
Solutions to Physics: Principles with Applications, 5/E, Giancoli  Chapter 6 

CHAPTER 6 
 
1. Because there is no acceleration, the contact force must have the same magnitude as the weight.  The 

displacement in the direction of this force is the vertical displacement.  Thus,  
  W = F Æy = (mg) Æy = (75.0 kg)(9.80 m/s2)(10.0 m) =      7.35 × 103 J. 
 
 
2. (a) Because there is no acceleration, the horizontal applied force must have the same magnitude as  
  the friction force.  Thus,  
   W = F Æx = (180 N)(6.0 m) =      1.1 × 103 J. 
 (b) Because there is no acceleration, the vertical applied force must have the same magnitude as  
  the weight.  Thus,  
   W = F ∆y = mg ∆y = (900 N)(6.0 m) =       5.4 × 103 J. 
 
 
3. Because there is no acceleration, from the force diagram we see that 
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  FN = mg,   and   F = Ffr = µkmg.  
 Thus,  
  W  = F x cos 0° = µkmg x cos 0°  
   = (0.70)(150 kg)(9.80 m/s2)(12.3 m)(1) =      1.3 × 104 J. 
 
 
 
 
4. Because there is no acceleration, the net work is zero, that is,  
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 the (positive) work of the car and the (negative) work done  
 by the average retarding force must add to zero.  Thus,  
  Wnet = Wcar + Ffr Æx cos 180° = 0,   or    
  Ffr = – Wcar/Æx cos 180° = – (7.0 × 104 J)/(2.8 × 103 m)(–1) =      25 N. 
 
 
 
 
 
5. Because the speed is zero before the throw and when the rock reaches the highest point, the positive 

work of the throw and the (negative) work done by the (downward) weight must add to zero.  Thus,  
  Wnet = Wthrow + mgh cos 180° = 0,   or    
  h = – Wthrow/mg cos 180° = – (115 J)/(0.325 kg)(9.80 m/s2)(–1) =      36.1 m. 
 
 
 
6. The maximum amount of work that the hammer can do is the work that was done by the weight as the 

hammer fell: 
  Wmax = mgh cos 0° = (2.0 kg)(9.80 m/s2)(0.40 m)(1) =      7.8 J. 
 People add their own force to the hammer as it falls in order that additional work is done before the 

hammer hits the nail, and thus more work can be done on the nail. 
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7. The minimum work is needed when there is no acceleration.   
 (a) From the force diagram, we write ΣF = ma:  
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   y-component: FN – mg cos θ = 0; 
   x-component: Fmin – mg sin θ = 0. 
  For a distance d along the incline, we have 
   Wmin = Fmind cos 0° = mgd sin θ (1)  
     = (1000 kg)(9.80 m/s2)(300 m) sin 17.5°  
     =       8.8 × 105 J. 
 (b) When there is friction, we have 
   x-component: Fmin – mg sin θ – µkFN = 0,  or 
   Fmin = mg sin θ + µkmg cos θ = 0,   
  For a distance d along the incline, we have 
      Wmin = Fmind cos 0° = mgd (sin θ + µk cos θ)(1)  
     = (1000 kg)(9.80 m/s2)(300 m)(sin 17.5° + 0.25 cos 17.5°) =      1.6 × 106 J. 
 
 
8. Because the motion is in the x-direction, we see that the  
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 weight and normal forces do no work:  
  WFN = Wmg = 0. 
 From the force diagram, we write ΣF = ma: 
  x-component: F cos θ – Ffr = 0,  or  Ffr = F cos θ. 
 For the work by these two forces, we have  
  WF = F Æx  cos θ = (12 N)(15 m) cos 20° = 1.7 × 102 J. 
  Wfr = F cos θ  Æx  cos 180°= (12 N) cos 20° (15 m)(– 1) = – 1.7 × 102 J. 
 As expected, the total work is zero:        WF = – Wfr = 1.7 × 102 J. 
 
 
9. Because the net work must be zero, the work to stack the books will have the same magnitude as the 

work done by gravity.  For each book the work is mg times the distance the center is raised (zero for the 
first book, one book-height for the second book, etc.). 

  W1 = 0, W2 = mgh, W3 = mg2h; … . 
 Thus for eight books, we have 
  W = W1 + W2 + W3 + … + W8 = mgh(0 + 1 + 2 + … + 7) = (1.8 kg)(9.80 m/s2)(0.046 m)(28) =      23 J. 
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10. (a) From the force diagram, we write ΣF = ma: 
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   y-component: FN – mg cos θ = 0; 
   x-component: – F – µkFN + mg sin θ = 0.  
  Thus we have 
   F = – µkFN + mg sin θ = – µkmg cos θ + mg sin θ  
    = mg (sin θ – µk cos θ)  
    = (280 kg)(9.80 m/s2)(sin 30° – 0.40 cos 30°) =       4.2 × 102 N. 
 (b) Because the piano is sliding down the incline, we have 
   WF = F d cos 180° = (4.2 × 102 J)(4.3 m)(– 1) =       – 1.8 × 103 J. 
 (c) For the friction force, we have 
   Wfr = µkmg cos θ d cos 180°  
    = (0.40)(280 kg)(9.80 m/s2)(cos 30°)(4.3 m)(– 1) =       – 4.1 × 103 J. 
 (d) For the force of gravity, we have 
   Wgrav = mg d cos 60°  
     = (280 kg)(9.80 m/s2)(4.3 m)(cos 60°) =       5.9 × 103 J. 
 (e) Because the normal force does no work, we have  
   Wnet = Wgrav + WF + Wfr + WN  
     = 5.9 × 103 J – 1.8 × 103 J – 4.1 × 103 J + 0 =        0. 
 
 
11. (a) To find the required force, we use the force diagram  
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  to write ΣFy = may:  
   F – Mg = Ma, so we have 
   F = M(a + g) = M(0.10g + g) =      1.10Mg. 
 (b) For the work, we have 
   WF = Fh cos 0° =          1.10Mgh. 
 
 
 
 
12. From the graph we obtain the forces at the two ends: 
  at dA = 10.0 m, (F cos θ)A = 150 N;     at dB = 35.0 m, (F cos θ)B = 250 N. 
 The work done in moving the object is the area under the F cos θ vs. x graph.  If we assume the graph is a 

straight line, we have 
  W ≈ ![(F cos θ)A + (F cos θ)B](dB – dA) = !(150 N + 250 N)(35.0 m – 10.0 m) =        5.0 × 103 J. 
 
