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CHAPTER 16 
 
1. The number of electrons is  
  N  = Q/e = (– 30.0 × 10–6 C)/(– 1.60 × 10–19 C/electrons) =       1.88 × 1014 electrons. 
 
 
2. The magnitude of the Coulomb force is 
  F = kQ1Q2/r2. 
 If we divide the expressions for the two forces, we have 
  F2/F1 = (r1/r2)2; 
  F2/(4.2 × 10-2 N) = (8)2, which gives F2 =        2.7 N. 
 
 
3. The magnitude of the Coulomb force is 
  F = kQ1Q2/r2. 
 If we divide the expressions for the two forces, we have 
  F2/F1 = (r1/r2)2; 
  3 = [(20.0 cm)/r2]2, which gives r2 =        11.5 cm. 
 
 
4. The magnitude of the Coulomb force is 
  F = kQ1Q2/r2. 
 If we divide the expressions for the two forces, we have 
  F2/F1 = (r1/r2)2; 
  F2/(0.0200 N) = (150 cm/30.0 cm)2, which gives F2 =        0.500 N. 
 
 
5. The magnitude of the Coulomb force is 
  F  = kQ1Q2/r2 
   = (9.0 × 109 N · m2/C2)(26)(1.60 × 10–19 C)(1.60 × 10–19 C)/(1.5 × 10–12 m)2 =       2.7 × 10–3 N. 
 
 
6. The magnitude of the Coulomb force is 
  F  = kQ1Q2/r2 
   = (9.0 × 109 N · m2/C2)(1.60 × 10–19 C)(1.60 × 10–19 C)/(5.0 × 10–15 m)2 =       9.2 N. 
 
 
7. The magnitude of the Coulomb force is 
  F  = kQ1Q2/r2 
   = (9.0 × 109 N · m2/C2)(15 × 10–6 C)(3.00 × 10–3 C)/(0.40 m)2 =       2.5 × 103 N. 
 
 
8. The number of excess electrons is  
  N  = Q/e = (– 60 × 10–6 C)/(– 1.60 × 10–19 C/electrons) =       3.8 × 1014 electrons. 
 The mass increase is 
  Æm = Nme = (3.8 × 1014 electrons)(9.11 × 10–31 kg/electron) =       3.4 × 10–16 kg. 
 
 
9. Because the charge on the Earth can be considered to be at the center, we can use the expression for the 

force between two point charges.  For the Coulomb force to be equal to the weight, we have 
  kQ2/R2 = mg; 
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  (9.0 × 109 N · m2/C2)Q2/(6.38 × 106 m)2 = (1050 kg)(9.80 m/s2), which gives Q =       6.8 × 103 C. 
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10. The number of molecules in 1.0 kg is 
  N = [(1.0 kg)(103 g/kg)/(18 g/mol)](6.02 × 1023 molecules/mol) = 3.34 × 1025 molecules. 
 Each molecule of H2O contains 2(1) + 8 = 10 electrons.  The charge of the electrons in 1.0 kg is 
  q  = (3.34 × 1025 molecules)(10 electrons/molecule)(– 1.60 × 10–19 C/electron) 
   =       – 5.4 × 107 C. 
 
 
11. Using the symbols in the figure, we find the magnitudes of the three individual forces: 
  F12 = F21 = kQ1Q2/r12

2 = kQ1Q2/L2  
   = (9.0 × 109 N · m2/C2)(70 × 10–6 C)(48 × 10–6 C)/(0.35 m)2  
   = 2.47 × 102 N. 
  F13 = F31 = kQ1Q3/r12

2 = kQ1Q3/(2L)2  
   = (9.0 × 109 N · m2/C2)(70 × 10–6 C)(80 × 10–6 C)/[2(0.35 m)]2  
   = 1.03 × 102 N. 
  F23 = F32 = kQ2Q3/r12

2 = kQ2Q3/L2  
   = (9.0 × 109 N · m2/C2)(48 × 10–6 C)(80 × 10–6 C)/(0.35 m)2  
   = 2.82 × 102 N. 
 The directions of the forces are determined from the signs of the charges and are indicated on the  
 diagram.  For the net forces, we get 
  F1 = F13 – F12 = 1.03 × 102 N – 2.47 × 102 N =      – 1.4  × 102 N (left). 
  F2 = F21 – F23 = 2.47 × 102 N + 2.82 × 102 N =      + 5.3  × 102 N (right). 
  F3 = – F31 – F32 = – 1.03 × 102 N – 2.82 × 102 N =      – 3.9  × 102 N (left). 
 Note that the sum for the three charges is zero. 
 
