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CHAPTER 17 
 
1. We find the work done by an external agent from the work-energy principle: 
  W  = ÆKE + ÆPE = 0 + q(Vb – Va)  
   = (– 8.6 × 10–6 C)(+ 75 V – 0)=        – 6.5 × 10–4 J (done by the field). 
 
 
2. We find the work done by an external agent from the work-energy principle: 
  W  = ÆKE + ÆPE = 0 + q(Vb – Va)  
   = (1.60 × 10–19 C)[(– 50 V) – (+ 100 V)] =        – 2.40 × 10–17 J (done by the field); 
  W  = q(Vb – Va)  
   = (+ 1 e)[(– 50 V) – (+ 100 V)] =        – 150 eV. 
 
 
3. Because the total energy of the electron is conserved, we have 
  ÆKE + ÆPE = 0,  or   
  ÆKE = – q(VB – VA) = – (– 1.60 × 10–19 C)(21,000 V) =        3.4 × 10–15 J; 
  ÆKE = – (– 1 e)(21,000 V) =        21 keV. 
 
 
4. Because the total energy of the electron is conserved, we have 
  ÆKE + ÆPE = 0;   
  ÆKE + q(VB – VA) = 0; 
  3.45 × 10–15 J + (– 1.60 × 10–19 C)(VB – VA); which gives VB – VA =       2.16 × 103 V. 
  Plate B       is at the higher potential. 
 
 
5. For the uniform electric field between two large, parallel plates, we have 
  E = ÆV/d = (220 V)/(5.2 × 10–3 m) =         4.2 × 104 V/m. 
 
 
6. For the uniform electric field between two large, parallel plates, we have 
  E = ÆV/d; 
  640 V/m = ÆV/(11.0 × 10–3 m), which gives ÆV =        7.04 V. 
 
 
7. Because the total energy of the helium nucleus is conserved, we have 
  ÆKE + ÆPE = 0;   
  ÆKE + q(VB – VA) = 0; 
  65.0 keV + (+ 2e)(VB – VA); which gives VB – VA =       – 32.5 kV. 
 
 
8. For the uniform electric field between two large, parallel plates, we have 
  E = ÆV/d; 
  3 × 106 V/m = (100 V)/d, which gives d =        3 × 10–5 m. 
 
 
9. We use the work-energy principle: 
  W  = ÆKE + ÆPE = ÆKE + q(Vb – Va);  
  25.0 × 10–4 J = 4.82 × 10–4 J + (– 7.50 × 10–6 C)(Vb – Va), which gives Vb – Va =  – 269V,  or   
  Va – Vb = 269 V. 
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10. The data given are the kinetic energies, so we find the speed from 
 (a) KEa = !mva

2;  
  (750 eV)(1.60 × 10–19 J/eV) = !(9.11 × 10–31 kg)va

2, which gives va =        1.62 × 107 m/s. 
 (b) KEb = !mvb

2;  
  (3.5 × 103 eV)(1.60 × 10–19 J/eV) = !(9.11 × 10–31 kg)vb

2, which gives vb =        3.5 × 107 m/s. 
 
 
11. We find the speed from 
  KE = !mv2;  
  (28.0 × 106 eV)(1.60 × 10–19 J/eV) = !(1.67 × 10–27 kg)v2, which gives v =        7.32 × 107 m/s. 
 
 
12. We find the speed from 
  KE = !mv2;  
  (5.53 × 106 eV)(1.60 × 10–19 J/eV) = !(6.64 × 10–27 kg)v2, which gives v =        1.63 × 107 m/s. 
 
 
13. We find the electric potential of the point charge from 
  V = kq/r = (9.0 × 109 N · m2/C2)(4.00 × 10–6 C)/(15.0 × 10–2 m) =       2.40 × 105 V. 
 
 
14. We find the charge from 
  V = kQ/r; 
  125 V = (9.0 × 109 N · m2/C2)Q/(15 × 10–2 m), which gives Q = 2.1 × 10–9 C =      2.1 nC. 
 
 
15. We find the electric potentials of the stationary charges  
 at the initial and final points:  
  Va  = k[(Q1/r1a) + (Q2/r2a)]  
   = (9.0 × 109 N · m2/C2){[(30 × 10–6 C)/(0.16 m)] + [(30 × 10–6 C)/(0.16 m)]} = 3.38 × 106 V. 
  Vb  = k[(Q1/r1b) + (Q2/r2b)]  
   = (9.0 × 109 N · m2/C2){[(30 × 10–6 C)/(0.26 m)] + [(30 × 10–6 C)/(0.06 m)]} = 5.54 × 106 V. 
 Because there is no change in kinetic energy, we have 
  Wa → b = ÆK + ÆU = 0 + q(Vb – Va)  
    = (0.50 × 10–6 C)(5.54 × 106 V – 3.38 × 106 V) =      + 1.08 J. 
 
