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CHAPTER 21 
 
1. The magnitude of the average induced emf is 
  å = – ®ΦB/®t = – A ®B/®t = – ?(0.046 m)2(0 – 1.5 T)/(0.20 s) =      0.050 V. 
 
 
2. We assume the plane of the coil is perpendicular to the magnetic field.  The magnitude of the average 

induced emf is 
  å = – ®ΦB/®t = – A ®B/®t = – ?(0.080 m)2(0 – 1.10 T)/(0.15 s) =      0.15 V. 
 
 
3. As the coil is pushed into the field, the magnetic flux increases  
 into the page.  To oppose this increase, the flux produced by the  
 induced current must be out of the page, so the induced current is   
  counterclockwise. 
 
 
 
 
 
4. As the magnet is pushed into the coil, the magnetic  
 flux increases to the right.  To oppose this increase,  
 flux produced by the induced current must be to the  
 left, so the induced current in the resistor will be 
  from right to left. 
 
 
 
 
 
 
 
 
5. The average induced emf is 
  å = – N ®ΦB/®t = – (2)[(+38 Wb) – (– 30 Wb)]/(0.42 s) =      – 3.2 × 102 V. 
 
 
6. We choose up as the positive direction.  The average induced emf is 
  å = – ®ΦB/®t = – A ®B/®t = – ?(0.036 m)2[(– 0.25 T) – (+ 0.63 T)]/(0.15 s) = 2.4 × 10–2 V =      24 mV. 
 
 
7. (a) As the resistance is increased, the current in the outer loop  
  will decrease.  Thus the flux through the inner loop, which is  
  out of the page, will decrease.  To oppose this decrease, the  
  induced current in the inner loop will produce a flux out of the  
  page, so the direction of the induced current will be       
   counterclockwise. 
 (b) If the small loop is placed to the left, the flux through the  
  small loop will be into the page and will decrease.  To oppose  
  this decrease, the induced current in the inner loop will produce  
  a flux into the page, so the direction of the induced current will be  
   clockwise. 
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8. (a) The increasing current in the wire will cause an increasing  
  field into the page through the loop.    To oppose this  
  increase, the induced current in the loop will produce a  
  flux out of the page, so the direction of the induced current  
  will be       counterclockwise. 
 (b) The decreasing current in the wire will cause a decreasing  
  field into the page through the loop.    To oppose this  
  decrease, the induced current in the loop will produce a  
  flux into the page, so the direction of the induced current  
  will be      clockwise. 
 (c) Because the current is constant, there will be no change in  
  flux, so the induced current will be      zero. 
 (d) The increasing current in the wire will cause an increasing  
  field into the page through the loop.    To oppose this  
  increase, the induced current in the loop will produce a flux  
  out of the page, so the direction of the induced current will be  
   counterclockwise. 
 
 
9. As the solenoid is pulled away from the loop, the  
 magnetic flux to the right through the loop decreases.   
 To oppose this decrease, the flux produced by the induced  
 must be to the right, so the induced current is   
  counterclockwise      as viewed from the solenoid. 
 
 
 
 
10. (a) The average induced emf is 
   å = – ®ΦB/®t = – A ®B/®t = – ?(0.10 m)2[(– 0.45 T) – (+ 0.52 T)]/(0.180 s) =       0.17 V. 
 (b) The positive result for the induced emf means the induced field is away from the observer, so the  
  induced current is      clockwise. 
 
 
11. (a) Because the velocity is perpendicular to the magnetic  
  field and the rod, we find the induced emf from  
   å  = BLv  
    = (0.800 T)(0.120 m)(0.150 m/s)  
    = 1.44 × 10–2 V =      14.4 mV. 
 (b) Because the upward flux is increasing, the induced flux will  
  be into the page, so the induced current is clockwise.  Thus  
  the induced emf in the rod is down, which means that the  
  electric field will be down.  We find its magnitude from 
   E = å/¬ = (1.44 × 10–2 V)/(0.120 m) =      0.120 V/m  down. 
 
 
12. (a) The magnetic flux through the loop is into the paper and decreasing, because the area is  
  decreasing.  To oppose this decrease, the induced current in the loop will produce a flux  
  into the paper, so the direction of the induced current will be      clockwise. 
 (b) We choose into the paper as the positive direction.  The average induced emf is 
   å  = – ®ΦB/®t = – B ®A/®t = – ?B ®(D2)/®t  

    = – ?(0.75 T)[(0.030 m)2 – (0.100 m)2]/(0.50 s) = 4.3 × 10–2 V =      43 mV. 
 (c) We find the average induced current from 
   I = å/R = (43 mV)/(2.5 Ω) =      17 mA. 
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13. (a) Because the velocity is perpendicular to the magnetic  
  field and the rod, we find the speed from  
   å = BLv; 
   100 × 10–3 V = (0.90 T)(0.132 m)v,  
  which gives v =      0.84 m/s. 
 (b) Because the outward flux is increasing, the induced flux will  
  be into the page, so the induced current is clockwise.  Thus  
  the induced emf in the rod is down, which means that the  
  electric field will be down.  We find its magnitude from 
   E = å/¬ = (100 × 10–3 V)/(0.132 m) =      0.758 V/m  down. 
 
 
14. (a) Because the velocity is perpendicular to the magnetic  
  field and the rod, we find the induced emf from  
   å  = BLv  
    = (0.75 T)(0.300 m)(1.9 m/s) =      0.43 V. 
 (b) We find the induced current from 
   I = å/R = (0.43 V)/(2.5 Ω + 25.0 Ω) =      0.016 A. 
 (c) The induced current in the rod will be down.  Because this  
  current is in an upward magnetic field, there will be a  
  magnetic force to the left.  To keep the rod moving, there  
  must be an equal external force to the right, which we find from 
   F = ILB = (0.016 A)(0.300 m)(0.75 T) =      3.5 × 10–3 N. 
 
 
15. As the loop is pulled from the field, the flux through the loop  
 will decrease.  We find the induced emf from  
  å = – ®ΦB/®t = – B ®A/®t = – B¬ ®x/®t = – B¬ (– v) = B¬v. 
 Because the inward flux is decreasing, the induced flux will  
 be into the page, so the induced current is clockwise, given by 
  I = å/R. 
 Because this current in the left hand side of the loop is in a  
 downward magnetic field, there will be a magnetic force to  
 the left.  To keep the rod moving, there must be an equal  
 external force to the right, which we find from 
  F = I¬B = (å/R)¬B = B2¬2v/R = (0.450 T)2(0.350 m)2(3.40 m/s)/(0.230 Ω) =      0.367 N. 
 