 
12. Because all the charges and their separations are equal,  
 we find the magnitude of the individual forces: 
  F1 = kQQ/L2 = kQ2/L2  
   = (9.0 × 109 N · m2/C2)(11.0 × 10–6 C)2/(0.150 m)2  
   = 48.4 N. 
 The directions of the forces are determined from the signs  
 of the charges and are indicated on the diagram.   
 For the forces on the top charge, we see that the horizontal  
 components will cancel.  For the net force, we have 
  F  = F1 cos 30° + F1 cos 30° = 2F1 cos 30°  
   = 2(48.4 N) cos 30°  
   = 83.8 N up, or away from the center of the triangle. 
 From the symmetry each of the other forces will have the same magnitude and a direction away from the 

center:  The net force on each charge is        83.8 N away from the center of the triangle. 
 Note that the sum for the three charges is zero. 
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13. We find the magnitudes of the individual forces on the  
 charge at the upper right corner: 
  F1 = F2 = kQQ/L2 = kQ2/L2  
   = (9.0 × 109 N · m2/C2)(6.00 × 10–3 C)2/(1.00 m)2  
   = 3.24 × 105 N. 
  F3 = kQQ/(LÃ2)2 = kQ2/2L2  
   = (9.0 × 109 N · m2/C2)(6.00 × 10–3 C)2/2(1.00 m)2  
   = 1.62 × 105 N. 
 The directions of the forces are determined from the signs  
 of the charges and are indicated on the diagram.   
 For the forces on the top charge, we see that the net force  
 will be along the diagonal.  For the net force, we have 
  F  = F1 cos 45° + F2 cos 45° + F3  
   = 2(3.24 × 105 N) cos 45° + 1.62 × 105 N 
   = 6.20 × 105 N along the diagonal, or away from the center of the square. 
 From the symmetry, each of the other forces will have the same magnitude and a direction away from the 

center:  The net force on each charge is        6.20 × 105 N away from the center of the square. 
 Note that the sum for the three charges is zero. 
 
 
14. Because the magnitudes of the charges and the distances  
 have not changed, we have the same magnitudes of the  
 individual forces on the charge at the upper right corner:  
  F1 = F2 = kQQ/L2 = 3.24 × 105 N. 
  F3 = kQ2/2L2 = 1.62 × 105 N. 
 The directions of the forces are determined from the signs  
 of the charges and are indicated on the diagram.   
 For the forces on the top charge, we see that the net force  
 will be along the diagonal.  For the net force, we have 
  F  = – F1 cos 45° – F2 cos 45° + F3  
   = – 2(3.24 × 105 N) cos 45° + 1.62 × 105 N 
   = – 2.96 × 105 N along the diagonal, or toward the 

center of the square. 
 From the symmetry, each of the other forces will have the same magnitude and a direction toward the 

center:  The net force on each charge is        2.96 × 105 N toward the center of the square. 
 Note that the sum for the three charges is zero. 
 
 
15. For the two forces, we have 
  Felectric  = kq1q2/r12

2 = ke2/r2  
    = (9.0 × 109 N · m2/C2)(1.6 × 10–19 C)2/(0.53 × 10–10 m)2 =       8.2 × 10–8 N. 
  Fgravitational  = Gm1m2/r2   
     = (6.67 × 10–11 N · m2/kg2)(9.11 × 10–31 kg)(1.67 × 10–27 kg)/(0.53 × 10–10 m)2  

     =       3.6 × 10–47 N. 
 The ratio of the forces is 
  Felectric /Fgravitational  = (8.2 × 10–8 N)/(3.6 × 10–47 N) =      2.3 × 1039. 
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16. Because the electrical attraction must provide the same force as the gravitational attraction, we equate the 
two forces: 

  kQQ/r2 = Gm1m2/r2; 
  (9.0 × 109 N · m2/C2)Q2 = (6.67 × 10–11 N · m2/kg2)(5.97 × 1024 kg)(7.35 × 1022 kg), which gives  
  Q =        5.71 × 1013 C. 
 
 
17. If the separation is r and one charge is Q1 , the other charge will be Q2 = QT – Q1 .   
 For the repulsive force, we have 
  F = kQ1Q2/r2 = kQ1(QT – Q1)/r2. 
 (a) If we plot the force as a function of Q1 , we see that  
  the maximum occurs when  
   Q1 = !QT ,  
  which we would expect from symmetry, since we could  
  interchange the two charges without changing the  
  force.   
 (b) We see from the plot that the minimum occurs  
  when either charge is zero: 
   Q1 (or Q2) = 0.  
 