 
16. (a) We find the electric potential of the proton from 
   V = kq/r = (9.0 × 109 N · m2/C2)(1.60 × 10–19 C)/(2.5 × 10–15 m) =       5.8 × 105 V. 
 (b) We find the electric potential energy of the system by considering one of the charges to be at the  
  potential created by the other charge: 
   PE = qV = (1.60 × 10–19 C)(5.76 × 105 V) =       9.2 × 10–14 J       = 0.58 MeV. 
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17. When the proton is accelerated by a potential, it acquires a kinetic energy: 
  KE = QpVaccel . 
 If it is far from the silicon nucleus, its potential is zero.  It will slow as it approaches the positive charge of 

the nucleus, because the potential produced by the silicon nucleus is increasing.  At the proton’s closest 
point the kinetic energy will be zero.  We find the required accelerating potential from 

  ÆKE + ÆPE = 0;   
  0 – KE + Qp(VSi – 0) = 0,  or   
  QpVaccel  = QpkQSi/(Rp + RSi); 
  Vaccel   = (9.0 × 109 N · m2/C2)(14)(1.60 × 10–19 C)/(1.2 × 10–15 m + 3.6 × 10–15 m)  
    = 4.2 × 106 V =        4.2 MV. 
 
 
18. We find the potential energy of the system of charges by adding the work required to bring the three 

electrons in from infinity successively.  Because there is no potential before the electrons are brought in, 
for the first electron we have 

  W1 = (– e)V0 = 0. 
 When we bring in the second electron, there will be a potential from the first: 
  W2 = (– e)V1 = (– e)k(– e)/r12 = ke2/d. 
 When we bring in the third electron, there will be a potential from the first two: 
  W3 = (– e)V2 = (– e){[k(– e)/r13] + [k(– e)/r23]} = 2ke2/d. 
 The total work required is 
  W = W1 + W2 + W3 = (ke2/d) + (2ke2/d) = 3ke2/d 
   = 3(9.0 × 109 N · m2/C2)(1.60 × 10–19 C)2/(1.0 × 10–10 m) =       6.9 × 10–18 J       = 43 eV. 
 
 
19. (a) We find the electric potentials at the two points: 
   Va  = kQ/ra 
    = (9.0 × 109 N · m2/C2)(– 3.8 × 10–6 C)/(0.70 m)  
    = – 4.89 × 104 V. 
   Vb  = kQ/rb  
    = (9.0 × 109 N · m2/C2)(– 3.8 × 10–6 C)/(0.80 m)  
    = – 4.28 × 104 V. 
  Thus the difference is 
   Vba = Vb – Va = – 4.28 × 104 V – (– 4.89 × 104 V) =      + 6.1 × 103 V. 
 (b) We find the electric fields at the two points: 
   Ea = kQ/ra

2  
    = (9.0 × 109 N · m2/C2)(– 3.8 × 10–6 C)/(0.70 m)2  
    = 6.98 × 104 N/C toward Q (down). 
   Eb = kQ/rb

2  
    = (9.0 × 109 N · m2/C2)(– 3.8 × 10–6 C)/(0.80 m)2  
    = 5.34 × 104 N/C toward Q (right). 
  As shown on the vector diagram, we find the direction of Eb – Ea from 
   tan θ = Ea/Eb = (6.98 × 104 N/C)/(5.34 × 104 N/C) = 1.307,  or  θ =       53° N of E. 
  We find the magnitude from 
   |Eb – Ea| = Eb/cos θ = (5.34 × 104 N/C)/cos 53° =      8.8 × 104 N/C. 
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20. When the electron is far away, the potential from the fixed charge is zero.   
 Because energy is conserved, we have 
  ÆKE + ÆPE = 0;   
  !mv2 – 0 + (– e)(0 – V) = 0,   or    
  !mv2 = e(kQ/r) 
  !(9.11 × 10–31 kg)v2 = (1.60 × 10–19 C)(9.0 × 109 N · m2/C2)(– 0.125 × 10–6 C)/(0.725 m),  
 which gives v =        2.33 × 107 m/s. 
 
 
21. We find the electric potential energy of the system by considering one of the charges to be at the potential 

created by the other charge.  This will be zero when they are far away.  Because the masses are equal, the 
speeds will be equal.  From energy conservation we have 

  ÆKE + ÆPE = 0;   
  !mv2 + !mv2 – 0 + Q(0 – V) = 0,   or    
  2(!mv2) = mv2 = Q(kQ/r) = kQ2/r; 
  (1.0 × 10–6 kg)v2 = (9.0 × 109 N · m2/C2)(7.5 × 10–6 C)2/(0.055 m),  
 which gives v =        3.0 × 103 m/s. 
 
 
22. (a) We find the electric potential of the proton from 
   V = ke/r = (9.0 × 109 N · m2/C2)(1.60 × 10–19 C)/(0.53 × 10–10 m) =       27.2 V. 
 (b) For the electron orbiting the nucleus, the attractive Coulomb force provides the centripetal  
  acceleration: 
   ke2/r2 = mv2/r, which gives KE = !mv2 = !ke2/r = !eV = !(1 e)(27.2 V) =       13.6 eV. 
 (c) For the total energy we have 
   E = KE + PE = (!ke2/r) + (– e)(ke/r) = – !ke2/r =      – 13.6 eV. 
 (d) Because the final energy of the electron is zero, for the ionization energy we have 
   Eionization = – E =       13.6 eV      (2.2 × 10–18 J). 
 