 
13. The work done in moving the object is the area  
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 under the F cos θ vs. x graph.   
 (a) For the motion from 0.0 m to 10.0 m, we find  
  the area of two triangles and one rectangle: 
   W  = !(400 N)(3.0 m – 0.0 m) +  
     (400 N)(7.0 m – 3.0 m) +  
      !(400 N)(10.0 m – 7.0 m)  
    =        2.8 × 103 J. 
 (b) For the motion from 0.0 m to 15.0 m, we add  
  the negative area of two triangles and one  
  rectangle: 
   W = 2.8 × 103 J – !(200 N)12.0 m – 10.0 m) – (200 N)(13.5 m – 12.0 m) –  
       !(200 N)(15.0 m – 13.5 m) =        2.1 × 103 J.  
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14. We obtain the forces at the beginning and end of the motion: F(x)

x
0 x1 x2  

  at x1 = 0.038 m, F1 = kx1 = (88 N/m)(0.038 m) = 3.34 N;  
  at x2 = 0.058 m, F2 = kx2 = (88 N/m)(0.058 m) = 5.10 N. 
 From the graph the work done in stretching the object is the  
 area under the F vs. x graph:   
  W  = ![F1 + F2](x2 – x1)  
   = !(3.34 N + 5.10 N)(0.058 m – 0.038 m) =        0.084 J. 
 
 
 
 
15. The work done in moving the object is the area  Fx(N )

0
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 under the Fx vs. x graph.  For the motion from 0.0 m  
 to 11.0 m, we find the area of two triangles and one 

rectangle: 
  W  = !(24.0 N)(3.0 m – 0.0 m) +  
    (24.0 N)(8.0 m – 3.0 m) +  
     !(24.0 N)(11.0 m – 8.0 m)  
   =        1.9 × 102 J. 
 
 
16. We obtain the forces at the beginning and end of the motion: F(r)

0
r

rE rE + h  

  at rE + h = 6.38 × 106 m + 2.5 × 106 m = 8.88 × 106 m,  
   F2  = GMEm/r2  
    = (6.67 × 10–11 N · m2/kg2)(5.98 × 1024 kg)(1300 kg)/ 
        [(8.88 × 106 m)]2 = 6.58 × 103 N. 
  at rE = 6.38 × 106 m,  
   F1  = GMEm/rE

2  
    = (6.67 × 10–11 N · m2/kg2)(5.98 × 1024 kg)(1300 kg)/ 
        [(6.38 × 106 m)]2 = 1.27 × 104 N. 
 From the graph the work done in stretching the object is the  
 area under the F vs. r graph, which we approximate as a straight line:   
  W  = ![F1 + F2]h  
   = !(6.58 × 103 N + 1.27 × 104 N)(2.5 × 106 m) =        2.4 × 1010 J. 
 This will be a slight overestimate. 
 
 
17. We find the speed from  
  KE = !mv2; 
  6.21 × 10–21 J = !(5.31 × 10–26 kg)v2, which gives v =       484 m/s. 
 
 
18. (a) KE2  = !mv2

2 = 2 KE 1 = 2(!mv1
2), which gives v2 = v1Ã2, so the speed increases by a factor of       Ã2. 

 (b) KE2  = !mv2
2 = !m(2v1)2 = 4(!mv1

2) = 4 KE 1 , so the kinetic energy increases by a factor of       4. 
 
 
19. The work done on the electron decreases its kinetic energy: 
  W = ÆKE = !mv2 – !mv0

2 = 0 – !(9.11 × 10–31 kg)(1.90 × 106 m/s)2 =       – 1.64 × 10–18 J. 
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20. The work done on the car decreases its kinetic energy: 
  W = ÆKE = !mv2 – !mv0

2 = 0 – !(1000 kg)[(110 km/h)/(3.6 ks/h)]2 =       – 4.67 × 105 J. 
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21. The percent increase in the kinetic energy is 
  % increase = [(!mv2

2 – !mv1
2)/!mv1

2](100%) = (v2
2 – v1

2)(100%)/v1
2  

     = [(100 km/h)2 – (90 km/h)2](100%)/(90 km/h)2 =       23%. 
 
 
22. The work done on the arrow increases its kinetic energy: 
  W = Fd = ÆKE = !mv2 – !mv0

2; 
  (95 N)(0.80 m) = !(0.080 kg)v2 –  0, which gives v =       44 m/s. 
 
 
23. The work done by the force of the glove decreases the kinetic energy of the ball: 
  W = Fd = ÆKE = !mv2 – !mv0

2; 
  F(0.25 m) = 0 – !(0.140 kg)(35 m/s)2 , which gives F = – 3.4 × 102 N. 
 The force by the ball on the glove is the reaction to this force: 
  3.4 × 102 N in the direction of the motion of the ball. 
 
 
24. The work done by the braking force decreases the kinetic energy of the car: 
  W = ÆKE; 
  – Fd = !mv2 – !mv0

2 = 0 – !mv0
2. 

 Assuming the same braking force, we form the ratio: 
  d2/d1 = (v02/v01)2 = (1.5)2 =        2.25. 
 
 
25. On a level road, the normal force is mg, so the kinetic friction force is µkmg .  Because it is the (negative) 

work of the friction force that stops the car, we have 
  W = ÆKE; 
  – µkmg d = !mv2 – !mv0

2; 
  – (0.42)m(9.80 m/s2)(88 m) = – !mv0

2, which gives v0 =        27 m/s (97 km/h or 60 mi/h). 
 Because every term contains the mass,      it cancels. 
 
 
26. The work done by the air resistance decreases the kinetic energy of the ball: 
  W = Faird = ÆKE = !mv2 – !mv0

2 = !m(0.90v0)2 – !mv0
2 = !mv0

2[(0.90)2 – 1]; 
  Fair(15 m) = !(0.25 kg)[(95 km/h)/(3.6 ks/h)]2[(0.90)2 – 1], which gives Fair =       – 1.1 N. 
 
 
27. With m1 = 2m2 , for the initial condition we have 
  KE1 = !KE2 ; 
  !m1v1

2 = !(!m2v2
2),  or  2m2 v1

2 = !m2v2
2, which gives  v1 = !v2. 

