m)]/[6200 kg + 3(1200 kg)]  
    =        1.10 m (East). 
  yCM = (Myraft + m1y1 + m2y2 + m3y3)/(M + m1 + m2 + m3)  
    = [0 + (1200 kg)(9.0 m) + (1200 kg)(– 9.0 m) +  
       (1200 kg)(– 9.0 m)]/[6200 kg + 3(1200 kg)]  
    =        – 1.10 m (South). 
 
 
 
 

y

¬
x

 

50. We choose the coordinate system shown.  There are 10 cases. 
  xCM  = (5mx1 + 3mx2 + 2mx3)/(10m)  
    = [5(!¬) + 3(¬ + !¬) + 2(2¬ + !¬)]/(10)  
    = 1.2¬. 
  yCM = (7my1 + 2my2 + my3)/(10m)  
    = [7(!¬) + 2(¬ + !¬) + (2¬ + !¬)]/(10)  
    = 0.9¬. 
 The CM is  1.2¬ from the left, and  
     0.9¬ from the back             of the pallet. 
 
 
 
 
51. We know from the symmetry that the center of mass lies  

R

CM
0.80R

x

y

C C´

2R

 

 on a line containing the center of the plate and the center  
 of the hole.  We choose the center of the plate as origin  
 and x along the line joining the centers.  Then yCM = 0. 
 A uniform circle has its center of mass at its center.   
 We can treat the system as two circles: 
  a circle of radius 2R, density ρ and  
     mass ρ¹(2R)2 with x1 = 0;  
  a circle of radius R, density – ρ and  
     mass – ρ¹R2 with x2 = 0.80R. 
 We find the center of mass from 
  xCM  = (m1x1 + m2x2)/(m1 + m2)  
    = [4ρ¹R2 (0) – ρ¹R2 (0.80R)]/(4ρ¹R2  – ρ¹R2)  
    = – 0.27R . 
 The center of mass is       along the line joining the centers 0.07R outside the hole. 
 
 
52. If we assume a total mass of 70 kg, for one leg we have 
  mleg = mbody!(21.5 + 9.6 + 3.4)/100 = (70 kg)!(34.5)/100 =       12 kg. 
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53. If we measure from the shoulder, the percentage of the height to the center of mass for each of the 
segments is 

  upper arm: 81.2 – 71.7 = 9.5; 
  lower arm: 81.2 – 55.3 = 25.9; 
  hand: 81.2 – 43.1 = 38.1. 
 Because all masses are percentages of the body mass, we can use the percentages rather than the actual 

mass.  Thus we have 
  xCM  = (mupperxupper + mlowerxlower + mhandxhand)/(mupper + mlower + mhand)  
    = [!(6.6)(9.5) + !(4.2)(25.9) + !(1.7)(38.1)]/[!(6.6) + !(4.2) + !(1.7)]  
    = 19. 
 The CM of an outstretched arm is       19% of the height. 
 
 
54. We choose the shoulder as the origin.  The locations of the  

x

y

upper arm

lower arm

hand

 

 centers of mass for each of the segments are 
  upper arm: xupper = [(81.2 – 71.7) /100] (155 cm) = 14.7 cm;  
     yupper = 0; 
  lower arm: xlower =[ (81.2 – 62.2) /100] (155 cm) = 29.5 cm;  
      ylower = [(62.2 – 55.3) /100] (155 cm) = 10.7 cm;  
  hand:  xhand = [(81.2 – 62.2) /100] (155 cm) = 29.5 cm;  
    yhand = [(62.2 – 43.1) /100] (155 cm) = 29.6 cm. 
 Because all masses are percentages of the body mass, we can  
 use the percentages rather than the actual mass.  Thus we have 
  xCM  = (mupperxupper + mlowerxlower + mhandxhand)/(mupper + mlower + mhand)  
    = [!(6.6)(14.7 cm) + !(4.2)(29.5 cm) + !(1.7)(29.5 cm)]/[!(6.6) + !(4.2) + !(1.7)]  
    =          22 cm. 
  yCM = (mupperyupper + mlowerylower + mhandyhand)/(mupper + mlower + mhand)  
    = [!(6.6)(0) + !(4.2)(10.7 cm) + !(1.7)(29.6 cm)]/[!(6.6) + !(4.2) + !(1.7)]  
    =          7.6 cm. 
 