 
23. We find the electric potentials from the charges at the two points: 
  VA = k{(+ q/b) + [– q/(d – b)]}  
   = kq{(1/b) – [1/(d – b)]} = kq(d – 2b)/b(d – b).  
  VB = k{[+ q/(d – b)] + (– q/b)}  
   = kq{[1/(d – b)] – (1/b)} = kq(2b – d)/b(d – b). 
 Thus we have 
  VBA = VB – VA = [kq(2b – d)/b(d – b)] – [kq(d – 2b)/b(d – b)] =      2kq(2b – d)/b(d – b). 
 Note that, as expected, VBA = 0 when b = !d. 
 
 
24. (a) We find the dipole moment from 
   p = eL = (1.60 × 10–19 C)(0.53 × 10–10 m) =      8.5 × 10–30 C · m. 
 (b) The dipole moment will point from the electron toward the proton.  As the electron revolves about  
  the proton, the dipole moment will spend equal times pointing in any direction.  Thus the average  
  over time will be      zero.  
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25. With the dipole pointing along the axis, the potential at a  
 point a distance r from the dipole which makes an angle θ  
 with the axis is  
  V  = (kp cos θ)/r2  
   = (9.0 × 109 N · m2/C2)(4.8 × 10–30 C · m)(cos θ)/(1.1 × 10–9 m)2  
   = (0.0357 V) cos θ. 
 (a) Along the axis, θ = 0, so we have 
   V  = (kp cos θ)/r2  
    = (0.0357 V) cos 0° =      0.036 V. 
 (b) Above the axis near the positive charge, θ = 45°, so we have 
   V  = (kp cos θ)/r2  
    = (0.0357 V) cos 45° =      0.025 V. 
 (c) Above the axis near the negative charge, θ = 135°, so we have 
   V  = (kp cos θ)/r2  
    = (0.0357 V) cos 135° =      – 0.025 V. 
 
 
26. (a) With the distance measured from the center of the dipole, we find the potential from each charge: 
   VO = kQO/rO 
    = (9.0 × 109 N · m2/C2)(– 6.6 × 10–20 C)/(9.0 × 10–10 m – 0.6 × 10–10 m)  
    = – 0.707 V. 
   VC = kQC/rC 
    = (9.0 × 109 N · m2/C2)(+ 6.6 × 10–20 C)/(9.0 × 10–10 m + 0.6 × 10–10 m)  
    = + 0.619 V. 
  Thus the total potential is 
   V = VO + VC = – 0.707 V + 0.619 V =      – 0.088 V. 
 (b) The percent error introduced by the dipole approximation is 
   % error = (100)(0.089 V – 0.088 V)/(0.088 V) =        1%. 
 
 
27. Because p1 = p2 , from the vector addition we have 
  p = 2p1 cos (!θ) = 2qL cos (!θ); 
  6.1 × 10–30 C · m = 2q(0.96 × 10–10 m) cos [!(104°)], which gives q =       5.2 × 10–20 C. 
 
 
28. We find the potential energy of the system by considering  
 each of the charges of the dipole on the right to be in the  
 potential created by the other dipole.  The potential of the  
 dipole on the left along its axis is 
  V1 = (kp1 cos θ)/r2 = kp1/r2. 
 If r is the distance between centers of the dipoles, the potential energy is 
  PE  = (q2)[kp1/(r + !d)2] + (– q2)[kp1/(r – !d)2]  

   = q2kp1{[1/(r + !d)2] – [1/(r – !d)2]} = (q2kp1/r2)({1/[1 + (d/2r)]2} – {1/[1 – (d/2r)]2}). 
 Because d « r, we can use the approximation 1/(1 ± x)2 ≈ 1 — 2x, when x « 1: 
  PE ≈ (q2kp1/r2){[1 – (d/r)] – [1 + (d/r)]} = – 2q2dkp1/r3 = – 2kp1p2/r3. 
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29. Because the field is uniform, the magnitudes of the forces on the charges  
 of the dipole will be equal: 
  F+ = F– = QE. 
 If the separation of the charges is ¬, the dipole moment will be p = Q¬.  
 If we choose the center of the dipole for the axis of rotation, both forces  
 create a CCW torque with a net torque of  
  τ = F+(!¬) sin φ + F–(!¬) sin φ = 2QE(!¬) sin φ = pE sin φ. 
 Because the forces are in opposite directions, the net force is       zero. 
 If the field is nonuniform, there would be a torque produced by the average  
 field.  The magnitudes of the forces would not be the same, so there would  
 be a       resultant force       that would cause a translation of the dipole.  
   