 
16. (a) For the resistance of the loop, we have 
   R = ρL/A = (1.68 × 10–8 Ω á m)(20)?(0.310 m)/?(1.3 × 10–3 m)2 = 0.0616 Ω. 
  The induced emf is 
   å = – ®ΦB/®t = – A ®B/®t = – (20) ?(0.155 m)2(8.65 × 10–3 T/s) = – 0.0131 V. 
  Thus the induced current is 
   I = å/R = (0.0131 V)/(0.0616 Ω) =      0.21 A. 
 (b) Thermal energy is produced in the wire at the rate of 
   P = I 

2R = (0.21 A)2(0.0616 Ω) = 2.8 × 10–3 W =      2.8 mW. 
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17. If we assume that the movable rod starts at the bottom of the U, in a time t it will have moved a distance x 
= vt.  For the resistance of the U, we have 

  R = ρL/A = ρ(2vt + ¬)/A. 
 The induced emf is 
  å = BLv; 
 so the induced current is 
  I = å/R = B¬v/[ρ(2vt + ¬)/A] =      B¬vA/ρ(2vt + ¬). 
 
 
18. For the resistance of the loop, we have 
  R = ρL/A = ρ?D/(?d2 = 4ρD/d2. 
 The induced emf is 
  å = – ®ΦB/®t = – (?D2 ®B/®t; 
 so the induced current is 
  I = å/R = – (?Dd2/16ρ) ®B/®t. 
 In the time ®t the amount of charge that will pass a point is 
  Q = I ®t = – (?Dd2/ρ) ®B = – [?(0.132 m)(2.25 × 10–3 m)2/16(1.68 × 10–8 Ω á m)](0 – 0.750 T) =      5.86 C. 
 
 
19. The maximum induced emf is 
  å = NBAω. 
 If the only change is in the rotation speed, for the two conditions we have 
  å2/å1 = ω2/ω1 ; 
  å2/(12.4 V) = (2500 rpm)/(1000 rpm) which gives å2 =      31.0 V. 
 
 
20. We find the number of turns from 
  åpeak = NBAω; 
  24.0 V = N(0.420 T)(0.050 m)2(60 rev/s)(2? rad/rev), which gives N =      61 turns. 
 
 
21. The induced emf is 
  å = NBAω sin ωt. 
 For the rms value of the output, we have 
  Vrms = [(å2)av]1/2 = [(NBAω)2(sin2 ωt)av]1/2 = NBAω [(sin2 ωt)av]1/2. 
 The sin2 ωt function varies from 0 to 1, with an average value of 1/2, so we get 
  Vrms = NBAω(1/Ì2) = NBAω/Ì2. 
 
 
22. We find the rotation speed from 
  åpeak = NBAω; 
  120 V = (720 turns)(0.550 T)(0.210 m)2ω, which gives ω = 6.87 rad/s =      1.09 rev/s. 
 
 
23. We find the peak emf from 
  åpeak = NBAω = (450 turns)(0.75 T)?(0.050 m)2(60 rev/s)(2? rad/rev) = 999 V. 
 The rms voltage output is  
  Vrms = åpeak/Ì2 = (999 V)/Ì2 = 707 V =      0.71 kV. 
 If only the rotation frequency changes, to double the rms voltage output, we must double the rotation 

speed, so we have 
  f2 = 2f1 = 2(60 rev/s) =       120 rev/s. 
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24. We find the counter emf from 
  å – åback = IR; 
  120 V – åback = (9.20 A)(3.75 Ω), which gives åback =      86 V. 
 
 
25. Because the counter emf is proportional to the rotation speed, for the two conditions we have 
  åback2/åback1 = ω2/ω1 ; 
  åback2/(72 V) = (2500 rpm)/(1800 rpm), which gives åback2 =      100 V. 
 
 
26. Because the counter emf is proportional to both the rotation speed and the magnetic field, for the two 

conditions we have 
  åback2/åback1 = (ω2/ω1)(B2/B1); 
  (65 V)/(100 V) = [(2500 rpm)/(1000 rpm)](B2/B1), which gives       B2/B1 = 0.26. 
 
 
27. Because the counter emf is proportional to the rotation speed, we find the new value from 
  åback2/åback1 = ω2/ω1 ; 
  åback2/(108 V) = (1/2), which gives åback2 = 54 V. 
 We find the new current from 
  å – åback = IR; 
  120 V – 54 V = I(5.0 Ω), which gives I =      13 A. 
 
 
28. (b) At start up there will be no induced emf in the  
  armature.  Because the line voltage is across each  
  resistor, we find the currents from 
   Ifield0 = å/Rfield = (115 V)/(66.0 Ω) = 1.74 A; 
   Iarmature0 = å/Rarmature = (115 V)/(5.00 Ω) = 23.0 A. 
  We use the junction condition to find the total current: 
   I0 = Ifield0 + Iarmature0 = 1.74 A + 23.0 A =       24.7 A. 
 (c) At full speed, the back emf is maximum.  Because the  
  line voltage is across the field resistor, we find the  
  field current from 
   Ifield0 = å/Rfield = (115 V)/(66.0 Ω) = 1.74 A. 
  We find the armature current from 
   å – åback = IarmatureRarmature ; 
   115 V – 105 V = Iarmature(5.00 Ω),  
  which gives Iarmature = 2.0 A. 
  Thus the total current is 
   I0 = Ifield + Iarmature = 1.74 A + 2.0 A =       3.7 A. 
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29. (a) We find the emf of the generator from the load conditions:  
   V = å – IarmatureRarmature; 
   200 V = å – (50 A)(0.40 Ω), which gives å = 220 V. 
  When there is no load on the generator, the current is zero, so the voltage will be the emf:      220 V. 
  Note that no-load means little torque required to turn the generator. 
 (b) Because the generator emf is proportional to the rotation speed, we find the new value from 
   å2/å1 = ω2/ω1 ; 
   å2/(220 V) = (800 rpm/1000 rpm), which gives å2 = 176 V. 
  We find the new load voltage from 
   V2 = å2 – IarmatureRarmature  = 176 V – (50 A)(0.40 Ω) =      156 V. 
  Note that the power output is reduced to 7.8 kW. 
 
 
30. We find the number of turns in the secondary from 
  VS/VP = NS/NP ; 
  (10,000V)/(120 V) = NS/(5000 turns), which gives NS =      4.17 × 105 turns. 
 
 
31. Because NS < NP , this is a      step-down     transformer. 
 We find the ratio of the voltages from 
  VS/VP = NS/NP = (120 turns)/(420 turns) =     0.285. 
 For the ratio of currents, we have 
  IS/IP = NP/NS = (420 turns)/(120 turns) =     3.50. 
 
 
32. With 100% efficiency, the power on each side of the transformer is the same: 
  IPVP = ISVS , so we have 
  IS/IP = VP/VS = (16 V)/(120) =     0.13. 
 
 
33. We find the ratio of the number of turns from 
  NS/NP = VS/VP = (12 × 103 V)/(220 V) =      55. 
 If the transformer is connected backward, the role of the turns will be reversed: 
  VS/VP = NS/NP ; 
  VS/(220 V) = 1/55, which gives VS =       4.0 V. 
 