 After a speed increase of Æv, we have  
  KE1′ = KE2 ′; 
  !m1(v1 + Æv)2 = !m2(v2 + Æv)2; 
  2m2(!v2 + 5.0 m/s)2 = m2(v2 + 5.0 m/s)2. 
 When we take the square root of both sides, we get 
  Ã2(!v2 + 5.0 m/s) = ± (v2 + 5.0 m/s), which gives a positive result of v2 =        7.1 m/s. 
 For the other speed we have  v1 = !v2 =       3.5 m/s. 
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28. (a) From the force diagram we write ΣFy = may: 
   FT – mg = ma; 

mg

a
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+y

 

   FT – (220 kg)(9.80 m/s2) = (220 kg)(0.150)(9.80 m/s2), 
  which gives FT =        2.48 × 103 N. 
 (b) The net work is done by the net force: 
   Wnet  = Fneth = (FT – mg)h  
     = [2.48 × 103 N – (220 kg)(9.80 m/s2)](21.0 m) =        6.79 × 103 J. 
 (c) The work is done by the cable is 
   Wcable = FTh  
     = (2.48 × 103 N)(21.0 m) =        5.21 × 104 J. 
 (d) The work is done by gravity is 
   Wgrav = – mgh  
     = – (220 kg)(9.80 m/s2)(21.0 m) =        – 4.53 × 104 J. 
  Note that Wnet = Wcable + Wgrav. 
 (e) The net work done on the load increases its kinetic energy: 
   Wnet = ÆKE = !mv2 – !mv0

2 ; 
   6.79 × 103 J = !(220 kg)v2 –  0, which gives v =       7.86 m/s. 
 
 
29. The potential energy of the spring is zero when the spring is not stretched (x = 0).  For the stored potential 

energy, we have 
  PE = !kxf

2
 – 0; 

  25 J = !(440 N/m)xf
2 – 0, which gives xf  =        0.34 m. 

 
 
30. For the potential energy change we have 
  ÆPE = mg Æy = (6.0 kg)(9.80 m/s2)(1.2 m) =        71 J. 
 
 
31. For the potential energy change we have 
  ÆPE = mg Æy = (64 kg)(9.80 m/s2)(4.0 m) =        2.5 × 103 J. 
 
 
32. (a) With the reference level at the ground, for the potential energy we have 
   PEa = mgya = (2.10 kg)(9.80 m/s2)(2.20 m) =        45.3 J. 
 (b) With the reference level at the top of the head, for the potential energy we have 
   PEb = mg(yb – h)= (2.10 kg)(9.80 m/s2)(2.20 m – 1.60 m) =        12.3 J. 
 (c) Because the person lifted the book from the reference level in part (a), the potential energy is equal  
  to the work done:      45.3 J.       In part (b) the initial potential energy was negative, so the final  
  potential energy is not the work done. 
 
 
33. (a) With the reference level at the ground, for the potential energy change we have 
   ÆPE = mg Æy = (55 kg)(9.80 m/s2)(3100 m – 1600 m) =        8.1 × 105 J. 
 (b) The minimum work would be equal to the change in potential energy: 
   Wmin = ÆPE =         8.1 × 105 J. 
 (c)        Yes,      the actual work will be more than this.  There will be additional work required for any  
  kinetic energy change, and to overcome retarding forces, such as air resistance and ground  
  deformation. 
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34. The potential energy of the spring is zero when the spring is not stretched or compressed (x= 0).   
 (a) For the change in potential energy, we have 
   ÆPE = !kx2

 – !kx0
2 =        !k(x2

 – x0
2). 

 (b) If we call compressing positive, we have 
   ÆPEcompression = !k(+ x0)2

 – 0 = !kx0
2; 

   ÆPEstretching = !k(– x0)2
 – 0 =        !kx0

2. 
  The change in potential energy is the        same. 
 
 
35. We choose the potential energy to be zero at the ground (y = 0).   

θ
L

v0

h
y = 0

 

 Because the tension in the vine does no work, energy is conserved,  
 so we have 
  E = KEi + PEi  = KEf + PEf ;      
  !mvi

2 + mgyi = !mvf
2 + mgyf ; 

  !m(5.6 m/s)2 + m(9.80 m/s2)(0) = !m(0)2 + m(9.80 m/s2)h,  
 which gives       h = 1.6 m. 
 No,        the length of the vine does not affect the height; it affects the angle. 
 
 
 
 
36. We choose the potential energy to be zero at the bottom (y = 0).  Because there is no friction and the normal 

force does no work, energy is conserved, so we have 
  E = KEi + PEi  = KEf + PEf ;      
  !mvi

2 + mgyi = !mvf
2 + mgyf ; 

  !m(0)2 + m(9.80 m/s2)(125 m) = !mvf
2 + m(9.80 m/s2)(0), which gives vf =        49.5 m/s. 

 This is 180 km/h!  It is a good thing there is friction on the ski slopes. 
 
 
37. We choose the potential energy to be zero at the bottom (y = 0).  Because there is no friction and the normal 

force does no work, energy is conserved, so we have 
  E = KEi + PEi  = KEf + PEf ;      
  !mvi

2 + mgyi = !mvf
2 + mgyf ; 

  !mvi
2 + m(9.80 m/s2)(0) = !m(0)2 + m(9.80 m/s2)(1.35 m), which gives vi =        5.14 m/s. 

 
 
38. We choose the potential energy to be zero at the ground (y = 0).  We find the minimum speed by ignoring 

any frictional forces.  Energy is conserved, so we have 
  E = KEi + PEi  = KEf + PEf ;      
  !mvi

2 + mgyi = !mvf
2 + mgyf ; 

  !mvi
2 + m(9.80 m/s2)(0) = !m(0.70 m/s)2 + m(9.80 m/s2)(2.10 m), which gives vi =        6.5 m/s. 

 Note that the initial velocity will not be horizontal, but will have a horizontal component of 0.70 m/s. 
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39. We choose y = 0 at the level of the trampoline. 
 (a) We apply conservation of energy for the jump from the top of  

H

v1

+y

y = 0

v0

 

  the platform to the trampoline:  
   E = KEi + PEi  = KEf + PEf ;      
   !mv0

2 + mgH = !mv1
2 + 0; 

   !m(5.0 m/s)2 + m(9.80 m/s2)(3.0 m) = !mv1
2,  

  which gives v1 =        9.2 m/s. 
 (b) We apply conservation of energy from the landing on the trampoline  
  to the maximum depression of the trampoline.  If we ignore the small  
  change in gravitational potential energy, we have  
   E = KEi + PEi  = KEf + PEf ;      
   !mv1

2 + 0 = 0 + !kx2; 
   !(75 kg)(9.2 m/s)2 = !(5.2 × 104 N/m)x2,  
  which gives x =        0.35 m. 
  This will increase slightly if the gravitational potential energy is taken into account. 
 