 
 
30. From Q = CV, we have 
  2500 µC = C(950 V), which gives C =       2.6 µF. 
 
 
31. From Q = CV, we have 
  95 pC = C(120 V), which gives C =       0.79 pF. 
 
 
32. From Q = CV, we have 
  16.5 × 10–8 C = (7500 × 10–12 F)V, which gives V =       22.0 V. 
 
 
33. The final potential on the capacitor will be the voltage of the battery.  Positive charge will move from one 

plate to the other, so the charge that flows through the battery is 
  Q = CV = (9.00 µF)(12.0 V) =       108 µC. 
 
 
34. For a parallel-plate capacitor, we find the area from 
  C = Å0A/d; 
  0.20 F = (8.85 × 10–12 C2/N · m2)A/(2.2 × 10–3 m), which gives A =       5.0 × 107 m2. 
 If the area were a square, it would be ≈ 7 km on a side. 
 
 
35. We find the capacitance from 
  C  = KÅ0A/d = KÅ0¹r2/d  
   = (7)(8.85 × 10–12 C2/N · m2)¹(0.050 m)2/(3.2 × 10–3 m) =       1.5 × 10–10 F. 
 
 
36. From Q = CV, we see that 
  ÆQ = C ÆV; 
  15 µC = C(121 V – 97 V), which gives C =       0.63 µF. 
 
 
37. The uniform electric field between the plates is related to the potential difference across the plates: 
  E = V/d. 
 For a parallel-plate capacitor, we have 
  Q  = CV = (Å0A/d)(Ed) = Å0AE 
   = (8.85 × 10–12 C2/N · m2)(35.0 × 10–4 m2)(8.50 × 105 V/m)  

–
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   = 2.63 × 10–8 C =      26.3 nC. 
 



Solutions to Physics: Principles with Applications, 5/E, Giancoli  Chapter 17 

 Page 17 – 9 

38. The uniform electric field between the plates is related to the potential difference across the plates: 
  E = V/d. 
 For a parallel-plate capacitor, we have 
  Q = CV = (Å0A/d)(Ed) = Å0AE; 
  4.2 × 10–6 C = (8.85 × 10–12 C2/N · m2)A(2.0 × 103 V/mm)(103 mm/m),  
 which gives A =       0.24 m2. 
 
 
39. We find the potential difference across the plates from 
  Q = CV; 
  72 µC = (0.80 µF)V, which gives V = 90 V. 
 We find the uniform electric field between the plates from 
  E = V/d = (90 V)/(2.0 × 10–3 m) =      4.5 × 104 V/m. 
 
 
40. The uniform electric field between the plates is related to the potential difference across the plates: 
  E = V/d. 
 For a parallel-plate capacitor, we have 
  Q = CV = CEd; 
  0.775 × 10–6 C = C(9.21 × 104 V/m)(1.95 × 10–3 m), which gives C =       4.32 × 10–9 F. 
 We find the area of the plates from 
  C = KÅ0A/d; 
  4.32 × 10–9 F = (3.75)(8.85 × 10–12 C2/N · m2)A/(1.95 × 10–3 m), which gives A =       0.254 m2. 
 
 
41. We find the initial charge on the 7.7-µF capacitor when it is connected to the battery: 
  Q = C1V = (7.7 µF)(125 V) = 962.5 µC. 
 When C1 is disconnected from the battery and then connected to C2 , some charge will flow from  
 C1 to C2 .  The flow will stop when the voltage across the two capacitors is the same: 
  V1 = V2 = 15 V. 
 Because charge is conserved, we have 
  Q = Q1 + Q2 . 
 We find the charge remaining on C1 from 
  Q1 = C1V1 = (7.7 µF)(15 V) = 115.5 µC. 
 The charge on C2 is 
  Q2 = Q – Q1 = 962.5 µC – 115.5 µC = 847 µC. 
 We find the value of C2 from 
  Q2 = C2V2 ; 
  847 µC = C2(15 V), which gives C2 =       56 µF. 
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42. We find the initial charges on the capacitors: 
  Q1 = C1V1 = (2.50 µF)(1000 V) = 2500 µC; 
  Q2 = C2V2 = (6.80 µF)(650 V) = 4420 µC. 
 When the capacitors are connected, some charge will flow from C2 to C1  until the potential difference 

across the two capacitors is the same: 
  V1′ = V2′ = V. 
 Because charge is conserved, we have 
  Q = Q1′ + Q2′ = Q1 + Q2  = 2500 µC + 4420 µC = 6920 µC. 
 For the two capacitors we have 
  Q1′ = C1V,   and   Q2′ = C2V. 
 When we add these, we get 
  Q1′ + Q2′ = Q = (C1 + C2)V; 
  6920 µC = (2.50 µF + 6.80 µF)V, which gives V =      744 V. 
 The charge on C1 is 
  Q1′ = C1V = (2.50 µF)(744 V) = 1.86 × 103 µC =      1.86 × 10–3 C. 
 The charge on C2 is 
  Q2′ = C2V = (6.80 µF)(744 V) = 5.06 × 103 µC =      5.06 × 10–3 C. 
 