 
34. (a) We assume 100% efficiency, so we have 
   IPVP = ISVS ; 
   (15 A)/(0.75 A) = (120 V)/VS , which gives VS =       6.0 V. 
 (b) Because VS < VP , this is a      step-down     transformer. 
 
 
35. (a) We assume 100% efficiency, so we find the input voltage from 
   P= IPVP ; 
   100 W = (20 A)VP , which gives VP = 5.0 V. 
  Because VS > VP , this is a      step-up     transformer. 
 (b) For the voltage ratio we have 
   VS/VP = (12 V)/(5.0 V) =      2.4. 
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36. (a) Because VS < VP , this is a      step-down     transformer. 
 (b) We assume 100% efficiency, so we find the current in the secondary from 
   P= ISVS ; 
   40 W = IS(12 V), which gives IS =       3.3 A. 
 (c) We find the current in the primary from 
   P= IPVP ; 
   40 W = IP(120 V), which gives IS =       0.33 A. 
 (d) We find the resistance of the bulb from 
   VS = ISRS ; 
   120 V = (3.33 A)RS , which gives RS =       3.6 Ω. 
 
 
37. We find the output voltage from 
  VS/VP = NS/NP ; 
  VS/(120 V) = (1240 turns)/(330 turns), which gives VS =       451 V. 
 We find the input current from 
  IS/IP = NP/NS ; 
  (15.0 A)/IP = (330 turns)/(1240 turns), which gives IP =     56.4 A. 
 
 
38. (a) We can find the current in the transmission lines from the output emf: 
   Pout = IVout ; 
   30 × 106 W = I(45 × 103 V), which gives I = 667 A. 
  We find the input emf from 
   åin = Vout + IRlines = 45 × 103 V + (667 A)(4.0 Ω) = 48 × 103  =      48 kV. 
 (b) The power loss in the lines is 
   Ploss = I 

2Rlines = (667 A)2(4.0 Ω) = 1.78 × 106 W = 1.78 MW. 
  The total power is 
   Ptotal = Pout + Ploss = 30 MW + 1.78 MW = 31.8 MW, 
  so the fraction lost is 
   (1.78 MW)/(31.8 MW) =     0.056 (5.6%). 
 
 
39. We can find the current in the transmission lines from the power transmitted to the user: 
  PT = IV,   or   I = PT/V. 
 The power loss in the lines is 
  PL = I 

2RL = (PT/V)2RL = (PT)2RL/V2. 
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40. Without the transformers, we can find the delivered current, which is the current in the transmission 
lines, from the delivered power: 

  Pout = IVout ; 
  50 × 103 W = I(120V), which gives I = 417 A. 
 The power loss in the lines is 
  PL0 = I 

2Rlines = (417 A)2(2)(0.100 Ω) = 3.48 × 104 W = 34.8 kW. 
 With the transformers, to deliver the same power at 120 V, the delivered current from the step-down 

transformer is still 417 A. 
 If the step-down transformer is 99% efficient, we have 
  (0.99)IP2VP2 = IS2VS2 ; 
  (0.99)IP2(1200 V) = (417 A)(120 V), which gives IP2 = 42.1 A. 
 Because this is the current in the lines, the power loss in the lines is 
  PL2 = IP2

2Rlines = (42.1 A)2(2)(0.100 Ω) = 3.55 × 102 W = 0.355 kW. 
 For the 1% losses in the transformers, we approximate the power in each transformer: 
  PLt = (0.01)(50 kW + 50.36 kW) = 1.00 kW. 
 The total power loss using the transformers is 
  PL = 0.355 kW + 1.00 kW = 1.4 kW. 
 The power saved by using the transformers is 
  Psaved = PL0 – PL = 34.8 kW – 1.4 kW =       33.4 kW. 
 
 
41. We can find the delivered current, which is the current in the transmission lines, from the delivered 

power: 
  Pout = IVout ; 
  300 × 106 W = I(600 × 103 V), which gives I = 500 A. 
 We can approximate the power at the input to the lines as 102% of the delivered power to account for the 

loss.  Thus the power loss in the lines is 
  PL = (0.02)(1.02)Pout = I 

2Rlines ; 
  (0.02)(1.02)(300 × 106 W) = (500 A)2Rlines , which gives Rlines = 24.5 Ω. 
 We find the radius of the 2 lines, each 200 km long, from 
  R = ρL/A ; 
  24.5 Ω = (2.65 × 10–8 Ω á m)(2)(200 × 103 m)/?r2 , which gives r = 1.174 × 10–2 m. 
 Thus the diameter of the lines should be      2.35 cm. 
 
 
42. We find the induced emf from  
  å = – L ®I/®t = – (0.120 H)(10.0 A – 25.0 A)/(0.350 s) =       5.14 V. 
 The emf is in the       direction of the current,     to oppose the decrease in the current. 
 
 
43. We use the inductance of a solenoid: 
  L = µ0AN2/¬ = (4? × 10–7 T á m/A)?(1.45 × 10–2 m)2(10,000 turns)2/(0.60 m) =     0.14 H. 
 
 
44. Because the current in increasing, the emf is negative.  We find the self-inductance from  
  å = – L ®I/®t; 
  – 8.50 V = – L[31.0 mA – (– 28.0 mA)]/(42.0 ms), which gives L =       6.05 H. 
 
 
45. We find the number of turns from the inductance of a solenoid: 
  L = µ0AN2/¬; 

  0.100 H = (4? × 10–7 T á m/A)?(2.6 × 10–2 m)2N2/(0.300 m), which gives N =     3.4 × 103 turns. 
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46. We use the inductance of a solenoid: 
  L = µ0AN2/¬ = (4? × 10–7 T á m/A)?(1.25 × 10–2 m)2(1000 turns)2/(0.282 m) = 2.2 × 10–3 H =     2.2 mH. 
 If we form the ratio of inductances for the two conditions, we have 
  L2/L1 = (µ/µ0)(N2/N1)2; 

  1 = (1000)[N2/(1000 turns)]2, which gives N2 =      32 turns. 
 
 
47. We find the induced emf from  
  åinduced = – L ®I/®t = – (0.440 H)(3.50 A/s) = – 1.54 V.  
 The negative sign indicates a direction opposite to the current. 
 If we start at point b and add the potential changes, we get 
  Vb + IR + | åinduced | = Va ,   or 
  Vab = (3.00 A)(2.25 Ω) + 1.54 V =       8.29 V. 
 
 
48. If D represents the diameter of the solenoid, the length of the wire is N(?D).  Because this is constant, we 

have 
  N1?D1 = N2?D2 ,   or   N2/N1 = D1/D2 = !. 
 The solenoid is tightly wound, so the length of the solenoid is ¬ = Nd, where d is the diameter of the wire.  