 
55. We use the line of the torso as the origin.  The vertical  

x

upper arms

lower arms

head

upper legs

lower legs

feet

trunk and neck

 

 locations of the centers of mass for each of the segments,  
 as a percentage of the height, are 
  torso and head: 0; 
  upper arms: yua = – (81.2 – 71.7) = – 9.5;  
  lower arms: yla = – (81.2 – 55.3) = – 25.9; 
  hands: yh = – (81.2 – 43.1) = – 38.1; 
  upper legs: yul = – (52.1 – 42.5) = – 9.6; 
  lower legs: yll = – (52.1 – 18.1) = – 33.9; 
  feet: yf = – (52.1 – 1.8) = – 50.3. 
 Because all masses are percentages of the body mass, we can use the percentages rather than the actual 

mass.  Thus we have 
  yCM = (muayua + mlayla + mhyh + mulyul + mllyll + mfyf)/mbody  
    = [(6.6)(– 9.5) + (4.2)(– 25.9) + (1.7)(– 38.1) + (21.5)(– 9.6) + (9.6)(– 33.9) + (3.4)(– 50.3)]/100 
    =  – 9.4. 
 The CM will be       9.4% of the body height       below the line of the torso.  For a height of 1.8 m, this is 

about 17 cm, so       yes,       this will most likely be outside the body. 
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56. (a) If we choose the origin at the center of the Earth, we have 
   xCM  = (mEarthxEarth + mMoonxMoon)/(mEarth + mMoon)  
     = [0 + (7.35 × 1022 kg)(3.84 × 108 m)]/(5.98 × 1024 kg + 7.35 × 1022 kg)  
     =        4.66 × 106 m. 
  Note that this is less than the radius of the Earth and thus is inside the Earth. 
 (b) The CM found in part (a) will move around the Sun on an elliptical path.  The Earth and Moon will  
  revolve about the CM.  Because this is near the center of the Earth, the Earth will essentially be on  
  the elliptical path around the Sun.  The motion of the Moon about the Sun is more complicated. 
 
 
57. We choose the origin of our coordinate system at the woman. 
 (a) For their CM we have  
   xCM  = (mwomanxwoman + mmanxman)/(mwoman + mman)  
     = [0 + (90 kg)(10.0 m)]/(55 kg + 90 kg)  
     =        6.2 m. 
 (b) Because the CM will not move, we find the location of the woman from 
   xCM = (mwomanxwoman′ + mmanxman′)/(mwoman + mman)  
   6.2 m = [(55 kg)xwoman′ + (90 kg)(10.0 m – 2.5 m)]/(55 kg + 90 kg), which gives  
   xwoman′ = 4.1 m. 
  The separation of the two will be 7.5 m – 4.1 m =        3.4 m. 
 (c) The two will meet at the CM , so he will have moved 10.0 m – 6.2 m =         3.8 m. 
 
 
58. Because the two segments of the mallet are uniform, we know that the  

x

y

M

m
L

d
 

 center of mass of each segment is at its midpoint.   
 We choose the origin at the bottom of the handle.  The mallet will spin  
 about the CM, which is the point that will follow a parabolic trajectory:  
  xCM  = (md + ML)/(m + M)  
    = [(0.500 kg)(12.0 cm) + (2.00 kg)(24.0 cm + 4.00 cm)]/ 
           (0.500 kg + 2.00 kg) 
    =        24.8 cm. 
 
 
59. The CM will land at the same point, 2D from the launch site.  If part I is still stopped by the explosion, it 

will fall straight down, as before.   
 (a) We find the location of part II from the CM: 
   xCM  = (mIxI + mIIxII)/(mI + mII)  
   2D  = [mID + 3mIxII]/(mI + 3mI), which gives  
   xII =       7D/3,  or  2D/3 closer to the launch site. 
 (b) For the new mass distribution, we have 
   xCM  = (mIxI + mIIxII)/(mI + mII)  
   2D  = [3mIID + mIIxII]/(3mII + mII), which gives  
   xII =       5D,  or  2D farther from the launch site. 
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60. The forces on the balloon, gondola, and passenger are balanced, so the CM does not move relative to the 
Earth.  As the passenger moves down at a speed v relative to the balloon, the balloon will move up.  If the 
speed of the balloon is v′ relative to the Earth, the passenger will move down at a speed v – v′ relative to 
the Earth.  We choose the location of the CM as the origin and determine the positions after a time t: 

  xCM = (mballoonxballoon + mpassengerxpassenger)/(mballoon + mpassenger)  
  0 = [Mv′t + m(v – v′)t]/(M + m), which gives  
  v′ = mv/(M + m) up. 
 If the passenger stops, the gondola and      the balloon will also stop.         There will be equal and 

opposite impulses acting when the passenger grabs the rope to stop. 
 