 
18. The attractive Coulomb force provides the centripetal acceleration of the electron: 
  ke2/r2 = mv2/r,   or   r = ke2/mv2; 
  r = (9.0 × 109 N · m2/C2)(1.60 × 10–19 C)2/(9.11 × 10–31 kg)(1.1 × 106 m/s)2 =        2.1 × 10–10 m. 
 
 
19. If we place a positive charge, it will be repelled by the  
 positive charge and attracted by the negative charge.  
 Thus the third charge must be placed along the line of the  
 charges, but not between them.  For the net force to be zero,  
 the magnitudes of the individual forces must be equal: 
  F = kQ1Q/r1

2 = kQ2Q/r2
2 ,  or   Q1/(L + x)2 =  Q2/x2; 

  (5.7 µC)/(0.25 m + x)2 = (3.5 µC)/x2, which gives x = 0.91 m, – 0.11 m. 
 The negative result corresponds to the position between the charges where the magnitudes and the 

directions are the same.  Thus the third charge should be placed         0.91 m beyond the negative charge. 
 Note that we would have the same analysis if we used a negative charge. 
 
 
20. If one charge is Q1 , the other charge will be Q2 = Q – Q1 .  For the force to be repulsive, the two charges 

must have the same sign.  Because the total charge is positive, each charge will be positive.  We account 
for this by considering the force to be positive: 

  F = kQ1Q2/r2 = kQ1(Q – Q1)/r2; 
  12.0 N = (9.0 × 109 N · m2/C2)Q1(80.0 × 10–6 C – Q1)/(1.06 m)2, which is a quadratic equation: 
  Q1

2 – (80.0 × 10–6 C)Q1 + 1.50 × 10–9 C2 = 0, which gives Q1 =       50.0 × 10–6 C, 30.0 × 10–6 C. 
 Note that, because the labels are arbitrary, we get the value of both charges. 
 For an attractive force, the charges must have opposite signs, so their product will be negative.  We 

account for this by considering the force to be negative: 
  F = kQ1Q2/r2 = kQ1(Q – Q1)/r2; 
  – 12.0 N = (9.0 × 109 N · m2/C2)Q1(80.0 × 10–6 C – Q1)/(1.06 m)2, which is a quadratic equation: 
  Q1

2 – (80.0 × 10–6 C)Q1 – 1.50 × 10–9 C2 = 0, which gives Q1 =       – 15.7 × 10–6 C, 95.7 × 10–6 C. 
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21. The acceleration is produced by the force from the electric field: 
  F = qE = ma; 
  (1.60 × 10–19 C)(600 N/C) = (9.11 × 10–31 kg)a, which gives a =        1.05 × 1014 m/s2. 
 Because the charge on the electron is negative, the direction of force, and thus the acceleration, is      
  opposite to the direction of the electric field. 
 The direction of the acceleration is       independent of the velocity. 
 
 
22. If we take the positive direction to the east, we have 
  F = qE = (– 1.60 × 10–19 C)(+ 3500 N/C) = – 5.6 × 10–16 N,  or      5.6 × 10–16 N (west). 
 
 
23. If we take the positive direction to the south, we have 
  F = qE ; 
  3.2 × 10–14 N = (+ 1.60 × 10–19 C)E, which gives E =      + 2.0 × 105 N/C (south). 
 
 
24. If we take the positive direction up, we have 
  F = qE ; 
  + 8.4 N = (– 8.8 × 10–6 C)E, which gives E =      + 9.5 × 105 N/C (up). 
 
 
25. The electric field above a positive charge will be away from the charge, or up.   
 We find the magnitude from 
  E = kQ/r2  
   = (9.0 × 109 N · m2/C2)(33.0 × 10–6 C)/(0.300 m)2 =      3.30 × 106 N/C (up). 
 
 
26. The directions of the fields are determined from the signs of the charges  
 and are indicated on the diagram.  The net electric field will be to the  
 left.  We find its magnitude from 
  E = kQ1/L2 + kQ2/L2 = k(Q1 + Q2)/L2  
   = (9.0 × 109 N · m2/C2)(8.0 × 10–6 C + 6.0 × 10–6 C)/(0.020 m)2  
   = 3.2 × 108 N/C. 
 Thus the electric field is       3.2 × 108 N/C toward the negative charge.   
 
 
27. The acceleration is produced by the force from the electric field: 
  F = qE = ma; 
  (– 1.60 × 10–19 C)E = (9.11 × 10–31 kg)(125 m/s2), which gives E = – 7.12 × 10–10 N/C. 
 Because the charge on the electron is negative, the direction of force, and thus the acceleration, is opposite 

to the direction of the electric field, so the electric field is      7.12 × 10–10 N/C (south). 
 