 
43. The energy stored in the capacitor is  
  U = !CV 

2 = !(7200 × 10–12 F)(550 V)2 =       1.09 × 10–3 J. 
 
 
44. We find the capacitance from 
  U = !CV 

2; 
  200 J = !C(6000 V)2, which gives C = 1.1 × 10–5 F =       11 µF. 
 
 
45. (a) The radius of the pie plate is 
   r = !(9.0 in)(2.54 × 10–2 m/in) = 0.114 m. 
  If we assume that it approximates a parallel-plate capacitor, we have 
   C  = Å0A/d = Å0¹r2/d  
    = (8.85 × 10–12 C2/N · m2)¹(0.114 m)2/(0.10 m) = 3.6 × 10–12 F =       3.6 pF. 
 (b) We find the charge on each plate from 
   Q = CV = (3.6 pF)(9.0 V) =       32 pC. 
 (c) We assume that the electric field is uniform, so we have 
   E = V/d = (9.0 V)/(0.10 m) =      90 V/m. 
 (d) The work done by the battery is the energy stored in the capacitor: 
   W = U = !CV 

2 = !(3.6 × 10–12 F)(9.0 V)2 =       1.5 × 10–10 J. 
 (e) Because the battery is still connected, the electric field will not change.  Insertion of the dielectric  
  will change      capacitance, charge, and work done by the battery. 
 
 
46. From C = Å0A/d, we see that separating the plates will change C.  For the stored energy we have 
  U = !CV 

2 =  !Q 
2/C. 

 Because the charge is constant, for the two conditions we have 
  U2/U1 = C1/C2 = d2/d1 =       2. 
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47. (a) For the stored energy we have U = !CV 
2.  Because the capacitance does not change, we have 

   U2/U1 = (V2/V1)2 = (2)2 =       4×. 
 (b) For the stored energy we have U = !CV 

2 =  !Q 
2/C.  The capacitance does not change, so we have 

   U2/U1 = (Q2/Q1)2 = (2)2 =       4×. 
 (c) Because the battery is still connected, the potential difference will not change.   
  From C = Å0A/d, we see that separating the plates will change C.   
  For the stored energy we have U = !CV 

2, so we get 
   U2/U1 = C2/C1 = (2)2 = d1/d2 =       !×. 
 
 
48. Because the capacitor is isolated, the charge will not change.  The initial stored energy is 
  U1 = !C1V1

2 = !Q 
2/C1 , with C1 = Å0A/d1 . 

 The changes will change the capacitance: 
  C2 = KÅ0A/d2 . 
 For the ratio of stored energies, we have 
  U2/U1 = C1/C2 = (Å0A/d1)/(KÅ0A/d2) = d2/Kd1 = !/K =       1/2K. 
 The stored energy decreases from two factors.  Because the plates attract each other, when the separation 

is halved, work is done by the field, so the energy decreases.  When the dielectric is inserted, the induced 
charges on the dielectric are attracted to the plates; again work is done by the field and the energy 
decreases. 

 The uniform electric field between the plates is related to the potential difference across the plates: 
  E = V/d. 
 For a parallel-plate capacitor, we have 
  Q = C1V1 = C1E1d1 = C2E2d2 ,  or  
  E2/E1 = C1d1/C2d2 = Å0A/KÅ0A =       1/K. 
 
 
49. (a) Because there is no stored energy on the uncharged 4.00-µF capacitor, the total stored energy is  
   Ua = !C1V0

2 = !(2.70 × 10–6 F)(45.0 V)2 =       2.73 × 10–3 J. 
 (b) We find the initial charge on the 2.70-µF capacitor when it is connected to the battery; 
   Q = C1V0 = (2.70 µF)(45.0 V) = 121.5 µC. 
  When the capacitors are connected, some charge will flow from C1 to C2  until the potential  
  difference across the two capacitors is the same: 
   V1 = V2 = V. 
  Because charge is conserved, we have 
   Q = Q1 + Q2  = 121.5 µC. 
  For the two capacitors we have 
   Q1 = C1V,   and   Q2 = C2V. 
  When we form the ratio, we get 
   Q2/Q1 = (121.5 µC – Q1)/Q1 = C2/C1 = (4.00 µF)/(2.70 µF), which gives Q1 = 49.0 µC. 
  We find V from 
   Q1 = C1V; 
   49.0 µC = (2.70 µF)V, which gives V = 18.1 V. 
  For the stored energy we have  
   Ub = !C1V2 + !C2V 

2 = !(C1 + C2)V2 = ![(2.70 + 4.00) × 10–6 F](18.1 V)2 =      1.10 × 10–3 J.   
 (c) The change in stored energy is 
   ÆU = Ub – Ua = 1.10 × 10–3 J – 2.73 × 10–3 J =      – 1.63 × 10–3 J. 
 (d) The stored potential energy is not conserved.      During the flow of charge before the final  
  steady state, some of the stored energy is dissipated as thermal and radiant energy. 
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50. We find the rms speed from 
  KE = !mvrms

2 = 8kT; 
  (9.11 × 10–31 kg)v300

2 = 3(1.38 × 10–23 J/K)(300 K), which gives v300 =       1.17 × 105 m/s. 
  (9.11 × 10–31 kg)v2500

2 = 3(1.38 × 10–23 J/K)(2500 K), which gives v2500 =       3.37 × 105 m/s. 
 