 
61. We find the force on the person from the magnitude of the force required to change the momentum  
 of the air: 
  F  = Æp/Æt = (Æm/Æt)v  
   = (40 kg/s · m2)(1.50 m)(0.50 m)(100 km/h)/(3.6 ks/h) =       8.3 × 102 N. 
 The maximum friction force will be 
  Ffr = µmg ≈ (1.0)(70 kg)(9.80 m/s2) = 6.9 × 102 N, so the forces are       about the same. 
 
 
62. For the system of railroad car and snow, the horizontal momentum will be constant.  For the horizontal 

motion, we take the direction of the car for the positive direction.  The snow initially has no horizontal 
velocity.  For this perfectly inelastic collision, we use momentum conservation: 

  M1v1 + M2v2 = (M1 + M2)V; 
  (5800 kg)(8.60 m/s) + 0 = [5800 kg + (3.50 kg/min)(90.0 min)]V, which gives       V= 8.16 m/s. 
 Note that there is a vertical impulse, so the vertical momentum is not constant. 
 
 
63. We find the speed after being hit from the height h using energy  

mv′

mv

θ

² p

 

 conservation: 
  !mv′2 = mgh,  or  v′ = (2gh)1/2 = [2(9.80 m/s2)(55.6 m)]1/2 = 33.0 m/s. 
 We see from the diagram that the magnitude of the change in 

momentum is  
  Æp = m(v2 + v′2)1/2  
   = (0.145 kg)[(35.0 m/s)2 + (33.0 m/s)2]1/2 = 6.98 kg · m/s. 
 We find the force from 
  F Æt = Æp; 
  F(0.50 × 10–3 s) = 6.98 kg · m/s, which gives F =        1.4  × 104 N. 
 We find the direction of the force from 
  tan θ = v′/v = (33.0 m/s)/(35.0 m/s) = 0.943,  θ =       43.3°. 
 
 
64. For momentum conservation we have 
  x:   mv 0 = %mvx′, which gives         vx′ = 8v 0 ; 
  y:  0 = @m(2v 0) – %mvy′, which gives           vy′ = – v 0 . 
 The rocket’s forward speed increases because the fuel is shot backward relative to the rocket. 
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θ1

1.0

θ2¦3.0

4.0

 

65. From the result of Problem 45, the angle between the  
 two final directions will be 90° for an elastic collision.  
 We take the initial direction of the cue ball to be  
 parallel to the side of the table.  The angles for the  
 two balls after the collision are 
  tan θ1 = 1.0/Ã3.0, which gives  θ1 = 30°; 
  tan θ2 = (4.0 – 1.0)/Ã3.0, which gives  θ2 = 60°. 
 Because their sum is 90°,        
 this will be a “scratch shot”. 
 
 
 
 
66. In the reference frame of the capsule before the push, we take the positive direction in the direction the 

capsule will move.   
 (a) Momentum conservation gives us 
   mvastronaut + Mvsatellite = mvastronaut′ + Mvsatellite′, 
   0 + 0 = (140 kg)(– 2.50 m/s) + (1800 kg)vsatellite′,  which gives vsatellite′ =        0.194 m/s. 
 (b) We find the force on the satellite from 
   Fsatellite = Æpsatellite/Æt = msatellite Ævsatellite/Æt 
   =(1800 kg)(0.194 m/s – 0)/(0.500 s) =       700 N. 
  There will be an equal but opposite force on the astronaut. 
 
 
67. For each of the elastic collisions with a step, conservation of kinetic energy means that the velocity 

reverses direction but has the same magnitude.  Thus the golf ball always rebounds to the height from 
which it started.  Thus, after five bounces, the bounce height will be       4.00 m. 

 
 
68. For the elastic collision of the two balls, we use momentum conservation: 
  m1v1 + m2v2 = m1v1′ + m2v2′; 
  mv1 + 0 = m(– v1/4) + m2v2′,  or  m2v2′ = 5mv1/4. 
 Because the collision is elastic, the relative speed does not change: 
  v1 – 0 = – (v1′ – v2′);   v1 = v2′ – (– v1/4),  or  v2′ = 3v1/4. 
 Combining these two equations, we get  
  m2 = 5m/3.   
 