 
28. The directions of the fields are determined from the signs of the charges  
 and are in the same direction, as indicated on the diagram.   
 The net electric field will be to the left.  We find its magnitude from 
  E = kQ1/L2 + kQ2/L2 = k(Q + Q)/L2 = 2kQ/L2  
  1750 N/C = 2(9.0 × 109 N · m2/C2)Q/(0.080 m)2 , which gives  
  Q = 6.2 × 10–10 C. 
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29. From the  diagram, we see that the electric fields produced by the charges  
 will have the same magnitude, and the resultant field will be down.  
 The distance from the origin is x , so we have 
  E+ = E– = kQ/r2 = kQ/(a2 + x2). 
 From the symmetry, for the magnitude of the electric field we have 
  E  = 2E+ sin θ = 2[kQ/(a2 + x2)][a/(a2 + x2)1/2]  
   =       2kQa/(a2 + x2)3/2 parallel to the line of the charges.  
 
 
 
30. At point A, from the diagram, we see that the electric fields produced  
 by the charges will have the same magnitude, and the resultant field  
 will be up.  We find the angle θ from 
  tan θ = (0.050 m)/(0.100 m) = 0.500,  or  θ = 26.6°. 
 For the magnitudes of the individual fields we have 
  E1A  = E2A = kQ/rA

2  
   = (9.0 × 109 N · m2/C2)(9.0 × 10–6 C)/[(0.100 m)2 + (0.050 m)2]  
   = 6.48 × 106 N/C. 
 From the symmetry, the resultant electric field is 
  EA = 2E1A sin θ = 2(6.48 × 106 N/C) sin 26.6° =       5.8 × 106 N/C up. 
 For point B we find the angles for the directions of the fields from 
  tan θ1 = (0.050 m)/(0.050 m) = 1.00,  or  θ1 = 45.0°. 
  tan θ2 = (0.050 m)/(0.150 m) = 0.333,  or  θ2 = 18.4°. 
 For the magnitudes of the individual fields we have 
  E1B  = kQ/r1B

2  
   = (9.0 × 109 N · m2/C2)(9.0 × 10–6 C)/[(0.050 m)2 + (0.050 m)2]  
   = 1.62 × 107 N/C. 
  E2B  = kQ/r2B

2  
   = (9.0 × 109 N · m2/C2)(9.0 × 10–6 C)/[(0.150 m)2 + (0.050 m)2]  
   = 3.24 × 106 N/C. 
 For the components of the resultant field we have 
  EBx = E1B cos θ1 – E2B cos θ2 = (1.62 × 107 N/C) cos 45.0° – (3.24 × 106 N/C) cos 18.4° = 8.38 × 106 N/C; 
  EBy = E1B sin θ1 – E2B sin θ2 = (1.62 × 107 N/C) sin 45.0° – (3.24 × 106 N/C) sin 18.4° = 1.25 × 107 N/C. 
 We find the direction from 
  tan θB = EBy/EBx = (1.25 × 107 N/C)/(8.38 × 106 N/C) = 1.49,  or  θ1 = 56.2°. 
 We find the magnitude from 
  EB = EBx/cos θB = (8.38 × 106 N/C)/cos 56.2° = 1.51 × 107 N/C.  
 Thus the field at point B is       1.5 × 107 N/C 56° above the horizontal. 
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31. The directions of the individual fields will be along the diagonals of 
the square, as shown.  We find the magnitudes of the individual 
fields: 

  E1 = kQ1/(L/Ã2)2 = 2kQ1/L2  
   = 2(9.0 × 109 N · m2/C2)(45.0 × 10–6 C)/(0.60 m)2  
   = 2.25 × 106 N/C.  
  E2 = E3 = E4 = kQ2/(L/Ã2)2  = 2kQ2/L2  
   = 2(9.0 × 109 N · m2/C2)(31.0 × 10–6 C)/(0.60 m)2  
   = 1.55 × 106 N/C. 
 From the symmetry, we see that the resultant field will be along the 

diagonal shown as the x-axis.  For the net field, we have 
  E  = E1 + E3 = 2.25 × 106 N/C + 1.55 × 106 N/C = 3.80 × 106 N/C. 
 Thus the field at the center is       3.80 × 106 N/C away from the positive charge. 
 