Thus we have 
  ¬2/¬1 = N2/N1 = !. 
 We use the inductance of a solenoid: 
  L = µ0AN2/¬, and form the ratio of inductances for the two conditions, so we have 

  L2/L1 = (D2/D1)2(N2/N1)2/(¬2/¬1) = (2)2(!)2/(!) =      2. 
 
 
49. (a) We know from Problem 20–38 that the magnetic field at the radius R of a torus is 
   B = µ0NI/2?R.   
  If the current changes by ®I, the magnetic field change is  
   ®B = (µ0N/2?R) ®I. 
  If we assume that the field is uniform inside the torus (because the field varies with the distance  
  from the center of the torus, this is not actually true, but will be a good approximation if R È r), the  
  emf induced by a current change is 
   å = – N ®ΦB/®t = – NA ®B/®t = – N(µ0N?r2/2?R) ®I/®t = – (µ0N

2r2/2R) ®I/®t. 
  When we compare this to  
   å = – L ®I/®t, we see that    L = µ0N

2r2/2R. 
  Because the circumference of the torus is ¬ = 2?R, we can write this as 
   L = µ0N

2?r2/¬, which is      consistent      with that of a solenoid. 
 (b) For the given data, we have 
   L = (4? × 10–7 T á m/A)(1000 turns)2(0.75 × 10–2 m)2/2(0.20 m) = 1.76 × 10–4 H =       0.18 mH. 
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50. (a) For two inductors placed in series, the current through each inductor is the same.  This current is  
  also the current through the equivalent inductor, so the total emf is 
   å  = å1 + å2  
    = (– L1 ®I/®t) + (– L2 ®I/®t) = – (L1 + L2) ®I/®t = – Lseries ®I/®t, which gives   Lseries = L1 + L2 . 
 (b) For two inductors placed in parallel, the potential difference across each inductor, which is the  
  emf, is the same: 
   å = å1 = å2  = – L1 ®I1/®t = – L2 ®I2/®t = – Lparallel ®I/®t. 
  The total current through the equivalent inductor is  
   I = I1 + I2 

,  so we have 
   ®I/®t = ®I1/®t + ®I2/®t; 
   – å/Lparallel = – å/L1 – å/L2 

, which gives 1/Lparallel = (1/L1) + (1/L2),  or     Lparallel = L1L2/(L1 + L2). 
 (c) Each inductor will have an additional emf term: 
   å1 = – L1 ®I1/®t ± M ®I2/®t,   and   å2 = – L2 ®I2/®t ± M ®I1/®t, 
  where the sign of the mutual inductance term is determined by the orientation of one winding with  
  respect to the other. 
  For the series arrangement, if we assume that the windings are such that the fields of each  
  inductor are in the same direction, the induced emf from the mutual inductance will be in the same  
  direction (have the same sign) as the self-induced emfs.   Because I1 = I2 = I, we have 
   å = å1 + å2 ; 
   – Lseries ®I/®t = (– L1 ®I/®t – M ®I/®t) + (– L2 ®I/®t – M ®I/®t) = – (L1 + L2 + 2M) ®I/®t , 
  which gives      Lseries = L1 + L2 + 2M. 
  For the parallel arrangement, if we assume that the windings are such that the internal fields of  
  each inductor are in the same direction, the induced emf from the mutual inductance will be in the  
  opposite direction (have the opposite sign) from the self-induced emfs: 
   å = å1 = – L1 ®I1/®t + M ®I2/®t = å2 = – L2 ®I2/®t + M ®I1/®t. 
  When these equations are combined, we get 
   ®I1/®t = – (L2 + M)å/(L1L2 – M2),  and  ®I2/®t = – (L1 + M)å/(L1L2 – M2). 
  Because I = I1 + I2 

, we have 
   ®I/®t = ®I1/®t + ®I2/®t; 

   – å/Lparallel = – (L2 + M)å/(L1L2 – M2) – (L1 + M)å/(L1L2 – M2),  
  which gives  
   Lparallel = (L1L2 – M2)/(L1 + L2 + 2M). 
 
 
51. The magnetic field of the solenoid, which passes through the coil is 
  B = µ0N1I1/¬.   
 When the current in the solenoid changes, the induced emf in the coil is 
  å = – N2A ®B/®t = – N2(µ0N1A /¬) ®I1/®t = – M ®I1/®t. 
 Thus we get 
  M = µ0N1N2A /¬. 
 
 
52. (a) We find the magnetic field from the first coil using the expression for a solenoid: 
   B = µN1I1/¬ = (3000)(4? × 10–7 T á m/A)(1500 turns)I1/(0.30 m) = (18.85 T/A)I1 . 
  The induced emf in the second coil is 
   å  = – N2A ®B/®t  

    = – (800 turns)?(0.020 m)2(18.85 T/A) ®I1/®t  

    = – (18.95 T á m2/A)(0 – 3.0 A)/(0.0080 s) =       7.1 × 103 V. 
 (b) We find the mutual inductance from 
   å = – M ®I1/®t; 
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   7.1 × 103 V = – M(0 – 3.0 A)/0.0080 s), which gives M =      19.0 H. 



Solutions to Physics: Principles with Applications, 5/E, Giancoli  Chapter 21 

 Page 21 – 13 

53. The direction of the induced emf will oppose the change in the  
 current, as shown in the diagrams.   
 If we start at point b and add the potential changes, we get  
  Vb + IR ± | åinduced | = Va ,   or 
  Vab = IR ± | åinduced |; 
  22.5 V = (0.860 A)R + L (3.40 A/s); 
  16.2 V = (0.700 A)R + L (– 1.80 A/s). 
 We have two equations for two unknowns, with the results: 
  R =       24.3 Ω,      and  L =      0.463 H. 
 
 
 
54. The magnetic energy in the field is 
  U  = uBV = !(B2/µ0)L?r2 

   = ![(0.80 T)2/(4? × 10–7 T á m/A)](0.36 m)?(1.0 × 10–2 m)2 =       29 J. 
 
 
55. The initial energy stored in the inductor is 
  U0 = !LI 0

2 = !(60.0 × 10–3 H)(50.0 × 10–3 A)2 =       7.5 × 10–5 J. 
 For the increase in energy, we have 
  U/U0 = (I /I 0)2; 
  10 = (I /50.0 mA)2, which gives I  = 158 mA. 
 We find the time from 
  ®I /®t = 100 mA/s = (158 mA – 50.0 mA)/®t, which gives ®t =      1.08 s. 
 
 
56. The magnetic energy in the field is 
  U  = uBV = !(B2/µ0)h?r2 

   = ![(0.50 × 10–4 T)2/(4? × 10–7 T á m/A)](10 × 103 m)?(6.38 × 106 m)2 =       5.1 × 1015 J. 
 
 
57. (a) For an LR circuit, we have 
   I = Imax(1 – e– t/τ); 
   0.80Imax = (1 – e– t/τ), or – t/τ = – (7.20 ms)/τ = ln 0.20, which gives τ =      4.47 ms. 
 (b) We find the inductance from 
   τ = L/R; 
   4.47 × 10–3 s = L/(250 Ω), which gives L =       1.12 H. 
 