 
69. On the horizontal surface, the normal force on a car is FN = mg.  We find the speed of a car immediately 

after the collision by using the work-energy principle for the succeeding sliding motion: 
  Wfr = ÆKE; 
  – µkmgd = 0 – !mv2. 
 We use this to find the speeds of the cars after the collision: 
  0.60(9.80 m/s2)(15 m) = !vA′2, which gives vA′ = 13.3 m/s; 
  0.60(9.80 m/s2)(30 m) = !vB′2, which gives vB′ = 18.8 m/s. 
 For the collision, we use momentum conservation: 
  mAvA + mBvB = mAvA′ + mBvB′ ; 
  (2000 kg)vA + 0 = (2000 kg)(13.3 m/s) + (1000 kg)(18.8 m/s), which gives vA = 22.7 m/s. 
 We find the speed of car A before the brakes were applied by using the work-energy principle for the 

preceding sliding motion: 
  Wfr = ÆKE; 
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  – µkmAgd = !mAvA
2 – !mAvA0

2; 
  – 0.60(9.80 m/s2)(15 m) = ![(22.7 m/s)2 – vA0

2],  which gives vA0 = 26.3 m/s = 94.7 km/h =       59 
mi/h. 
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70. We choose the origin of our coordinate system at the  

x

m2

L

mboat

m1

x

m2

L

mboat

m1

CM

CM
 

 initial position of the 75-kg person.  For the location of  
 the center of mass of the system we have  
  xCM  = (m1x1 + m2x2 + mboatxboat)/(m1 + m2 + mboat)  
    = [(75 kg)(0) + (60 kg)(2.0 m) + (80 kg)(1.0 m)]/ 
          (75 kg + 60 kg + 80 kg) = 0.93 

m. 
 Thus the CM will be 2.0 m – 0.93 m = 1.07 m from the 60-kg  
 person.  When the two people exchange seats, the CM will  
 not move.  The end where the 75-kg person started, which  
 was 0.93 m from the CM, is now 1.07 m from the CM, that is,  
 the boat must have moved 1.07 m – 0.93 m =         
  0.14 m toward the initial position of the 75-kg person. 
 
 
71. (a) We take the direction of the meteor for the positive direction. 
  For this perfectly inelastic collision, we use momentum conservation: 
   Mmeteorvmeteor + MEarthvEarth = (Mmeteor + MEarth)V; 
   (108 kg)(15 × 103 m/s) + 0 = (108 kg + 6.0 × 1024 kg)V, which gives       V= 2.5 × 10–13 m/s. 
 (b) The fraction transformed was  
   fraction  = ÆKEEarth/KEmeteor = !mEarthV 

2/!mmeteorvmeteor
2   

      = (6.0 × 1024 kg)(2.5 × 10–13 m/s)2 /(108 kg)(15 × 103 m/s)2 =        1.7 × 10–17. 
 (c) The change in the Earth’s kinetic energy was  
   ÆKEEarth  = !mEarthV 

2   
      = !(6.0 × 1024 kg)(2.5 × 10–13 m/s)2  =        0.19 J. 
 
 
72. Momentum conservation gives  
  0 = m1v1′ + m2v2′,  or  v2′/v1′ = – m1/m2 . 
 The ratio of kinetic energies is 
  KE2/KE1 = !m2v2′2 /!m1v1′2 = (m2/m1)(v2′/v1′)2 = 2. 
 When we use the result from momentum, we get 
  (m2/m1)(– m1/m2)2 = 2, which gives m1/m2 =         2. 
 
 
73. (b) The force would become zero at  

0

F (N)

t (ms)
3.0

580

40

 

   t = 580/(1.8 × 105) = 3.22 × 10–3 s. 
  At t = 3.0 × 10–3 s the force is  
   580 – (1.8 × 105)(3.0 × 10–3 s) = + 40 N. 
  The impulse is the area under the F vs. t curve,  
  and consists of a triangle and a rectangle: 
   Impulse = !(580 N – 40 N)(3.0 × 10–3 s) +  
       (40 N)(3.0 × 10–3 s) =        0.93 N · s. 
 (c) We find the mass of the bullet from 
   Impulse = Æp = m Æv; 
   0.93 N · s = m(220 m/s – 0), which gives m = 4.23 × 10–3 kg =        4.2 g. 
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74. We find the speed for falling or rising through a height h from energy conservation: 
  !mv2 = mgh,  or  v2 = 2gh.  