 
32. The directions of the individual fields are shown in the figure.   
 We find the magnitudes of the individual fields: 
  E1 = E3 = kQ/L2   
   = (9.0 × 109 N · m2/C2)(2.80 × 10–6 C)/(1.00 m)2  
   = 2.52 × 104 N/C. 
  E2 = kQ/(LÃ2)2  = !kQ2/L2  
   = !(9.0 × 109 N · m2/C2)(2.80 × 10–6 C)/(1.00 m)2  
   = 1.26 × 104 N/C. 
 From the symmetry, we see that the resultant field will be along 

the diagonal shown as the x-axis.  For the net field, we have 
  E   = 2E1 cos 45° +E2  
   = 2(2.52 × 104 N/C) cos 45° + 1.26 × 104 N/C  
   = 4.82 × 104 N/C. 
 Thus the field at the unoccupied corner is    
  4.82 × 104 N/C away from the opposite corner. 
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33. (a) The directions of the individual fields are shown in the figure.  
  We find the magnitudes of the individual fields:  
   E1 = E2 = kQ/L2. 
  For the components of the resultant field we have 
   Ex = – E2 sin 60° = – 0.866kQ/L2; 
   Ey = – E1 – E2 cos 60° = – kQ/L2 – 0.500kQ/L2 = – 1.50kQ/L2. 
  We find the direction from 
   tan θ = Ey/Ex = (– 1.50kQ/L2)/(– 0.866kQ/L2) = 1.73,  or  θ = 60°. 
  We find the magnitude from 
   E = Ex/cos θ = (0.866kQ/L2)/cos 60° = 1.73kQ/L2.  
  Thus the field is       1.73kQ/L2 60° below the – x-axis. 
 (b) The directions of the individual fields are shown in the figure.   
  The magnitudes of the individual fields will be the same: 
   E1 = E2 = kQ/L2. 
  For the components of the resultant field we have 
   Ex = + E2 sin 60° = + 0.866kQ/L2; 
   Ey = – E1 + E2 cos 60° = – kQ/L2 + 0.500kQ/L2 = – 0.500kQ/L2. 
  We find the direction from 
   tan θ = Ey/Ex = (– 0.500kQ/L2)/(+ 0.866kQ/L2) = – 0.577,  or  θ = – 30°. 
  We find the magnitude from 
   E = Ex/cos θ = (0.866kQ/L2)/cos 30° = kQ/L2.  
  Thus the field is       kQ/L2 30° below the + x-axis. 
 
 
 
34.  

  

–+ q – 3q+

 
 
 
35. The acceleration is produced by the force from the electric field: 
  F = qE = ma; 
  (1.60 × 10–19 C)E  = (1.67 × 10–27 kg)(1 × 106)(9.80 m/s2), which gives E =      0.10 N/C. 
 
 
36. If we let x be the distance from the center of the Earth, we have 
  GMMoon/(D – x)2 = GMEarth/x2 = 81GMMoon/x2,   or    81(D – x)2 = x2. 
 When we take the square root of both sides, we get 
  x = 9D/10 = 9(3.80 × 105 km)/10 =       3.42 × 105 km from the center of the Earth. 
 Note that taking a negative square root gives x = 9D/8, the point on the other side of the Moon where the 

magnitudes are equal, but the fields have the same direction. 
 

+

+

x

y

E2 E1

60°
+Q

+Q

O

+

x

y

E2

E1

60°
–Q

+Q

O

–

 



Solutions to Physics: Principles with Applications, 5/E, Giancoli  Chapter 16 

 Page 16 – 10 

37. For the electric field to be zero, the individual fields must have  
 opposite directions, so the two charges must have the same sign.  
 For the net field to be zero, the magnitudes of the individual  
 fields must be equal: 
  E = kQ1/r1

2 = kQ2/r2
2 ,  or   Q1/(@L)2 =  Q2/(%L)2,  

 which gives        Q2 = 4Q1 . 
 
 
38. (a) We find the acceleration produced by the electric field: 
   F = qE = ma; 
   (1.60 × 10–19 C)(1.85 × 104 N/C) = (9.11 × 10–31 kg)a, which gives a = 3.24 × 1015 m/s2. 
  Because the field is constant, the acceleration is constant, so we find the speed from 
   v2 = v0

2 + 2ax = 0 + 2(3.24 × 1015 m/s2)(0.0120 m), which gives v =       8.83 × 106 m/s. 
 (b) For the ratio of the two forces, we have 
   mg/qE = (9.11 × 10–31 kg)(9.80 m/s2)/(1.60 × 10–19 C)(1.85 × 104 N/C) = 3.0 × 10–15. 
  Thus mg « qE. 
 