 
58. At t = 0 there is no voltage drop across the resistor, so we have 
  V = L(®I/®t)0 ,   or         (®I/®t)0 = V/L. 
 The maximum value of the current is reached after a long time, when there is no voltage across the 

inductor: 
  V = ImaxR,   or   Imax = V/R. 
 We find the time to reach maximum if the initial rate were maintained from 
  V/R = (®I/®t)0t = (V/L)t, which gives t = L/R = τ. 
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59. For an LR circuit, we have 
  I = Imax(1 – e– t/τ), which we can write as 
  e– t/τ = 1 – (I/Imax),   or   t/τ = – ln[1 – (I/Imax)] = – ln[(Imax – I)/Imax]. 
 (a) ta/τ = – ln(0.10), which gives ta/τ =       2.3. 
 (b) tb/τ = – ln(0.010), which gives tb/τ =       4.6. 
 (c) tc/τ = – ln(0.001), which gives tc/τ =       6.9. 
 
 
60. (a) We use the inductance of a solenoid: 
   L = µ0AN2/¬. 
  Because they are tightly wound, the number of turns is determined by the diameter of the wire:  
   N = ¬/d.   
  If we form the ratio of inductances for the two conditions, we have 
   L1/L2 = (N1/N2)2 = (d2/d1)2 = 22 =      4. 
 (b) The length of wire used for the turns is ¬wire = N(?D), where D is the diameter of the solenoid. 

 Thus for the ratio of resistances, we have 
   R1/R2 = (¬wire1/¬wire2)(d2/d1)2 = (N1/N2)(d2/d1)2 = (d2/d1)3. 
  For the ratio of the time constants, we get 
   τ1/τ2 = (L1/L2)(R2/R1) = (L1/L2)(d1/d2)3 = (4)(!)3 =       !. 
 
 
61. We find the frequency from 
  XL = ωL = 2?fL; 

  1.5 kΩ = 2?f(0.160 H), which gives f =      1.5 kHz. 
 
 
62. We find the frequency from 
  XC = 1/2?fC; 
  250 Ω = 1/2?f(9.20 × 10–6 F), which gives f =       69.2 Hz. 
 
 
63. The impedance is Z = XC = 1/2?fC. 
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64. The impedance is Z = XL = ωL = 2?fL. 
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10,00050000
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65. We find the impedance from 
  Z = XL = ωL = 2?fL = 2?(10.0 kHz)(0.160 H) =       10.1 kΩ. 
 For the rms current we have 
  Irms = Vrms/XL = (240 V)/(10.1 kΩ) =      23.9 mA. 
 
 
66. We find the reactance from 
  XL = Vrms/Irms = (240 V)/(12.8 A) = 18.8 Ω. 
 We find the inductance from 
  XL = 2?fL; 
  18.8 Ω = 2?(60 Hz)L, which gives L = 0.050 H =       50 mH. 
 
 
67. (a) We find the impedance from 
   Z = XC = 1/2?fC = 1/2?(700 Hz)(0.030 × 10–6 F) = 7.6 × 103 Ω =      7.6 kΩ. 
 (b) We find the peak value of the current from 
   Ipeak = Ì2 Irms = Ì2(Vrms /Z) = Ì2(2.0 kV)/(7.6 kΩ) =      0.37 A. 
 
 
68. Because the capacitor and resistor are in parallel, their currents are 
  IC = V/XC ,   and  IR = V/R. 
 The total current is I = IC + IR . 
 (a) The reactance of the capacitor is 
   XC1 = 1/2?f1C = 1/2?(60 Hz)(0.60 × 10–6 F) = 4.42 × 103 Ω = 4.42 kΩ. 
  For the fraction of current that passes through C, we have 
   fraction1  = IC1/(IC1 + IR) = (1/XC1)/[(1/XC1) + (1/R)]  
      = (1/4.42 kΩ)/[(1/4.42 kΩ) + (1/300 kΩ)] = 0.064 =      6.4%.  
 (b) The reactance of the capacitor is 
   XC2 = 1/2?f2C = 1/2?(60,000 Hz)(0.60 × 10–6 F) = 4.42 Ω. 
  For the fraction of current that passes through C, we have 
   fraction2  = IC2/(IC2 + IR) = (1/XC2)/[(1/XC2) + (1/R)]  
      = (1/4.42 Ω)/[(1/4.42 Ω) + (1/300 kΩ)] = 0.99 =      99%.  
  Thus most of the high-frequency current passes through the capacitor. 
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69. Because the capacitor and resistor are in series, the impedance of the circuit is  
  Z = (R2 + XC

2)1/2,  
 so the current is 
  I = V/Z,  
 and the voltage across the resistor is 
  VR = IR. 
 (a) The reactance of the capacitor is 
   XC1 = 1/2?f1C = 1/2?(60 Hz)(2.0 × 10–6 F) = 1.33 × 103 Ω = 1.33 kΩ. 
  The impedance of the circuit is 
   Z1 = (R2 + XC1

2)1/2 = [(0.500 kΩ)2 + (1.33 kΩ)2]1/2 = 1.42 kΩ. 
  The current is  
   I1 = V/Z1 = (50 mV)/(1.42 kΩ) = 35.2 µA. 
  The voltage across the resistor is 
   VR1 = I1R = (35.2 µA)(0.500 kΩ) =       18 mV. 
 (b) The reactance of the capacitor is 
   XC1 = 1/2?f1C = 1/2?(60,000 Hz)(2.0 × 10–6 F) = 1.33 Ω. 
  The impedance of the circuit is 
   Z1 = (R2 + XC1

2)1/2 = [(0.500 kΩ)2 + (0.00133 kΩ)2]1/2 = 0.500 kΩ. 
  The current is  
   I1 = V/Z1 = (50 mV)/(0.500 kΩ) = 100 µA. 
  The voltage across the resistor is 
   VR1 = I1R = (100 µA)(0.500 kΩ) =       50 mV. 
  Thus the high-frequency signal passes to the resistor. 
 
 
70. (a) The reactance of the inductor is 
   XL1 = 2?f1L = 2?(60 Hz)(0.50 H) = 188 Ω. 
  The impedance of the circuit is 
   Z1 = (R2 + XL1

2)1/2 = [(30 kΩ)2 + (0.188 kΩ)2]1/2 =       30 kΩ. 
 (b) The reactance of the inductor is 
   XL2 = 2?f2L = 2?(30 kHz)(0.50 H) = 94.2 kΩ. 
  The impedance of the circuit is 
   Z2 = (R2 + XL2

2)1/2 = [(30 kΩ)2 + (94.2 kΩ)2]1/2 =       99 kΩ. 
 