 
51. We find the horizontal velocity of the electron as it enters  
 the electric field from the accelerating voltage: 
  !mv0

2 = eV; 
  !(9.11 × 10–31 kg)v0

2 = (1.60 × 10–19 C)(15 × 103 V),  
 which gives v0 = 7.26 × 107 m/s. 
 Because the force from the electric field is vertical, the  
 horizontal velocity is constant.  The time to pass through  
 the field is 
  t1 = d/v0 = (0.028 m)/(7.26 × 107 m/s) = 3.86 × 10–10 s. 
 The time for the electron to go from the field to the screen is 
  t2 = L/v0 = (0.22 m)/(7.26 × 107 m/s) = 3.03 × 10–9 s. 
 If we neglect the small deflection during the passage through the field, we find the vertical velocity when 

the electron leaves the field from the vertical displacement: 
  vy = h/t2 = (0.11 m)/(3.03 × 10–9 s) = 3.63 × 107 m/s. 
 This velocity was produced by the acceleration in the electric field: 
  F = eE = may ,   or   ay = eE/m. 
 From the vertical motion in the field, we have 
  vy = v0y + ayt1 ; 
  3.63 × 107 m/s = 0 + [(1.60 × 10–19 C)E/(9.11 × 10–31 kg)](3.86 × 10–10 s),  
 which gives E =      5.4 × 105 V/m. 
 
 
52. We find the horizontal velocity of the electron as it enters  
 the electric field from the accelerating voltage: 
  !mv0

2 = eV; 
  !(9.11 × 10–31 kg)v0

2 = (1.60 × 10–19 C)(14 × 103 V),  
 which gives v0 = 7.01 × 107 m/s. 
 Because the force from the electric field is vertical, the  
 horizontal velocity is constant.  The time to pass through  
 the field is 
  t1 = d/v0 = (0.026 m)/(7.01 × 107 m/s) = 3.71 × 10–10 s. 
 The time for the electron to go from the field to the screen is 
  t2 = L/v0 = (0.34 m)/(7.01 × 107 m/s) = 4.85 × 10–9 s. 
 The electron will sweep up and down across the screen.  If we neglect the small deflection during the 

passage through the deflecting plates, when the electron leaves the plates the vertical velocity required to 
reach the edge of the screen is 

  vymax = h/t2 = (0.15 m)/(4.85 × 10–9 s) = 3.10 × 107 m/s. 
 This velocity was produced by the acceleration in the electric field: 
  F = eEmax = maymax ,   or   aymax = eEmax/m. 
 From the vertical motion in the field, we have 
  vymax = v0y + aymaxt1 ; 
  3.10 × 107 m/s = 0 + [(1.60 × 10–19 C)Emax/(9.11 × 10–31 kg)](3.71 × 10–10 s),  
 which gives Emax = 4.8 × 105 V/m. 
 Thus the range for the electric field is      – 4.8 × 105 V/m < E < 4.8 × 105 V/m. 
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53. The energy density in the field is 
  u = !Å0E2 = !(8.85 × 10–12 C2/N · m2)(150 V/m)2 =      9.96 × 10–8 J/m3. 
 
 
54. (a) We find the potential difference from 
   U = Q ÆV; 
   4.2 MJ = (4.0 C) ÆV, which gives ÆV =       1.1 MV. 
 (b) We find the amount of water that can have its temperature raised to the boiling point from 
   U = mc ÆT; 
   4.2 x 106 J = m(4186 J/kg · C°)(100°C – 20°C), which gives m =       13 kg. 
 
 
55. (a) We find the average translational kinetic energy from 
   KEO = 8kT = 8(1.38 × 10–23 J/K)(293 K)/(1.60 × 10–19 J/eV) =      0.039 eV. 
 (b) The average translational kinetic energy depends only on the temperature, so we have 
   KEN =      0.039 eV. 
 (c) For the iron atom we have 
   KEFe = 8kT = 8(1.38 × 10–23 J/K)(2 × 106 K)/(1.60 × 10–19 J/eV) = 3 × 102 eV =      0.3 keV. 
 (d) For the carbon dioxide molecule we have 
   KECO2 = 8kT = 8(1.38 × 10–23 J/K)(223 K)/(1.60 × 10–19 J/eV) =      0.029 eV. 
 
 
56. The acceleration produced by a potential difference of 1000 V over a distance of 1 cm is 
  a = eE/m = eV/md = (1.60 × 10–19 C)(1000 V)/(9.11 × 10–31 kg)(0.01 m) = 2 × 1016 m/s2. 
 Because this is so much greater than g,       yes,      the electron can easily move upward. 
 To find the potential difference to hold the electron stationary, we have 
  a = g = eE/m; 
  9.80 m/s2 = (1.60 × 10–19 C)V/(9.11 × 10–31 kg)(0.030 m), which gives V =      1.7 × 10–12 V. 
 