M

m
y

x

h
θ

 

 (a) The speed of the first block after sliding down the incline  
  and just before the collision is 
   v1 = [2(9.80 m/s2)(3.60 m)]1/2  = 8.40 m/s. 
  For the elastic collision of the two blocks, we use momentum  
  conservation: 
   mv1 + Mv2 = mv1′ + Mv2′; 
   (2.20 kg)(8.40 m/s) + (7.00 kg)(0) = (2.20 kg)v1′ + (7.00 kg)v2′. 
  Because the collision is elastic, the relative speed does not change: 
   v1 – v2 = – (v1′ – v2′),    or    8.40 m/s – 0 = v2′ – v1′. 
  Combining these two equations, we get  
   v1′ = – 4.38 m/s,  v2′ = 4.02 m/s. 
 (b) We find the height of the rebound from 
   v1′2 = 2gh′; 
   (– 4.38 m/s)2 = 2(9.80 m/s2)h′, which gives h′ = 0.979 m. 
  The distance along the incline is 
   d = h′/sin θ = (0.979 m)/sin 30° =       1.96 m. 
 
 
75. Because energy is conserved for the motion up and down the incline, mass m will return to the level with 

the speed – v1′.  For a second collision to occur, mass m must be moving faster than mass M:  – v1′ ³ v2′. 
 In the first collision, the relative speed does not change: 
  v1 – 0 = – (v1′ – v2′),    or    – v1′ = v1 – v2′,  
 so the condition becomes v1 – v2′ ³ v2′,  or v1  ³ 2v2′. 
 For the first collision, we use momentum conservation: 
  mv1 + 0 = mv1′ + Mv2′,  or  v1 – v1′ = (M/m)v2′. 
 When we use the two versions of the condition, we get v1 – v1′ ³ 3v2′, so we need 
  (M/m) ³ 3,  or        m ² M/3. 
 
 

 Page 7 – 25 



Solutions to Physics: Principles with Applications, 5/E, Giancoli  Chapter 7 

76. (a) If the skeet were not hit by the pellet, the horizontal  

v1

h
θ

v2

v0

h′
x

y

xtotal
²  x

 

  distance it would travel can be found from the range  
  expression for projectile motion: 
   R  = (v0

2/g) sin 2θ  
    = [(30 m/s)2/(9.80 m/s2)] sin 2(30°) = 79.5 m. 
  At the collision the skeet will have the x-component  
  of the initial velocity: 
   v1 = v0 cos θ = (30 m/s) cos 30° = 26.0 m/s. 
  We use energy conservation to find the height  
  attained by the skeet when the collision occurs: 
   !Mv0

2 = !Mv1
2 + Mgh; 

   !(30 m/s)2 = !(26.0 m/s)2 + (9.80 m/s2)h, which gives h = 11.5 m. 
  Using the coordinate system shown, for momentum conservation of the collision we have 
   x: Mv1 + 0 = (M + m)Vx ;  
    (250 g)(26.0 m/s) = (250 g + 15 g)Vx , which gives Vx = 24.5 m/s; 
   y: 0 + mv2 = (M + m)Vy ;  
    (15 g)(200 m/s) = (250 g + 15 g)Vy , which gives Vy = 11.3 m/s. 
  We use energy conservation to find the additional height attained by the skeet after the collision: 
   !(M + m)(Vx

2 + Vy
2)= !(M + m)Vx

2 + (M + m)gh′; 
   ![(24.5 m/s)2 + (11.3 m/s)2]= !(24.5 m/s)2 + (9.80 m/s2)h′, which gives       h′ = 6.54 m. 
 (b) We find the time for the skeet to reach the ground from the vertical motion: 
   y = y0 + Vy t + !(– g)t2; 
   – 11.5 m = 0 + (11.3 m/s)t – !(9.80 m/s2)t2. 
  The positive solution to this quadratic equation is t = 3.07 s. 
  The horizontal distance from the collision is 
   x = Vx t = (24.5 m/s)(3.07 s) = 75 m. 
  The total horizontal distance covered is 
   xtotal  = !R + x = !(79.5 m) + 75 m = 115 m. 
  Because of the collision, the skeet will have traveled an additional distance of 
   Æx = xtotal – R = 115 m – 79.5 m =       35 m. 
 
 
77. Obviously the spacecraft will have negligible effect on the motion of Saturn.  In the reference frame of 

Saturn, we can treat this as the equivalent of a small mass “bouncing off” a massive object.  The relative 
velocity of the spacecraft in this reference frame will be reversed. 

 The initial relative velocity of the spacecraft is 
  vSpS = vSp – vS = 10.4 km/s – (– 9.6 km/s) = 20.0 km/s. 
 so the final relative velocity is vSpS′ = – 20.0 km/s.  Therefore, we find the final velocity of the spacecraft 

from 
  vSpS′ = vSp′ – vS ; 
  – 20.0 km/s = vSp′ – (– 9.6 km/s), which gives vSp′ =  – 29.6 km/s, 
 so the final speed of the spacecraft is       29.6 km/s. 
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