 
71. (a) The reactance of the capacitor is 
   XC1 = 1/2?f1C = 1/2?(100 Hz)(4.0 × 10–6 F) = 398 Ω = 0.398 kΩ. 
  The impedance of the circuit is 
   Z1 = (R2 + XC1

2)1/2 = [(1.5 kΩ)2 + (0.398 kΩ)2]1/2 =       1.6 kΩ. 
 (b) The reactance of the capacitor is 
   XC2 = 1/2?f2C = 1/2?(10,000 Hz)(4.0 × 10–6 F) = 3.98 Ω = 0.00398 kΩ. 
  The impedance of the circuit is 
   Z2 = (R2 + XC2

2)1/2 = [(1.5 kΩ)2 + (0.00398 kΩ)2]1/2 =       1.5 kΩ. 
 
 
72. We find the impedance from 
  Z = Vrms/Irms = (120 V)/(70 mA) =      1.7 kΩ. 
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73. At 60 Hz, the reactance of the inductor is 
  XL1 = 2?f1L = 2?(60 Hz)(0.420 H) = 158 Ω. 
 The impedance of the circuit is 
  Z1 = (R2 + XL1

2)1/2 = [(2.5 kΩ)2 + (0.158 kΩ)2]1/2 = 2.51 kΩ. 
 Thus the impedance at the new frequency is 
  Z2 = 2Z1 = 2(2.51 kΩ) = 5.02 kΩ. 
 We find the new reactance from 
  Z2 = (R2 + XL2

2)1/2; 
  5.02 kΩ = [(2.5 kΩ)2 + XL2

2]1/2 , which gives XL2 = 4.34 kΩ. 
 We find the new frequency from 
  XL2 = 2?f2L; 
  4.34 kΩ = 2?f2(0.420 H), which gives f2 =       1.6 kHz. 
 
 
74. (a) The reactance of the capacitor is 
   XC = 1/2?fC = 1/2?(60 Hz)(0.80 × 10–6 F) = 3.32 × 103 Ω = 3.32 kΩ. 
  The impedance of the circuit is 
   Z = (R2 + XC

2)1/2 = [(28.8 kΩ)2 + (3.32 kΩ)2]1/2 = 29.0 kΩ. 
  The rms current is  
   Irms = Vrms/Z = (120 V)/(29.0 kΩ) =      4.14 mA. 
 (b) We find the phase angle from 
   cos φ = R/Z = (28.8 kΩ)/(29.0 kΩ) = 0.993. 
  In an RC circuit, the current leads the voltage, so φ =      – 6.6¡. 
 (c) The power dissipated is 
   P = Irms

2R = (4.14 × 10–3 A)2(28.8 × 103 Ω) =        0.49 W. 
 (d) The rms readings across the elements are 
   VR = IrmsR = (4.14 mA)(28.8 kΩ) =      119 V; 
   VC = IrmsXC = (4.14 mA)(3.32 kΩ) =      14 V. 
  Note that, because the maximum voltages occur at different times, the two readings do not add  
  to the applied voltage of 120 V. 
 
 
75. (a) The reactance of the inductor is 
   XL = 2?fL = 2?(60 Hz)(0.900 H) = 339 Ω = 0.339 kΩ. 
  The impedance of the circuit is 
   Z = (R2 + XL

2)1/2 = [(1.80 kΩ)2 + (0.339 kΩ)2]1/2 = 1.83 kΩ. 
  The rms current is  
   Irms = Vrms/Z = (120 V)/(1.83 kΩ) =      65.5 mA. 
 (b) We find the phase angle from 
   cos φ = R/Z = (1.80 kΩ)/(1.83 kΩ) = 0.984. 
  In an RL circuit, the current lags the voltage, so φ =      + 10.4¡. 
 (c) The power dissipated is 
   P = Irms

2R = (65.5 × 10–3 A)2(1.80 × 103 Ω) =        7.73 W. 
 (d) The rms readings across the elements are 
   VR = IrmsR = (65.5 mA)(1.80 kΩ) =      118 V; 
   VL = IrmsXL = (65.5 mA)(0.339 kΩ) =      22 V. 
  Note that, because the maximum voltages occur at different times, the two readings do not add  
  to the applied voltage of 120 V. 
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76. The reactance of the capacitor is 
  XC = 1/2?fC = 1/2?(10.0 × 103 Hz)(5000 × 10–12 F) = 3.18 × 103 Ω = 3.18 kΩ. 
 The reactance of the inductor is 
  XL = 2?fL = 2?(10.0 kHz)(0.0220 H) = 1.38 kΩ. 
 The impedance of the circuit is 
  Z = [R2 + (XL – XC)2]1/2 = [(8.70 kΩ)2 + (1.38 kΩ – 3.18 kΩ)2]1/2 =       8.88 kΩ. 
 We find the phase angle from 
  tan φ = (XL – XL)/R = (1.38 kΩ – 3.18 kΩ)/(8.70 kΩ) = – 0.207, so φ =       – 11.7¡. 
 The rms current is  
  Irms = Vrms/Z = (300 V)/(8.70 kΩ) =      34.5 mA. 
 
 
77. We find the reactance from 
  Z = [R2 + XL

2]1/2 ; 
  35 Ω = [R2 + (30 Ω)2]1/2, which gives R =       18 Ω. 
 
 
78. From the expression for V, we see that V0 = 4.8 V, and 2?f = 754 s–1. 
 For the reactances, we have 
  XC = 1/2?fC = 1/(754 s–1)(3.0 × 10–6 F) = 442 Ω. 
  XL = 2?fL = (754 s–1)(0.0030 H) = 2.26 Ω. 
 The impedance of the circuit is 
  Z = [R2 + (XL – XC)2]1/2 = [(1.40 kΩ)2 + (0.00226 kΩ – 0.442 kΩ)2]1/2 = 1.47 kΩ. 
 The power dissipated is 
  P  = Irms

2R = (Vrms/Z)2R = (V0/ZÌ2)2R = !(V0/Z)2R  

   = !(4.8 V/1.47 × 103 Ω)2(1.40 × 103 Ω) = 7.5 × 10–3 W =      7.5 mW. 
 
 
79. We find the rms current from 
  P = Irms

2R; 
  9.50 W = Irms

2(250 Ω), which gives Irms = 0.195 A. 
 We find the impedance from 
  Z = Vrms/Irms = (50.0 V)/(0.195 A) = 256 Ω. 
 From this we can find the reactance of the coil: 
  Z2 = R2 + XL

2; 
  (256 Ω)2 = (250 Ω)2 + XL

2, which gives XL = 57.4 Ω. 
 We find the frequency that will produce this reactance from 
  XL = 2?fL ; 
  57.4 Ω = 2?f(0.040 H), which gives f =       228 Hz. 
 
 
80. The voltage across the resistor is in phase with the current: 
  VR = IR = (I0 cos ωt) = I0R cos ωt. 
 The voltage across the inductor leads the current by 90¡ or ?/2: 
  VL = I0 cos (ωt + ?/2)XL = I0ωL cos (ωt + ?/2). 
 The voltage across the capacitor lags the current by 90¡ or ?/2: 
  VC = I0 cos (ωt – ?/2)XC = (I0/ωC) cos (ωt – ?/2). 
 