 
40. We choose y = 0 at point B.  With no friction, energy is conserved. A

hA

C

hC

hD
B

D

 

 The initial (and constant) energy is  
  E  = E A = mgyA + !mvA

2  
   = m(9.8 m/s2)(30 m) + 0 = (294 J/kg)m . 
 At point B we have 
  E = mgyB + !mvB

2; 
  (294 J/kg)m = m(9.8 m/s2)(0) + !mvB

2,  
 which gives       vB = 24 m/s. 
 At point C we have 
  E = mgyC + !mvC

2; 
  (294 J/kg)m = m(9.8 m/s2)(25 m) + !mvC

2,  
 which gives       vC = 9.9 m/s. 
 At point D we have 
  E = mgyD + !mvD

2; 
  (294 J/kg)m = m(9.8 m/s2)(12 m) + !mvD

2,  
 which gives       vD = 19 m/s. 
 
 
41. We choose the potential energy to be zero at the ground (y = 0).  Energy is conserved, so we have 
  E = KEi + PEi  = KEf + PEf ;      
  !mvi

2 + mgyi = !mvf
2 + mgyf ; 

  !m(185 m/s)2 + m(9.80 m/s2)(265 m) = !mvf
2 + m(9.80 m/s2)(0), which gives vf =        199 m/s. 

 Note that we have not found the direction of the velocity. 
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42. (a) For the motion from the bridge to the lowest point, we use 
  energy conservation:  
   KEi + PEgravi  + PEcordi  = KEf + PEgravf + PEcordf  ; 
   0 + 0 + 0 = 0 + mg(– h) + !k(h – L0)2 ; 
   0 = – (60 kg)(9.80 m/s2)(31 m) + !k(31 m – 12 m)2, 
  which gives k =       1.0 × 102 N/m. 
 (b) The maximum acceleration will occur at the lowest point,  
  where the upward restoring force in the  cord is maximum: 
   kxmax – mg = mamax ; 
   (1.0 × 102 N/m)(31 m – 12 m) – (60 kg)(9.80 m/s2)   
           = (60 kg)amax , 
  which gives amax =       22 m/s2. 
 
 
 
43. We choose the potential energy to be zero at the compressed  
 position (y = 0).   
 (a) For the motion from the release point to where the  
  ball leaves the spring, we use energy conservation:  
   KEi + PEgravi  + PEspringi  = KEf + PEgravf + PEspringf  ; 
   0 + 0 + !kx2 = !mv2 + mgx + 0; 
   !(900 N/m)(0.150 m)2 =  
    !(0.300 kg)v2 + (0.300 kg)(9.80 m/s2)(0.150 m),  
  which gives v =       8.03 m/s. 
 (b) For the motion from the release point to the highest  
  point, we use energy conservation:  
   KEi + PEgravi  + PEspringi  = KEf + PEgravf + PEspringf  ; 
   0 + 0 + !kx2 = 0 + mgh + 0; 
   0 + 0 + !(900 N/m)(0.150 m)2 = (0.300 kg)(9.80 m/s2)h,  
  which gives h =       3.44 m. 
 
 
44. With y = 0 at the bottom of the circle, we call the start  
 point A, the bottom of the circle B, and the top of the circle C. 
 At the top of the circle we have the forces mg and FN , both  
 downward, that provide the centripetal acceleration: 
  mg + FN = mvC

2/r. 
 The minimum value of FN is zero, so the minimum speed at C   
 is found from  
  vCmin

2 = gr. 
 From energy conservation for the motion from A to C we have  
  KEA + PEA = KEC + PEC ;  
  0 + mgh = !mvC

2 + mg(2r),  
 thus the minimum height is found from 
  gh = !vCmin

2 + 2gr = !gr + 2gr, which gives        h = 2.5r. 
 
 
45. The potential energy is zero at x = 0.  For the motion from the release point, we use energy conservation:  
  E = KEi + PEi  = KEf + PEf  ; 
  E = 0 + !kx0

2 = !mv2 +!kx2, which gives       E = !kx0
2 = !mv2 + !kx2 
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46. The maximum acceleration will occur at the lowest point,  
 where the upward restoring force in the spring is maximum:  
  kxmax – Mg = Mamax = M(5.0g), which gives xmax = 6.0Mg/k. 
 With y = 0 at the initial position of the top of the spring, for  
 the motion from the break point to the maximum compression  
 of the spring, we use energy conservation:  
  KEi + PEgravi  + PEspringi  = KEf + PEgravf + PEspringf  ; 
  0 + Mgh + 0 = 0 + Mg(– xmax) + !kxmax

2. 
 When we use the previous result, we get 
  Mgh = – [6.0(Mg)2/k] + !k(6.0Mg/k)2 , which gives       k = 12Mg/h. 
 
 
 
 
 
 
 
 
 
47. The maximum acceleration will occur at the maximum compression of the spring: 
  kxmax = Mamax = M(5.0g), which gives xmax = 5.0Mg/k. 
 For the motion from reaching the spring to the maximum compression of the spring,  
 we use energy conservation:  
  KEi + PEspringi  = KEf + PEspringf  ; 
  !Mv2 + 0 = 0 + !kxmax

2. 
 When we use the previous result, we get 
  !Mv2 = !k(5.0Mg/k)2, which gives        
  k = 25Mg2/v2 = 25(1200 kg)(9.80 m/s2)2/[(100 km/h)/(3.6 ks/h)]2 =        3.7 × 103 N/m. 
 
 
48. (a) The work done against gravity is the increase in the potential energy: 
   W = mgh = (75.0 kg)(9.80 m/s2)(120 m) =        8.82 × 104 J. 
 (b) If this work is done by the force on the pedals, we need to find the distance that the force acts  
  over one revolution of the pedals and the number of revolutions to climb the hill.  We find the  
  number of revolutions from the distance along the incline: 
   N  = (h/ sin θ)/(5.10 m/revolution)  
    = [(120 m)/ sin 7.50°]/(5.10 m/revolution) = 180 revolutions. 
  Because the force is always tangent to the circular path, in each revolution the force acts over a  
  distance equal to the circumference of the path: ¹D.  Thus we have 
   W = NF¹D; 
   8.82 × 104 J = (180 revolutions)F¹(0.360 m), which gives F =       433 N. 
 