 
39. (a) The acceleration of the electron, and thus the force produced by the electric field, must be  
  opposite its velocity.  Because the electron has a negative charge, the direction of the electric field  
  will be opposite that of the force, so the direction of the electric field is       
   in the direction of the velocity, to the right. 
 (b) Because the field is constant, the acceleration is constant, so we find the required acceleration from 
   v2 = v0

2 + 2ax; 
   0 = [0.01(3.0 × 108 m/s)]2 + 2a(0.050 m), which gives a = – 9.00 × 1013 m/s2. 
  We find the electric field from 
   F = qE = ma; 
   (1.60 × 10–19 C)E = (9.11 × 10–31 kg)(9.00 × 1013 m/s2), which gives E =       5.1 × 102 N/C. 
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40. (a) To estimate the force between a thymine and an adenine,  
  we assume that only the atoms with an indicated charge  
  make a contribution.  Because all charges are fractions of 
  the electronic charge, we let  
   QH = QN = f1e, and  QO = QC = f2e.   
  A convenient numerical factor will be 
   ke2/(10–10 m/Å)2  
     = (9.0 × 109 N · m2/C2)(1.60 × 10–19 C)2/(10–10 m/Å)2  
     = 2.30 × 10–8 N · Å2. 
  For the first contribution we find the force for the bond of  
  the oxygen on the thymine with the H-N pair on the  
  adenine.  From Newton's third law, we know that the  
  force on one must equal the force on the other.  We find  
  the attractive force on the oxygen: 
   FO  = kQO{[QH/(L1 – a)2] – (QN/L1

2)} 
    = ke2f2 f1{[1/(L1 – a)2] – (1/L1

2)} 
    = (2.30 × 10–8 N · Å2)(0.4)(0.2){[1/(2.80 Å – 1.00 Å)2] – [1/(2.80 Å)2]} = 3.33 × 10–10 N. 
  For the force for the lower bond of the H-N pair on the thymine with the nitrogen on the adenine,  
  we find the attractive force on the nitrogen: 
   FN  = kQN{[QH/(L2 – a)2] – (QN/L2

2)} = ke2f1 f1{[1/(L2 – a)2] – (1/L2
2)} 

    = (2.30 × 10–8 N · Å2)(0.2)(0.2){[1/(3.00 Å – 1.00 Å)2] – [1/(3.00 Å)2]} = 1.28 × 10–10 N. 
  There will be a repulsive force between the oxygen of the first bond and the nitrogen of the second  
  bond.  To find the separation of the two, we note that the distance between the two nitrogens of the  
  adenine, which is approximately perpendicular to L1, is 2a cos 30° = 1.73a.  We find the magnitude  
  of this force from 
   FO-N  = kQO{QN/[L1

2 + (1.73a)2]} = ke2f2 f1{1/[L1
2 + (1.73a)2]}  

     = (2.30 × 10–8 N · Å2)(0.4)(0.2){1/[(2.80 Å)2 + (1.73 Å)2]} = 1.7 × 10–10 N. 
  We find the angle that this force makes with the line of the other bonds from 
   tan θ = 1.73a/L1 = 1.73 Å/2.89 Å= 0.62,  or  θ = 32°. 
  Thus the component that contributes to the bond is (1.7 × 10–10 N) cos 32° = 1.4 × 10–10 N. 
  The other contribution will be from the carbon atom on the thymine.  Because the distance is  
  slightly greater and there will be attraction to the nitrogens and repulsion from the hydrogen, we  
  neglect this contribution.   
  Thus the estimated net bond is 3.33 × 10–10 N + 1.28 × 10–10 N – 1.4 × 10–10 N       ≈ 3 × 10–10 N. 
 (b) To estimate the net force between a cytosine and a guanine, we note that there are two oxygen bonds,  
  one nitrogen bond, and one repulsive O-N force.  We neglect the other forces because they involve  
  cancellation from the involvement of both hydrogen and nitrogen.  If we ignore the small change in  
  distances, we have 
   2(3.33 × 10–10 N) + 1.28 × 10–10 N – 1.4 × 10–10 N      ≈ 7 × 10–10 N. 
 (c) The total force for the DNA molecule is 
   (3 × 10–10 N + 7 × 10–10 N)(105 pairs)      ≈ 10–4 N. 
 
 
41. When we equate the two forces, we have 
  mg = ke2/r2; 
  (9.11 × 10–31 kg)(9.80 m/s2) = (9.0 × 109 N · m2/C2)(1.60 × 10–19 C)2/r2, which gives r =       5.08 m. 
 
 
42. Because a copper atom has 29 electrons, we find the number of electrons in the penny from 
  N = [(3.0 g)/(63.5 g/mol)](6.02 × 1023 atoms/mol)(29 electrons/atom) = 8.24 × 1023 electrons. 
 We find the fractional loss from 
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  Æq/q = (42 × 10–6 C)/(8.24 × 1023 electrons)(1.6 × 10–19 C/electron) =       3.2 × 10–10. 
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43. The weight must be balanced by the force from the electric field: 
  mg = qE; 
  (1.67 × 10–27 kg)(9.80 m/s2) = (1.60 × 10–19 C)E, which gives E =      1.02 × 10–7 N/C (up). 
 