 
57. If the plates initially have a charge Q on each plate, the energy to move a charge ÆQ will increase the 

stored energy: 
  ÆU = U2 – U1 = (!Q2 

2/C) – (!Q1 
2/C)  

   = [(Q + ÆQ)2 – Q 
2]/2C = [(2Q ÆQ + (ÆQ)2]/2C = (2Q + ÆQ) ÆQ/2C;  

  8.5 J = (2Q + 3.0 × 10–3 C)(3.0 × 10–3 C)/2(9.0 × 10–6 F), which gives Q = 0.024 C =      24 mC. 
 
 
58. (a) The kinetic energy of the electron (q = – e) is 
   KEe = – qVBA = – (– e)VBA = eVBA . 
  The kinetic energy of the proton (q = + e) is 
   KEp = – qVAB = – (+ e)(– VBA) = eVBA =       5.2 keV. 
 (b) We find the ratio of their speeds, starting from rest, from 
   !meve

2 = !mpvp
2,   or   ve/vp = (mp/me)1/2 = [(1.67 × 10–27 kg)/(9.11 × 10–31 kg)]1/2 =      42.8. 

 
 
59. The mica will change the capacitance.  The potential difference is constant, so we have 
  ÆQ = Q2 – Q1 = (C2 – C1)V = (K – 1)C1V  
   = (7 – 1)(2600 × 10–12 F)(9.0 V) = 1.4 × 10–7 C =       0.14 µC. 
 
 
60. If we equate the heat flow to the stored energy, we have 
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  U = !CV 
2 = mc ÆT; 

  !(4.0 F)V 
2 = (2.5 kg)(4186 J/kg · C°)(95°C – 20°C), which gives V =       6.3 × 102 V. 
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61. Because the charged capacitor is disconnected from the plates, the charge must be constant.  The paraffin 
will change the capacitance, so we have 

  Q = C1V1 = C2V2  = KC1V2 ; 
  24.0 V = (2.2)V2 , which gives V2 =      10.9 V. 
 
 
62. The uniform electric field between the plates is related to the potential difference across the plates: 
  E = V/d. 
 For a parallel-plate capacitor, we have 
  Q  = CV = (Å0A/d)(Ed) = Å0AE 
   = (8.85 × 10–12 C2/N · m2)(56 × 10–4 m2)(3.0 × 106 V/mm) = 1.5 × 10–7 C =      0.15 µC. 
 
 
63. (a) Because the charges have opposite signs, the location where the electric field is zero  
  must be outside the negative charge, as shown.   
  The fields from the two charges must balance:  
   kQ1/(x + L)2 = kQ2/x2; 
   (3.4 µC)/(x + 1.5 cm)2 = (2.0 µC)/x2,  
  which gives x = – 0.65 cm, 4.9 cm. 
 Because – 0.65 cm is between the charges, the location is       
  4.9 cm from the negative charge, and 7.4 cm from the positive charge. 
 (b) The potential is a scalar that depends only on the distance.  If the potential is 0 at the point x from 

 the negative charge, the potential for the two charges is 
   V = k[(Q1/|(x + L)|) + (Q2/| x |)]; 
   0 = [(3.4 µC)/|(x + 1.5 cm)|] + [(– 2.0 µC)/| x |],  
  which gives 3.4| x | = 2.0|(x + 1.5 cm)|.  
  For a point between the two charges, x is negative, so we have 
   3.4(– x1) = 2.0(x1 + 1.5 cm), which gives x1 = – 0.56 cm.  
  For a point outside the two charges, x is positive, so we have 
   3.4(x2) = 2.0(x2 + 1.5 cm), which gives x2 = 2.1 cm.  
  Thus there are two positions:  0.56 cm from the negative charge toward the positive charge, and 
         2.1 cm from the negative charge away from the positive charge. 
 
 
64. The distances from the midpoint of a side to the three charges  
 are ¬/2, ¬/2, and ¬ cos 30°. 
 At point a, we have 
  Va  = k{[(– Q)/(¬/2)] + [(+ Q)/(¬/2)] + [(– 3Q)/(¬ cos 30°)]}  
   = (kQ/¬)[(– 2) + (+ 2) + (– 3/cos 30°)] =       – 3.5 kQ/¬. 
 At point b, we have 
  Vb  = k{[(+ Q)/(¬/2)] + [(– 3Q)/(¬/2)] + [(– Q)/(¬ cos 30°)]}  
   = (kQ/¬)[(+ 2) + (– 6) + (– 1/cos 30°)] =       – 5.2 kQ/¬. 
 At point c, we have 
  Vc  = k{[(– 3Q)/(¬/2)] + [(– Q)/(¬/2)] + [(+ Q)/(¬ cos 30°)]}  
   = (kQ/¬)[(– 6) + (– 2) + (+ 1/cos 30°)] =       – 6.8 kQ/¬. 
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65. When the capacitors are connected, some charge will flow from C1 to C2 until the potential  
 difference across the two capacitors is the same: 
  V1 = V2 = V. 
 Because charge is conserved, we have 
  Q0 = Q1 + Q2 . 
 For the two capacitors we have 
  Q1 = C1V,   and   Q2 = C2V. 
 When we form the ratio, we get 
  Q2/Q1 = (Q0 – Q1)/Q1 = C2/C1 , which gives      Q1 = Q0C1/(C1 + C2). 
 For Q2 we have 
  Q2 = Q0 – Q1 = Q0{1 – [C1/(C1 + C2)]}, thus      Q2 = Q0C2/(C1 + C2). 
 We find the potential difference from 
  Q1 = C1V; 
  Q0C1/(C1 + C2) = C1V, which gives       V = Q0/(C1 + C2). 
 