 
49. The thermal energy is equal to the loss in kinetic energy: 
  Ethermal = – ÆKE = !mvi

2 – !mvf
2 = !(2)(6500 kg)[(95 km/h)/(3.6 ks/h)]2 – 0 =       4.5 × 106 J. 

 
 
50. We choose the bottom of the slide for the gravitational potential energy reference level.  The thermal 

energy is the negative of the change in kinetic and potential energy: 
  Ethermal  = – (ÆKE + ÆPE) = !mvi

2 – !mvf
2 + mg(hi – hf)  

    = 0 – !(17 kg)(2.5 m/s)2 + (17 kg)(9.80 m/s2)(3.5 m – 0) =       5.3 × 102 J. 
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51. (a) We find the normal force from the force diagram for the ski: 
   y-component: FN1 = mg cos θ; 
  which gives the friction force: Ffr1 = µkmg cos θ. 
  For the work-energy principle, we have 
   WNC = ÆKE + ÆPE = (!mvf

2 – !mvi
2) + mg(hf – hi); 

   –  µkmg cos θ L = (!mvf
2 – 0) + mg(0 – L sin θ); 

    – (0.090)(9.80 m/s2) cos 20° (100 m) =  
      !vf

2 – (9.80 m/s2)(100 m) sin 20°,  
  which gives vf =         22 m/s. 
 (b) On the level the normal force is FN2 = mg, so the 
  friction force is Ffr2 = µkmg. 
  For the work-energy principle, we have 
   WNC = ÆKE + ÆPE = (!mvf

2 – !mvi
2) + mg(hf – hi); 

   –  µkmg D = (0 – !mvi
2) + mg(0 – 0); 

    – (0.090)(9.80 m/s2)D = – !(22 m/s)2 ,  
  which gives D =         2.9 × 102 m. 
 
 
52. On the level the normal force is FN = mg, so the friction force is Ffr = µkmg. 
 For the work-energy principle, we have 
  WNC = ÆKE + ÆPE = (!mvf

2 – !mvi
2) + mg(hf – hi); 

  F(L1 + L2) –  µkmg L2 = (!mvf
2 – 0) + mg(0 – 0); 

  (350 N)(15 m + 15 m) – (0.30)(90 kg)(9.80 m/s2)(15 m) = !(90 kg)vf
2, 

 which gives vf =         12 m/s. 
 
 
53. We choose y = 0 at point B.  For the work-energy principle applied 
 to the motion from A to B, we have 
   WNC = ÆKE + ÆPE = (!mvB

2 – !mvA
2) + mg(hB – hA);  

   – 0.2mgL = (!mvB
2 – !mv2) + mg(0 – hA); 

    – 0.2(9.80 m/s2)(45.0 m) = !vB
2 ! – (1.70 m/s)2– (9.80 

m/s2)(30 m),  
  which gives vB =         20 m/s. 
 
 
 
 
54. We find the normal force from the force diagram for the skier: 
  y-component: FN = mg cos θ; 
 which gives the friction force: Ffr = µkmg cos θ.  
 For the work-energy principle for the motion up the incline,  
 we have 
  WNC = ÆKE + ÆPE = (!mvf

2 – !mvi
2) + mg(hf – hi); 

  –  µkmg cos θ L = (0 – !mvi
2) + mg(L sin θ – 0); 

   – µk(9.80 m/s2) cos 18° (12.2 m) =  
     – !(12.0 m/s)2 + (9.80 m/s2)(12.2 m) sin 18°, 
 which gives µk =         0.31. 
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55. On the level the normal force is FN = mg, so the friction force is Ffr = µkmg.   
 The block is at rest at the release point and where it momentarily stops before turning back.   
 For the work-energy principle, we have 
  WNC = ÆKE + ÆPE = (!mvf

2 – !mvi
2) + (!kxf

2 – !kxi
2); 

  –  µkmg L = (0 – 0) + !k(xf
2 – xi

2 ); 
   – µk(0.520 kg)(9.80 m/s2)(0.050 m + 0.023 m) = !(180 N/m)[(0.023 m)2 – (– 0.050 m)2], 
 which gives µk =         0.48. 
 
 
56. We find the spring constant from the force required to compress the spring: 
  k = F/xi = ( – 20 N)/(– 0.18 m) = 111 N/m. 
 On the level the normal force is FN = mg, so the friction force is Ffr = µkmg.   
 The block is at rest at the release point and where it momentarily stops before turning back.   
 For the work-energy principle, we have 
  WNC = ÆKE + ÆPE = (!mvf

2 – !mvi
2) + (!kxf

2 – !kxi
2); 

  –  µkmg L = (0 – 0) + !k(xf
2 – xi

2); 
   – (0.30)(0.180 kg)(9.80 m/s2)(0.18 m + xf) = !(111 N/m)[xf

2 – (– 0.18 m)2]. 
 This reduces to the quadratic equation 
  55.5xf

2 + 0.529xf – 1.70 = 0, which has the solutions xf = 0.17 m, – 0.18 m. 
 The negative solution corresponds to no motion, so the physical result is xf =        0.17 m. 
 
 
57. We choose the potential energy to be zero at the ground (y = 0).   
 We convert the speeds: (500 km/h)/(3.6 ks/h) = 139 m/s;  (200 km/h)/(3.6 ks/h) = 55.6 m/s. 
 (a) If there were no air resistance, energy would be conserved: 
   0 = ÆKE + ÆPE = (!mvf

2 – !mvi
2) + mg(hf – hi); 

   0 = !(1000 kg)[(vf
2 – (139 m/s)2] + (1000 kg)(9.80 m/s2)(0 – 3500 m), 

  which gives vf = 297 m/s =      1.07 × 103 km/h. 
 (b) With air resistance we have 
   WNC = ÆKE + ÆPE = (!mvf

2 – !mvi
2) + mg(hf – hi); 

   – F(hi / sin θ) = !m(vf
2 – vi

2) + mg(0 – hi); 
   – F(3500 m)/sin 10° = !(1000 kg)[(55.6 m/s)2 – (139 m/s)2] + (1000 kg)(9.80 m/s2)(– 3500 m) 
  which gives F =         2.1 × 103 N. 
 