 
81. The resonant frequency is 
  f0 = (1/2?)(1/LC)1/2 = [1/(50 × 10–6 H)(3500 × 10–12 F)]1/2 =      3.8 × 105 Hz. 
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82. (a) The resonant frequency is given by 
   f0

2 = (1/2?)2(1/LC). 
  When we form the ratio for the two stations, we get 
   (f02/f01)2 = C1/C2 ; 
   (1600 kHz/580 kHz)2 = (2800 pF)/C2 , which gives C2 =      368 pF. 
 (b) We find the inductance from the first frequency: 
   f01 = (1/2?)(1/LC1)1/2; 
   580 × 103 Hz = (1/2?)[1/L(2800 × 10–12 F)]1/2, which gives L = 2.68 × 10–5 H =      26.8 µH. 
 
 
83. (a) We find the capacitance from the frequency: 
   f0 = (1/2?)(1/LC)1/2; 
   3600 Hz = (1/2?)[1/(4.8 × 10–3 H)C]1/2 , which gives C = 4.07 × 10–7 F =      0.41 µF. 
 (b) At resonance the impedance is the resistance, so the current is 
   I0 = V0/R = (50 V)/(4.4 Ω) =      11A. 
 
 
84. (a) The frequency of oscillation is the resonance frequency.  We find the inductance from 
   f0 = (1/2?)(1/LC)1/2; 
   20 × 103 Hz = (1/2?)[1/L(3000 × 10–12 F)]1/2, which gives L = 2.11 × 10–2 H =      21 mH. 
 (b) The energy initially stored in the capacitor will oscillate between the capacitor and the inductor.   
  We find the maximum current, when all of the energy is stored in the inductor, by equating the  
  maximum energies: 
   !CV0

2 = !LImax
2; 

   (3000 × 10–12 F)(120 V)2 = (2.11 × 10–2 H)Imax
2, which gives Imax = 4.5 × 10–2 A =       45 mA. 

 (b) The maximum energy stored in the inductor is 
   ULmax = !LImax

2 = !(2.11 × 10–2 H)(4.5 × 10–2 A)2 =      2.2 × 10–5 J.  
 
 
85. We find the equivalent resistance of the two speakers in parallel from 
  1/Req = (1/R1) + (1/R2) = (1/8 Ω) + (1/8 Ω), which gives Req = 4 Ω. 
 Thus the speakers should be connected to the      4 Ω      terminals. 
 
 
86. Because the loudspeaker is connected to the secondary side of the transformer, we have 
  ZP/ZS = (NP/NS)2; 
  (30 × 103 Ω)/(8.0 Ω) = (NP/NS)2, which gives NP/NS =      61. 
 
 
87. (a) Because the increasing current in the first loop produces an increasing magnetic field in the  
  second loop,      yes,      there will be an induced current in the second loop. 
 (b) Because the current in the first loop increases immediately, the induced current will increase  
   immediately. 
 (c) The induced current will stop       when the current in the first loop reaches the steady state. 
 (d) To oppose the increase in the magnetic field away from you from the first loop, the induced  
  current will produce a magnetic field toward you.  Thus the induced current will be  
   counterclockwise. 
 (e) While there is an induced current, the loops will have parallel opposite currents, so,    yes,       
  there will be a force. 
 (f) Because we have opposite currents, the force is repulsive, so the force on each loop is     
   away from the other loop. 
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88. (a) The clockwise current in the left-hand loop produces a magnetic field which is into the page  
  within the loop and out of the page outside the loop.  Thus the right-hand loop is in a magnetic  
  field out of the page.  Before the current in the left-hand loop reaches its steady state, there will  
  be an induced current in the right-hand loop that will produce a magnetic field into the page to  
  oppose the increase of the field from the left-hand loop.  Thus the induced current will be      
   clockwise.  
 (b) After a long time, the current in the left-hand loop will be constant, so there will be     
   no induced current. 
 (c) If the second loop is pulled to the right, the magnetic field out of the page from the left-hand loop  
  through the second loop will decrease.  During the motion, there will be an induced current in the  
  right-hand loop that will produce a magnetic field out of the page to oppose the decrease of the  
  field from the left-hand loop.  Thus the induced current will be     counterclockwise.  
 
 
89. The average induced emf is 
  å = – ®ΦB/®t = – A ®B/®t = – (0.240 m)2(0 – 0.755 T)/(0.0400 s) = 1.09 V. 
 The average current is 
  I = å/R = (1.09 V)/(6.50 Ω) = 0.168 A. 
 The energy dissipated is  
  E = I2R ®t = (0.168 A)2(6.50 Ω)(0.0400 s) =      7.33 × 10–3 J. 
 
 
90. A side view of the rail and bar is shown in the figure.  The  
 component of the velocity of the bar that is perpendicular to  
 the magnetic field is v cos θ, so the induced emf is  
  å = BLv cos θ. 
 This produces a current in the wire 
  I = å/R = (BLv cos θ)/R into the page. 
 Because the current is perpendicular to the magnetic field, the  
 force on the wire from the magnetic field will be horizontal,  
 as shown, with magnitude 
  FB = I¬B = (B2¬2v cos θ)/R. 
 For the wire to slide down at a steady speed, the net force must be zero.  If we consider the components 

along the rail, we have 
  FB cos θ – mg sin θ = 0,   or 

  [(B2¬2v cos θ)/R] cos θ = (B2¬2v cos2 θ)/R = mg sin θ; 
  (0.55 T)2(0.30 m)2v(cos2 5.0¡)/(0.60 Ω) = (0.040 kg)(9.80 m/s2) sin 5.0¡, which gives      v = 0.76 m/s. 
 
 
91. The average induced emf is 
  å = – ®ΦB/®t = – NA ®B/®t = – NA[(– B) – (+ B)]/®t = 2NAB/®t. 
 The average current is 
  I = å/R = 2NAB/R ®t, 
 so the total charge that passes through the galvanometer is 
  Q = I ®t = (2NAB/R ®t) ®t = 2NAB/R,   or   B = QR/2NA.  
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92. (a) The velocity of the bar is perpendicular to the magnetic field, so the induced emf is  
   å = BLv. 
  This produces a current in the wire 
   I = å/R = BLv/R downward. 
  Because the current is perpendicular to the magnetic field, the force on the wire from the magnetic  
  field will be horizontal to the left with magnitude 
   FB = I¬B = B2¬2v/R. 
  An external force of this magnitude must be exerted to the right to maintain the motion.  The power  
  expended by this force is 
   P = Fv = (B2¬2v/R)v = B2¬2v2/R. 
 (b) The power dissipated in the resistance is 
   P = I 

2R = (BLv/R)2R = B2¬2v2/R,  
  which is the power expended by the external force.  We expect this, since there is no increase in  
  kinetic energy. 
 