 
44. Because we can treat the charge on the Earth as a point charge at the center, we have 
  E = kQ/r2;  
  150 N/C = (9.0 × 109 N · m2/C2)Q/(6.38 × 106 m)2, which gives Q =      6.8 × 105 C. 
 Because the field points toward the center, the charge must be      negative. 
 
 
45. The weight must be balanced by the force from the electric field: 
  mg = ρ9¹r3g = NeE ; 
  (1000 kg/m3)9¹(1.8 × 10–5 m)3(9.80 m/s2) = N(1.60 × 10–19 C)(150 N/C),  
 which gives N =      1.0 × 107 electrons. 
 
 
46. The directions of the individual fields will be along the diagonals of 

the square, as shown.  All distances are the same.  We find the  
 magnitudes of the individual fields: 
  E1 = kQ1/(L/Ã2)2 = 2kQ1/L2  
   = 2(9.0 × 109 N · m2/C2)(1.0 × 10–6 C)/(0.25 m)2  
   = 2.88 × 105 N/C. 
  E2 = kQ2/(L/Ã2)2 = 2E1 = 2(2.88 × 105 N/C) = 5.76 × 105 N/C. 
  E3 = kQ3/(L/Ã2)2 = 3E1 = 3(2.88 × 105 N/C) = 8.64 × 105 N/C. 
  E4 = kQ4/(L/Ã2)2 = 4E1 = 4(2.88 × 105 N/C) = 11.52 × 105 N/C. 
 We simplify the vector addition by using the xy-coordinate system 

shown.  For the components of the resultant field we have 
  Ex = E4 – E2 = 11.52 × 105 N/C – 5.76 × 105 N/C = 5.76 × 105 N/C; 
  Ey = E3 – E1 = 8.64 × 105 N/C – 2.88 × 105 N/C = 5.76 × 105 N/C. 
 Thus we see that the resultant will be in the y′-direction: 
  E = 2Ex cos 45° = 2(5.76 × 105 N/C) cos 45° =      8.1 × 105 N/C up.  
 
 
47. We find the force between the groups by finding the force  
 on the CO group from the HN group.  A convenient 

numerical factor will be 
  ke2/(10–9 m/nm)2  
   = (9.0 × 109 N · m2/C2)(1.60 × 10–19 C)2/(10–9 m/nm)2  
   = 2.30 × 10–10 N · nm2. 
 For the forces on the atoms, we have 
  FO  = kQO{[QH/(L – d2)2] – (QN/L2)} = ke2fO fH{[1/(L – d2)2] – (1/L2)} 
   = (2.30 × 10–10 N · nm2)(0.4)(0.2){[1/(0.28 nm – 0.10 nm)2] – [1/(0.28 nm)2]} = 3.33 × 10–10 N. 
  FC  = kQC{[QN/(L + d1)2] – QH/(L + d1 – d2)2]} = ke2fC fN{[1/(L + d1)2] – [1/(L + d1 – d2)2]} 
   = (2.30 × 10–10 N · nm2)(0.4)(0.2){[1/(0.28 nm + 0.12 nm)2] – [1/(0.28 nm + 0.12 nm – 0.10 nm)2]}  
   = – 8.94 × 10–11 N. 
 Thus the net force is 
  F = FO + FC = 3.33 × 10–10 N – 8.94 × 10–11 N =       2.4 × 10–10 N (attraction). 
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48. Because the charges have the same sign, they repel each  
 other.  The force from the third charge must balance the  
 repulsive force for each charge, so the third charge must be  
 positive and between the two negative charges.  For each of  
 the negative charges, we have 
  Q0 : kQ0Q/x2 = kQ0(3Q0)/¬2,   or   ¬2Q = 3x2Q0 ; 
  3Q0 : k3Q0Q/(¬– x)2 = kQ0(3Q0)/¬2,   or   ¬2Q = (¬ – x)2Q0 . 
 Thus we have 
  3x2 = (¬ – x)2, which gives x = –1.37¬, + 0.366¬. 
 Because the positive charge must be between the charges, it must be 0.366¬ from Q0.  When we use this 

value in one of the force equations, we get 
  Q = 3(0.366¬)2Q0/¬2 = 0.402Q0. 
 Thus we place a charge of      0.402Q0 0.366¬ from Q0. 
 Note that the force on the middle charge is also zero. 
 