 
66. We find the horizontal velocity of the electron as it enters the  
 electric field from the accelerating voltage: 
  !mv0

2 = eVaccel ; 
  !(9.11 × 10–31 kg)v0

2 = (1.60 × 10–19 C)(25 × 103 V),  
 which gives v0 = 9.37 × 107 m/s. 
 We find the vertical acceleration due to the electric field from 
  F = eE = may ,   or   ay = eE/m = eV/md; 
  ay = (1.60 × 10–19 C)(250 V)/(9.11 × 10–31 kg)(0.013 m) = 3.38 × 1015 m/s2. 
 Because the force from the electric field is vertical, the horizontal velocity is constant.  The time to pass 

through the field is 
  t1 = L/v0 = (0.065 m)/(9.37 × 107 m/s) = 6.94 × 10–10 s. 
 From the vertical motion in the field, we have 
  vy = v0y + ayt1 = 0 + (3.38 × 1015 m/s2)(6.94 × 10–10 s) = 2.34 × 106 m/s. 
 The angle θ is the direction of the velocity, which we find from 
  tan θ = vy/v0 =(2.34 × 106 m/s)/(9.37 × 107 m/s) = 0.025,  or      θ = 1.4°. 
 
 
67. For the motion of the electron from emission to the plate, the energy of the electron is conserved,  
 so we have 
  ÆKE + ÆPE = 0,   or   0 –  !mv2 + (– e) ÆV = 0; 
  – !(9.11 × 10–31 kg)v2 + (– 1.60 × 10–19 C)(– 3.02 V – 0) = 0, which gives v =      1.03 × 106 m/s. 
 
 
68. (a) For a parallel-plate capacitor, we find the gap from 
   C = Å0A/d; 
   1 F = (8.85 × 10–12 C2/N · m2)(1.0 × 10–4 m2)/d, which gives d =     9 × 10–16 m. 
  Because this is many orders of magnitude less than the size of an atom, it is not practical. 
 (b) We find the area from 
   C = Å0A/d; 
   1 F = (8.85 × 10–12 C2/N · m2)A/(1.0 × 10–3 m), which gives A =     1.1 × 108 m2. 
  Because this corresponds to a square ≈ 10 km on a side, it is not practical. 
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69. Because the electric field points downward, the potential is greater at the higher elevation.  For the 
potential difference, we have 

  ÆV = – (150 V/m)(2.00 m) = – 300 V. 
 For the motion of the falling charged balls, the energy is conserved:  
  ÆKE + ÆPE = 0,   or   !mv2 – 0 + q ÆV + mg(0 – h) = 0, which gives 
  v2 = 2gh – 2(q/m) ÆV. 
 For the positive charge, we have 
  v1

2  = 2gh – 2(q1/m) ÆV  
   = 2(9.80 m/s2)(2.00 m) – 2[(550 × 10–6 C)/(0.540 kg)](– 300 V), which gives v1 = 6.31 m/s.  
 For the negative charge, we have 
  v2

2  = 2gh – 2(q2/m) ÆV  
   = 2(9.80 m/s2)(2.00 m) – 2[(– 550 × 10–6 C)/(0.540 kg)](– 300 V), which gives v2 = 6.21 m/s.  
 Thus the difference in speeds is  6.31 m/s – 6.21 m/s =      0.10 m/s. 
 
 
70. (a) The energy stored in the capacitor is  
   U = !CV 

2 = !(0.050 × 10–6 F)(30 × 103 V)2 =       23 J. 
 (b) We find the power of the pulse from 
   P = 0.10 U/t = (0.10)(23 J)/(10 × 10–6 s) = 2.3 × 105 W =      0.23 MW. 
 
 
71. (a) We find the capacitance from 
   C  = Å0A/d  
    = (8.85 × 10–12 C2/N · m2)(110 × 106 m2)/(1500 m) = 6.49 × 10–7 F =      0.649 µF. 
 (b) We find the stored charge from 
   Q = CV = (6.49 × 10–7 F)(35 × 106 V) =       23 C. 
 (c) For the stored energy we have 
   U = !CV 

2 = !(6.49 × 10–7 F)(35 × 106 V)2 =      4.0 × 108 J. 
 
 