 
58. The amount of work required is the increase in potential energy: W = mg ∆y. 
 We find the time from 
  P = W/t = mg ∆y/t; 
  1750 W = (285 kg)(9.80 m/s2)(16.0 m)/t, which gives t =        25.5 s. 
 
 
59. We find the equivalent force exerted by the engine from 
  P = Fv; 
  (18 hp)(746 W/hp) = F(90 km/h)/(3.6 ks/h), which gives F = 5.4 × 102 N. 
 At constant speed, this force is balanced by the average retarding force, which must be       5.4 × 102 N. 
 
 
60. (a) 1 hp = (550 ft·lb/s)(4.45 N/lb)/(3.281 ft/m) = 746 W. 
 (b) P = (100 W)/(746 W/hp) =        0.134 hp. 
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61. (a) 1 kWh = (1000 Wh)(3600 s/h) = 3.6 × 106 J. 
 (b) W = Pt = (500 W)(1 kW/1000W)(1 mo)(30 day/mo)(24 h/day) =        360 kWh. 
 (c) W = (360 kWh)(3.6 × 106 J/kWh) =        1.3 × 109 J. 
 (d) Cost = W × rate = (360 kWh)($0.12/kWh) =        $43.20. 
  The charge is for the amount of energy used, and thus is        independent of rate. 
 
 
62. We find the average resistance force from the acceleration: 
  R = ma = m Æv/Æt = (1000 kg)(70 km/h – 90 km/h)/(3.6 ks/h)(6.0 s) = – 933 N. 
 If we assume that this is the resistance force at 80 km/h, the engine must provide an equal and opposite 

force to maintain a constant speed.  We find the power required from 
  P = Fv = (933 N)(80 km/h)/(3.6 ks/h) =        2.1 × 104 W        = (2.1 × 104 W)/(746 W/hp) =       28 hp. 
 
 
63. We find the work from 
  W = Pt = (3.0 hp)(746 W/hp)(1 h)(3600 s/h) =        8.1 × 106 J. 
 
 
64. The work done by the shot-putter increases the kinetic energy of the shot.  We find the power from 
  P  = W/t = ÆKE/t = (!mvf

2 – !mvi
2)/t  

   = !(7.3 kg)[(14 m/s)2 – 0]/(2.0 s) =        3.6 × 102 W        (about 0.5 hp). 
 
 
65. The work done by the pump increases the potential energy of the water.  We find the power from 
  P  = W/t = ÆPE/t = mg(hf – hi)/t = (m/t)g(hf – hi) 
   = [(8.00 kg/min)/(60 s/min)](9.80 m/s2)(3.50 m – 0) =        4.57 W. 
 
 
66. The work done increases the potential energy of the player.  We find the power from 
  P  = W/t = ÆPE/t = mg(hf – hi)/t  
   = (105 kg)(9.80 m/s2)[(140 m) sin 30° – 0]/(61 s) =        1.2 × 103 W        (about 1.6 hp). 
 
 
67. The work done increases the potential energy of the player.  We find the speed from 
  P = W/t = ÆPE/t = mg(hf – hi)/t = mg(L sin θ – 0)/t = mgv sin θ  
  (0.25 hp)(746 W/hp) = (70 kg)(9.80 m/s2)v sin 6.0°, which gives v =        2.6 m/s. 
 
 
68. From the force diagram for the car, we have: 

mg

x

y

F

ffr

FN

dθ

 

  x-component: F – Ffr = mg sin θ. 
 Because the power output is P = Fv, we have  
  (P/v) – Ffr = mg sin θ. 
 The maximum power determines the maximum angle: 
  (Pmax/v) – Ffr = mg sin θmax ; 
  (120 hp)(746 W/hp)/[(70 km/h)/(3/6 ks/h)] – 600 N =  
      (1000 kg)(9.80 m/s2) sin θmax ,  
 which gives sin θmax = 0.409,  or        θmax = 24°. 
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69. The work done by the lifts increases the potential energy of the people.  We assume an average mass of  
 70 kg and find the power from 
  P  = W/t = ÆPE/t = mg(hf – hi)/t = (m/t)g(hf – hi) 
   = [(47,000 people/h)(70 kg/person)/(3600 s/h)](9.80 m/s2)(200 m – 0)  
   =        1.8 × 106 W        (about 2.4 × 103 hp). 
 
 
70. For the work-energy principle applied to coasting down the hill a distance L, we have 
  WNC = ÆKE + ÆPE = (!mvf

2 – !mvi
2) + mg(hf – hi); 

  –  FfrL = (!mv2 – !mv2) + mg(0 – L sin θ), which gives Ffr = mg sin θ. 
 Because the climb is at the same speed, we assume the resisting force is the same.   
 For the work-energy principle applied to climbing the hill a distance L, we have 
  WNC = ÆKE + ÆPE = (!mvf

2 – !mvi
2) + mg(hf – hi); 

  FL –  FfrL = (!mv2 – !mv2) + mg(0 – L sin θ); 
  (P/v) – mg sin θ = mg sin θ, which gives  
  P = 2mgv sin θ = 2(75 kg)(9.80 m/s2)(5.0 m/s) sin 7.0° =        9.0 × 102 W        (about 1.2 hp). 
 
 
71. (a) If we ignore the small change in potential energy when the snow brings the paratrooper to rest,  
  the work done decreases the kinetic energy: 
   W  = ÆKE = !mvf

2 – !mvi
2 

    = !(80 kg)[0 – (30 m/s)2] =        – 3.6 × 104 J. 
 (b) We find the average force from 
   F = W/d = (– 3.6 × 104 J)/(1.1 m) =      – 3.3 × 103 N. 
 (c) With air resistance during the fall we have 
   WNC  = ÆKE + ÆPE = (!mvf

2 – !mvi
2) + mg(hf – hi) 

     = !(80 kg)[(30 m/s)2 – 0] + (80 kg)(9.80 m/s2)(0 – 370 m) =        – 2.5 × 105 J. 
 
 
72. For the motion during the impact until the car comes momentarily to rest, we use energy conservation:  
  KEi + PEspringi  = KEf + PEspringf  ; 
  !mvi

2 + 0 = 0 + !kx2; 
  (1400 kg kg)[(8 km/h)/(3/6 ks/h)]2 = k(0.015 m)2, which gives k =        3 × 107 N/m. 
 