 
93. (a) From the efficiency of the transformer, we have PS = 0.80PP.   
  For the power input to the transformer, we have 
   PP = IPVP ; 
   (58 W)/0.80 = IP(110 V), which gives IP =       0.66 A. 
 (b) We find the secondary voltage from 
   PP = VS

2/RS ; 
   58 W = VS

2/(2.4 Ω), which gives VS = 11.8 V. 
  We find the ratio of the number of turns from 
   NP/NS = VP/VS = (110 V)/(11.8 V) =      9.3. 
 
 
94. (a) The voltage drop across the lines is 
   ®V = 2IR = 2(700 A)(0.80 Ω) = 1.12 × 103 V = 1.12 kV. 
  Thus the voltage at the other end is 
   Vout = Vin – ®V = 42 kV – 1.12 kV =       41 kV. 
 (b) The power input is 
   Pin = IVin = (0.700 kA)(42 kV) =       29.4 MW. 
 (c) The power loss in the lines is 
   Ploss = 2I 

2R = 2(0.700 kA)2(0.80 Ω) =       0.78 MW. 
 (d) The power output is 
   Pout = IVout = (0.700 kA)(40.9 kV) =       28.6 MW. 
 
 
95. We find the peak emf from 
  åpeak = NBAω = (125 turns)(0.200 T)(0.066 m)2(120 rev/s)(2? rad/rev) =      82 V. 
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96. (a) Because we have direct coupling, the torque provided by the motor balances the torque of the  
  friction force: 
   NIAB = Fr; 
   (300 turns)I(0.10 m)(0.15 m)(0.60 T) = (250 N)(0.25 m), which gives I =       23 A. 
 (b) To maintain the speed, we have a force equal to the friction force, so the power required is  
   Fv = (250 N)(30 km/h)/(3.6 ks/h) = 2.08 × 103 W. 
  This must be provided by the net power from the motor, which is  
   Pnet = IVin – I 

2R = I(Vin – IR) = Iåback = Fv; 
   (23 A)åback = 2.08 × 103 W, which gives åback =      90 V. 
 (c) The power dissipation in the coils is 
   Ploss = Pin – Pnet = (23 A)(10)(12 V) – 2.08 × 103 W =       6.9 × 102 W. 
 (d) The useful power percentage is 
   (Pnet/Pin)(100) = (Iåback/IVin)(100) = (90 V/120 V)(100) =      75%. 
 
 
97. We find the impedance from 
  Z = XL = Vrms/Irms = (220 V)/(5.8 A) = 37.9 Ω.  
 We find the inductance from 
  XL = 2?fL; 
  37.9 Ω = 2?(60 Hz)L, which gives L =      0.10 H. 
 
 
98. For the current and voltage to be in phase, the net reactance of the capacitor and inductor must be zero, 

which means that we have resonance.  Thus we have 
  f0 = (1/2?)(1/LC)1/2; 
  3360 Hz = (1/2?)[1/(0.230 H)C]1/2 , which gives C = 9.76 × 10–9 F =      9.76 nF. 
 
 
99. Because the current lags the voltage, this must be an       RL circuit. 
 We find the impedance of the circuit from 
  Z = Vrms/Irms = (120 V)/(5.6 A) = 21.4 Ω.  
 We find the resistance from the phase: 
  cos φ = R/Z; 
  cos 50¡ = R/(21.4 Ω), which gives R =        13.8 Ω. 
 We find the reactance from the phase: 
  sin φ = XL/Z; 
  sin 50¡ = XL/(21.4 Ω), which gives XL = 16.4 Ω. 
 We find the inductance from 
  XL = 2?fL; 

  16.4 Ω = 2?(60 Hz)L, which gives L = 4.35 × 10–2 H =      43.5 mH. 
 
 
100. Because the circuit is in resonance, we find the inductance from 
   f0 = (1/2?)(1/LC)1/2; 
   48.0 × 106 Hz = (1/2?)[1/L(220 × 10–12 F)]1/2, which gives L = 5.0 × 10–8 H. 
  If r is the radius of the coil, the number of turns is 
   N = ¬wire/2?r. 
  If d is the diameter of the wire, for closely-wound turns, the length of the coil is 
   ¬ = Nd. 
  Thus the inductance of the coil is 
   L = µ0AN2/¬ = µ0?r2(¬wire/2?r)2/Nd = µ0¬wire

2/4?Nd; 

   5.0 × 10–8 H = (4? × 10–7 T á m/A)(14.0 m)2/4?N(1.1 × 10–3 m), which gives N =      3.56 × 105 turns. 
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101. We find the resistance of the coil from the dc current: 
   R = Vdc/Idc = (36 V)/(2.5 A) =       14 Ω. 
  We find the impedance from the ac current: 
   Z = Vrms/Irms = (120 V)/(3.8 A) = 31.6 Ω. 
  We find the reactance from 
   Z = [R2 + XL

2]1/2 ; 
   31.6 Ω = [(14.4 Ω)2 + XL

2]1/2, which gives XL = 28.1 Ω. 
  We find the inductance from 
   XL = 2?fL; 
   28.1 Ω = 2?(60 Hz)L, which gives L = 0.075 H =      75 mH. 
 
 
102. (a) At resonance we have 
    2?f0 = (1/LC)1/2. 
   The Q factor is  
    Q = VC/VR = IrmsXC/IrmsR = 1/2?f0CR = (LC)1/2/CR = (1/R)(L/C)1/2. 
  (b) We find the inductance from the resonance frequency: 
    2?f0 = (1/LC)1/2; 
    2?(1.0 × 106 Hz) = [1/L(0.010 × 10–6 F)], which gives L = 2.5 × 10–6 H =      2.5 µH. 
   We find the resistance required from 
    Q = (1/R)(L/C)1/2; 
    1000 = (1/R)[(2.5 × 10–6 H)/(0.010 × 10–6 F)], which gives R =       1.6 × 10–2 Ω. 
 
 
103. We find the impedance from the power factor: 
   cos φ = R/Z ; 
   0.17 = (200 Ω)/Z , which gives Z = 1.18 × 103 Ω. 
  We get an expression for the reactances from 
   Z2 = R2 + (XL – XC)2; 

   (1.18 × 103 Ω)2 = (200 Ω)2 + (XL – XC)2, which gives XL – XC = ± 1.16 × 103 Ω. 
  When we express this in terms of the inductance and capacitance, we get 
   2?fL – (1/2?fC) = ± 1.16 × 103 Ω; 
   2?f(0.020 H) – [1/2?f(50 × 10–9 F)] = ± 1.16 × 103 Ω, which reduces to two quadratic equations: 
   0.126f 

2 ± (1.16 × 103 Hz)f – 3.183 × 106 Hz2, 
  which have positive solutions of f =        2.2 × 103 Hz, 1.1 × 104 Hz. 
 
 