 
49. Because the charge moves in the direction of the electric field,  
 it must be       positive. 
 We find the angle of the string from the dimensions:  
  cos θ = (0.49 m)/(0.50 m) = 0.98,   or   θ = 11.5°. 
 Because the charge is in equilibrium, the resultant force is zero.   
 We see from the force diagram that 
  tan θ = QE/mg; 
  tan 11.5° = Q(9200 N/C)/(1.0 × 10–3 kg)(9.80 m/s2),  
 which gives Q =       2.2 × 10–7 C. 
 
 
 
 
 
50. Because the charges have opposite signs, the location where the electric  
 field is zero must be outside the two charges, as shown.  
 The fields from the two charges must balance: 
  kQ1/x2 = kQ2/(L – x)2; 
  (2.5 × 10–5 C)/x2 = (5.0 × 10–6 C)/(2.0 m – x)2,  
 which gives x = 1.4 m, 3.6 m. 
 Because 1.4 m is between the charges, the location is       
  3.6 m from the positive charge, and 1.6 m from the negative charge. 
 
 
51. (a) The force is opposite to the direction of the electron.  We find the acceleration produced by the  
  electric field: 
   – qE = ma; 
   – (1.60 × 10–19 C)(7.7 × 103 N/C) = (9.11 × 10–31 kg)a, which gives a = – 1.35 × 1015 m/s2. 
  Because the field is constant, the acceleration is constant, so we find the distance from 
   v2 = v0

2 + 2ax; 
   0 = (1.5 × 106 m/s)2 + 2(– 1.35 × 1015 m/s2)x, which gives x = 8.3 × 10–4 m =       0.83 mm. 
 (b) We find the time from 
   x = v0t + !at2; 
   0 = (1.5 × 106 m/s)t + !(– 1.35 × 1015 m/s2)t2,  
  which gives t = 0 (the starting time), and 2.2 × 10–9 s =       2.2 ns. 
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52. The angular frequency of the SHM is 
  ω = (k/m)1/2 = [(126 N/m)/(0.800 kg)]1/2 = 12.5 s–1. 
 If we take down as positive, with respect to the equilibrium position, the ball will start at  
 maximum displacement, so the position as a function of time is 
  x = A cos(ωt) = (0.0500 m) cos [(12.5 s–1)t]. 
 Because the charge is negative, the electric field at the table will be up and the distance from  
 the table is 
  r = H – x = 0.150 m – (0.0500 m) cos [(12.5 s–1)t]. 
 The electric field is 
  E  = kQ/r2 = (9.0 × 109 N · m2/C2)(3.00 × 10–6 C)/{0.150 m – (0.0500 m) cos [(12.5 s–1)t]}2  
   =       (1.08 × 107 N/C)/{3 –  cos [(12.5 s–1)t]}2 up. 
 
 
53. We consider the forces on one ball.  (The other will be the  
 same except for the reversal.)  The separation of the charges is  
  r = 2L sin 30° = 2(0.70 m) sin 30° = 0.70 m. 
 From the equilibrium force diagram, we have 
  tan θ = F/mg = [k(!Q)(!Q)/r2]/mg; 
  tan 30° = ((9.0 × 109 N · m2/C2)Q2/ 
       (0.70 m)2(24 × 10–3 kg)(9.80 m/s2), 
 which gives Q = 5.4 × 10–6 C =      5.4 µC. 
 
 
 
 
 
 
54. The pea will discharge when the electric field at the surface exceeds the breakdown field.  Because we can 

treat the charge on the pea as a point charge at the center, we have 
  E = kQ/r2;  
  3 × 106 N/C = (9.0 × 109 N · m2/C2)Q/(0.375 × 10–2 m)2, which gives Q =      5 × 10–9 C. 
 
 
55. We find the electric field at the location of Q1 due to the plates  
 and Q2.  For the field of Q2 we have 
  E2 = kQ2/x2  
   = (9.0 × 109 N · m2/C2)(1.3 × 10–6 C)/(0.34 m)2  
   = 1.01 × 105 N/C (left). 
 The field from the plates is to the right, so we have 
  Enet  = Eplates – E2 
   = 73,000 N/C – 1.01 × 105 N/C = – 2.8 × 105 N/C (left). 
 For the force on Q1 , we have 
  F1  = Q1Enet  = (– 6.7 × 10–6 C)(–  2.8 × 105 N/C)  
   =       + 0.19 N (right).  
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56. We take up as the positive direction and assume that E is up.   
 From the equilibrium force diagram, we have 
  FT + QE = mg; 
  5.67 N + (0.340 × 10–6 C)E = (0.210 kg)(9.80 m/s2),  
 which gives E =       – 1.06 × 107 N/C (down). 
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