 
73. We let N represent the number of books of mass m that can be placed  

H

+y

y = 0

h

H

D
 

 on a shelf.  For each book the work increases the potential energy  
 and thus is mg times the distance the center is raised.  From the  
 diagram we see that the work required to fill the nth shelf is  
  Wn = Nmg[D + !h + (n – 1)H]. 
 Thus for the five shelves, we have 
  W  = W1 + W2 + W3 + W4 + W5  
   = Nmg[5(D + !h) + H + 2H + 3H + 4H]  
   = Nmg[5(D + !h) + 10H]   
   = (25)(1.5 kg)(9.80 m/s2){5[0.100 m + !(0.20 m)] + 10(0.300 m)}  
   =       1.5 × 103 J. 
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74. We choose the potential energy to be zero at the ground (y = 0).  We find the minimum speed by ignoring 
any frictional forces.  Energy is conserved, so we have 

  E = KEi + PEi  = KEf + PEf ;      
  !mvi

2 + mgyi = !mvf
2 + mgyf ; 

  !mvi
2 + m(9.80 m/s2)(0) = !m(6.5 m/s)2 + m(9.80 m/s2)(1.1 m), which gives vi =        8.0 m/s. 

 Note that the initial velocity will not be horizontal, but will have a horizontal component of 6.5 m/s. 
 
 
75. We choose the reference level for the gravitational potential energy at the ground. 
 (a) With no air resistance during the fall we have 
   0 = ÆKE + ÆPE = (!mvf

2 – !mvi
2) + mg(hf – hi),  or 

   !(vf
2 – 0) = – (9.80 m/s2)(0 – 18 m), which gives vf =        19 m/s. 

 (b) With air resistance during the fall we have 
   WNC  = ÆKE + ÆPE = (!mvf

2 – !mvi
2) + mg(hf – hi); 

   Fair(18 m) = !(0.20 kg)[(10.0 m/s)2 – 0] + (0.20 kg)(9.80 m/s2)(0 – 18 m), 
  which gives Fair =        – 1.4 N. 
 
 
76. We choose the reference level for the gravitational potential  y

L

y = 0

mg
FT

h

peg

 

 energy at the lowest point.  The tension in the cord is always  
 perpendicular to the displacement and thus does no work. 
 (a) With no air resistance during the fall, we have 
   0 = ÆKE + ÆPE = (!mv1

2 – !mv0
2) + mg(h1 – h0),  or 

   !(v1
2 – 0) = – g(0 – L), which gives v1 =        (2gL)1/2. 

 (b) For the motion from release to the rise around the peg,  we have 
   0 = ÆKE + ÆPE = (!mv2

2 – !mv0
2) + mg(h2 – h0),  or 

   !(v2
2 – 0) = – g[2(L – h) – L] = g(2h – L) = 0.60gL,  

  which gives v2 =        (1.2gL)1/2. 
 
 
77. (a) The work done against gravity is the increase in the potential energy: 
   W = ÆPE = mg(hf – hi) = (65 kg)(9.80 m/s2)(3900 m – 2200 m) =        1.1 × 106 J. 
 (b) We find the power from 
   P = W/t = (1.1 × 106 J)/(5.0 h)(3600 s/h) =        60 W = 0.081 hp. 
 (c) We find the power input from 
   Pinput = P/efficiency = (60 W)/(0.15) =        4.0 × 102 W = 0.54 hp. 
 
 
78. The potential energy is zero at x = 0.   
 (a) Because energy is conserved, the maximum speed occurs at the minimum potential energy:  
   KEi + PEi  = KEf + PEf  ; 
   !mv0

2 + !kx0
2 = !mvmax

2 + 0, which gives       vmax = [v0
2 + (kx0

2/m)]1/2.  
 (b) The maximum stretch occurs at the minimum kinetic energy:  
   KEi + PEi  = KEf + PEf  ; 
   !mv0

2 + !kx0
2 = 0 + !kxmax

2, which gives       xmax = [x0
2 + (mv0

2/k)]1/2.  
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79. (a) With y = 0 at the bottom of the circle, we call the start  
  point A, the bottom of the circle B, and the top of the circle C. 
  At the top of the circle we have the forces mg and FNtop , both  
  downward, that provide the centripetal acceleration: 
   mg + FNtop = mvC

2/r. 
  The minimum value of FNtop is zero, so the minimum speed  
  at C  is found from  
   vCmin

2 = gr. 
  From energy conservation for the motion from A to C we have  

A

B

C

r
H

mg

FNtop

mg

FNbottom

 

   KEA + PEA = KEC + PEC ;  
   0 + mgh = !mvC

2 + mg(2r),  
  thus the minimum height is found from 
   gh = !vCmin

2 + 2gr = !gr + 2gr, which gives        h = 2.5r. 
 (b) From energy conservation for the motion from A to B we have  
   KEA + PEA = KEB + PEB ;  
   0 + mg2h = 5mgr = !mvB

2 + 0, which gives vB
2 = 10gr. 

  At the bottom of the circle we have the forces mg  down and FNbottom up that provide the centripetal  
  acceleration: 
   – mg + FNbottom = mvB

2/r. 
  If we use the previous result, we get  
   FNbottom = mvB

2/r + mg =        11mg. 
 (c) From energy conservation for the motion from A to C we have  
   KEA + PEA = KEC + PEC ;  
   0 + mg2h = 5mgr = !mvC

2 + mg(2r), which gives vC
2 = 6gr. 

  At the top of the circle we have the forces mg and FNtop , both down, that provide the centripetal  
  acceleration: 
   mg + FNtop = mvC

2/r. 
  If we use the previous result, we get  
   FNtop = mvC

2/r – mg =        5mg. 
 (d) On the horizontal section we have FN =         mg. 
 
 
80. (a) The work done by gravity is the decrease in the  
  potential energy: 
   Wgrav  = – ÆPE = – mg(hf – hi) = (900 kg)(9.80 m/s2)(0 – 30 m)  
     =        2.6 × 105 J. 
 (b) The work done by gravity increases the kinetic energy:  
   Wgrav = ÆKE; 
   2.6 × 105 J = !(900 kg)v2 – 0, which gives       v = 24 m/s.  
 (c) For the motion from the break point to the maximum  
  compression of the spring, we use energy conservation:  
   KEi + PEgravi  + PEspringi  = KEf + PEgravf + PEspringf  ; 
   0 + mgh  + 0 = 0 + mg(– xmax) + !kxmax

2; 
   (900 kg)(9.80 m/s2)(30 m) =  
    – (900 kg)(9.80 m/s2)xmax + !(4.0 × 105 N/m)xmax

2. 
  This is a quadratic equation for xmax , which has the solutions  
   xmax = – 1.13 m, 1.17 m.   
  Because xmax must be positive, the spring compresses       1.2 m. 
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81. We choose the reference level for the gravitational potential energy at the lowest point.   
 (a) With no air resistance during the fall, we have 
   0 = ÆKE + ÆPE = (!mv2 – !mv0

2) + mg(h – h0),  or 
   !(v2 – 0) = – g(0 – H), which gives  
   v1 = (2gH)1/2 = [2(9.80 m/s2)(80 m)] =        40 m/s. 
 (b) If 60% of the kinetic energy of the water is transferred, we have 
   P  = (0.60)!mv2/t = (0.60)!(m/t)v2 
    = (0.60)!(550 kg/s)(40 m/s)2) =        2.6 × 105 W        (about 3.5 × 102 hp). 
 
 
82. We convert the speeds: (10 km/h)/(3.6 ks/h) = 2.78 m/s; (30 km/h)/(3.6 ks/h) = 8.33 m/s. 
 We use the work-energy principle applied to coasting down the hill a distance L to find b: 
  WNC = ÆKE + ÆPE = (!mvf

2 – !mvi
2) + mg(hf – hi); 

  –  bv1
2L = (!mv1

2 – !mv1
2) + mg(0 – L sin θ),  

 which gives b = (mg /v2) sin θ = [(75 kg)(9.80 m/s2)/(2.78 m/s)2] sin 4.0° = 6.63 kg/m. 
 For the work-energy principle applied to speeding down the hill a distance L, the cyclist must provide a 

force so we have 
  WNC = ÆKE + ÆPE = (!mvf

2 – !mvi
2) + mg(hf – hi); 

  F2L –  bv2
2L = (!mv2

2 – !mv2
2) + mg(0 – L sin θ), which gives F2 = bv2

2 – mg sin θ.  
 The power supplied by the cyclist is 
  P = F2v2 = [(6.63 kg/m)(8.33 m/s)2 – (75 kg)(9.80 m/s2) sin 4.0°](8.33 m/s) = 3.41 × 103 W. 
 For the work-energy principle applied to climbing the hill a distance L, the cyclist will provide a force  
 F3 = P/v3 , so we have 
  WNC = ÆKE + ÆPE = (!mvf

2 – !mvi
2) + mg(hf – hi); 

  (P/v3)L –  bv3
2L = (!mv3

2 – !mv3
2) + mg(L sin θ – 0),  

 which gives [(3.41 × 103 W)/v3] – (6.63 kg/m)v3
2 = (75 kg)(9.80 m/s2) sin 4.0°.  

 This is a cubic equation for v3 , which has one real solution: v3 =  5.54 m/s.   
 The speed is (5.54 m/s)(3.6 ks/h) =        20 km/h. 
 
 
83. We choose the reference level for the gravitational potential  
 energy at the bottom.  From energy conservation for the motion  
 from top to bottom, we have  
  KEtop + PEtop = KEbottom + PEbottom ;  
  !mvtop

2 + mg2r = !mvbottom
2 + 0, which gives  

  vbottom
2 = vtop

2 + 4gr. 
 At the bottom of the circle we have the forces mg down and  
 FNbottom up that provide the centripetal acceleration: 
  – mg + FNbottom = mvbottom

2/r, which gives  
  FNbottom = (mvbottom

2/r) + mg. 
 At the top of the circle we have the forces mg and FNtop , both  
 down, that provide the centripetal acceleration: 
  mg + FNtop = mvtop

2/r, which gives  
  FNtop = (mvtop

2/r) – mg. 
 If we subtract the two equations, we get 
  FNbottom – FNtop = (mvbottom

2/r) + mg – [(mvtop
2/r) – mg] 

      = (m/r)(vbottom
2 – vtop

2) + 2mg = 4mg + 2mg = 6mg. 

mg
FNtop

R

FNbottom

mg vbottom

vtop

 

 The speed must be above the minimum at the top so the roller coaster does not leave the track.  From 
Problem 44, we know that we must have h > 2.5r.   
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 The result we found does not depend on the radius or speed.  
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84. We choose y = 0 at the scale.  We find the spring constant from the force (your weight) required to 
compress the spring: 

  k = F1/x1 = ( – 700 N)/(– 0.50 × 10–3 m) = 1.4 × 106 N/m. 
 We apply conservation of energy for the jump to the scale.  If we ignore the small change in  
 gravitational potential energy when the scale compresses, we have 
  KEi + PEi  = KEf + PEf ;      
  0 + mgH = 0 + !kx2

2; 
  (700 N)(1.0 m) = !(1.4 × 106 N/m)x2

2, which gives x2 = 0.032 m. 
 The reading of the scale is 
  F2 = kx2 = (1.40 × 106 N/m)(0.032 m) =       4.4 × 104 N. 
 
 
85. We choose the potential energy to be zero at the lowest point (y = 0).  

θ
L

v0

h
y = 0

FT

mg
 

 (a) Because the tension in the vine does no work, energy is conserved,  
  so we have 
   KEi + PEi  = KEf + PEf ;      
   !mv0

2 + 0 = 0 + mgh = mg(L – L cos θ) = mgL(1 – cos θ); 
   !m(5.0 m/s)2 = m(9.80 m/s2)(10.0 m)(1 – cos θ) 
  which gives cos θ = 0.872,  or  θ =        29°. 
 (b) The velocity is zero just before he releases, so there is no centripetal  
  acceleration.  There is a tangential acceleration which has been  
  decreasing his tangential velocity.  For the radial direction we have 
   FT – mg cos θ = 0;   or 
   FT = mg cos θ = (75 kg)(9.80 m/s2)(0.872) =        6.4 × 102 N. 
 (c) The velocity and thus the centripetal acceleration is maximum at the bottom, so the tension will be  
  maximum there.  For the radial direction we have 
   FT – mg = mv0

2/L,   or 
   FT = mg + mv0

2/L = (75 kg)[(9.80 m/s2) + (5.0 m/s)2/(10.0 m)] =        9.2 × 102 N. 
 
 
86. We choose the potential energy to be zero at the floor.  The work done increases the potential energy of 

the athlete.  We find the power from 
  P  = W/t = ÆPE/t = mg(hf – hi)/t  
   = (70 kg)(9.80 m/s2)(5.0 m – 0)/(9.0 s) =        3.8 × 102 W        (about 0.5 hp). 
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